Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Clin Endocrinol Metab ; 107(1): 98-108, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34508607

RESUMEN

CONTEXT: Vitamin D has been linked with glucose and lipid metabolism. Men with impaired gonadal function have a higher risk of metabolic syndrome and mortality, and vitamin D status may be a reversible modulator. OBJECTIVE: This work aimed to determine the effect of daily vitamin D and calcium supplementation for 150 days on glucose and lipid homeostasis in infertile men. METHODS: A single-center, double-blinded, randomized clinical trial (NCT01304927) was conducted. A total of 307 infertile men were randomly assigned (1:1) to a single dose of 300 000 IU cholecalciferol followed by 1400 IU cholecalciferol + 500 mg of calcium daily (n = 151) or placebo (n = 156) for 150 days. Reported metabolic parameters including fasting plasma glucose, glycated hemoglobin A1c, fasting serum insulin, homeostatic model assessment of insulin resistance (HOMA-IR), fasting plasma cholesterols, and triglycerides were secondary end points. The primary end point semen quality has previously been reported. RESULTS: Men receiving vitamin D supplementation improved their vitamin D status, whereas vitamin D status was aggravated in the placebo group characterized by higher serum parathyroid hormone. At the end of the trial, men receiving vitamin D supplementation had 13% lower fasting serum insulin concentrations compared with the placebo-treated group (65 vs 74 pmol/L, P = .018) and 19% lower HOMA-IR (2.2 vs 2.7, P = .025). Moreover, men in the vitamin D group had higher high-density lipoprotein (HDL) cholesterol levels (1.38 vs 1.32 mmol/L, P = .008) compared with the placebo group. CONCLUSION: High-dose vitamin D supplementation has beneficial effects on glucose homeostasis and HDL cholesterol levels in infertile men.


Asunto(s)
Colecalciferol/administración & dosificación , Suplementos Dietéticos , Infertilidad Masculina/dietoterapia , Insulina/sangre , Deficiencia de Vitamina D/dietoterapia , Adulto , Glucemia/análisis , Glucemia/metabolismo , Calcio/administración & dosificación , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , Ayuno/sangre , Ayuno/metabolismo , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Humanos , Infertilidad Masculina/sangre , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/metabolismo , Insulina/metabolismo , Resistencia a la Insulina , Masculino , Análisis de Semen , Resultado del Tratamiento , Triglicéridos/sangre , Triglicéridos/metabolismo , Vitamina D/análogos & derivados , Vitamina D/sangre , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/diagnóstico , Deficiencia de Vitamina D/metabolismo
2.
Cell Rep ; 37(10): 110075, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879284

RESUMEN

The neuroendocrine system coordinates metabolic and behavioral adaptations to fasting, including reducing energy expenditure, promoting counterregulation, and suppressing satiation and anxiety to engage refeeding. Here, we show that steroid receptor coactivator-2 (SRC-2) in pro-opiomelanocortin (POMC) neurons is a key regulator of all these responses to fasting. POMC-specific deletion of SRC-2 enhances the basal excitability of POMC neurons; mutant mice fail to efficiently suppress energy expenditure during food deprivation. SRC-2 deficiency blunts electric responses of POMC neurons to glucose fluctuations, causing impaired counterregulation. When food becomes available, these mutant mice show insufficient refeeding associated with enhanced satiation and discoordination of anxiety and food-seeking behavior. SRC-2 coactivates Forkhead box protein O1 (FoxO1) to suppress POMC gene expression. POMC-specific deletion of SRC-2 protects mice from weight gain induced by an obesogenic diet feeding and/or FoxO1 overexpression. Collectively, we identify SRC-2 as a key molecule that coordinates multifaceted adaptive responses to food shortage.


Asunto(s)
Metabolismo Energético , Ayuno/metabolismo , Conducta Alimentaria , Hipotálamo/metabolismo , Neuronas/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Obesidad/metabolismo , Hipernutrición/metabolismo , Proopiomelanocortina/metabolismo , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Ansiedad/psicología , Modelos Animales de Enfermedad , Ayuno/psicología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células HEK293 , Humanos , Hipotálamo/fisiopatología , Masculino , Ratones Noqueados , Coactivador 2 del Receptor Nuclear/genética , Obesidad/genética , Obesidad/fisiopatología , Obesidad/psicología , Hipernutrición/genética , Hipernutrición/fisiopatología , Hipernutrición/psicología , Proopiomelanocortina/genética , Respuesta de Saciedad , Transducción de Señal , Aumento de Peso
3.
Nutrients ; 13(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34836101

RESUMEN

We used time-restricted feeding (TRF) to investigate whether microbial metabolites and the hunger hormone ghrelin can become the dominant entraining factor during chronic jetlag to prevent disruption of the master and peripheral clocks, in order to promote health. Therefore, hypothalamic clock gene and Agrp/Npy mRNA expression were measured in mice that were either chronically jetlagged and fed ad libitum, jetlagged and fed a TRF diet, or not jetlagged and fed a TRF diet. Fecal short-chain fatty acid (SCFA) concentrations, plasma ghrelin and corticosterone levels, and colonic clock gene mRNA expression were measured. Preventing the disruption of the food intake pattern during chronic jetlag using TRF restored the rhythmicity in hypothalamic clock gene mRNA expression of Reverbα but not of Arntl. TRF countered the changes in plasma ghrelin levels and in hypothalamic Npy mRNA expression induced by chronic jetlag, thereby reestablishing the food intake pattern. Increase in body mass induced by chronic jetlag was prevented. Alterations in diurnal fluctuations in fecal SCFAs during chronic jetlag were prevented thereby re-entraining the rhythmic expression of peripheral clock genes. In conclusion, TRF during chronodisruption re-entrains the rhythms in clock gene expression and signals from the gut that regulate food intake to normalize body homeostasis.


Asunto(s)
Proteínas CLOCK/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Ayuno/metabolismo , Síndrome Jet Lag/prevención & control , Animales , Enfermedad Crónica , Colon/metabolismo , Corticosterona/sangre , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/metabolismo , Heces/química , Conducta Alimentaria/fisiología , Expresión Génica/fisiología , Ghrelina/sangre , Hipotálamo/metabolismo , Síndrome Jet Lag/genética , Ratones , ARN Mensajero/metabolismo
4.
Int J Mol Sci ; 22(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067001

RESUMEN

Investigations into the mechanisms regulating obesity are frantic and novel translational approaches are needed. The raccoon dog (Nyctereutes procyonoides) is a canid species representing a promising model to study metabolic regulation in a species undergoing cycles of seasonal obesity and fasting. To understand the molecular mechanisms of metabolic regulation in seasonal adaptation, we analyzed key central nervous system and peripheral signals regulating food intake and metabolism from raccoon dogs after autumnal fattening and winter fasting. Expressions of neuropeptide Y (NPY), orexin-2 receptor (OX2R), pro-opiomelanocortin (POMC) and leptin receptor (ObRb) were analyzed as examples of orexigenic and anorexigenic signals using qRT-PCR from raccoon dog hypothalamus samples. Plasma metabolic profiles were measured with 1H NMR-spectroscopy and LC-MS. Circulating hormones and cytokines were determined with canine specific antibody assays. Surprisingly, NPY and POMC were not affected by the winter fasting nor autumn fattening and the metabolic profiles showed a remarkable equilibrium, indicating conserved homeostasis. However, OX2R and ObRb expression changes suggested seasonal regulation. Circulating cytokine levels were not increased, demonstrating that the autumn fattening did not induce subacute inflammation. Thus, the raccoon dog developed seasonal regulatory mechanisms to accommodate the autumnal fattening and prolonged fasting making the species unique in coping with the extreme environmental challenges.


Asunto(s)
Adiposidad , Ayuno/metabolismo , Metaboloma , Perros Mapache/metabolismo , Estaciones del Año , Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/patología , Animales , Biomarcadores/metabolismo , Peso Corporal , Análisis Discriminante , Femenino , Hormonas/sangre , Hipotálamo/metabolismo , Inflamación/patología , Análisis de los Mínimos Cuadrados , Límite de Detección , Análisis Multivariante , Péptidos/genética , Péptidos/metabolismo , Espectroscopía de Protones por Resonancia Magnética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perros Mapache/sangre , Receptores de Péptidos/metabolismo
5.
Cells ; 10(4)2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919674

RESUMEN

Many aspects of physiological functions are controlled by the hypothalamus, a brain region that connects the neuroendocrine system to whole-body metabolism. Growth hormone (GH) and the GH receptor (GHR) are expressed in hypothalamic regions known to participate in the regulation of feeding and whole-body energy homeostasis. Sirtuin 1 (SIRT1) is the most conserved mamma-lian nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase that plays a key role in controlling life span and sensing nutrient availability in the hypothalamus in response to caloric restriction. However, the interaction between GHR signaling and SIRT1 in the hypothal-amus is not established. In the arcuate nucleus (ARC) of the hypothalamus, the anorexigenic proopiomelanocortin (POMC)-expressing neurons and the orexigenic agouti-related protein (AgRP)-expressing neurons are the major regulators of feeding and energy expenditure. We show that in the ARC, the majority of GHR-expressing neurons also express SIRT1 and respond to fasting by upregulating SIRT1 expression. Accordingly, hypothalamic upregulation of SIRT1 in response to fasting is blunted in animals with GHR deletion in the AgRP neurons (AgRPEYFPΔGHR). Our data thus reveal a novel interaction between GH and SIRT1 in responses to fasting.


Asunto(s)
Ayuno/metabolismo , Hipotálamo/metabolismo , Receptores de Somatotropina/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Femenino , Ácidos Hidroxámicos/farmacología , Hipotálamo/efectos de los fármacos , Masculino , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Neurosci Lett ; 751: 135797, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33727127

RESUMEN

Insulin-like growth factor (IGF)-2 is a multifunctional hormone with structural and functional similarity to IGF-1 in mammals and chickens. We previously showed that intracerebroventricular administration of IGF-1 suppresses food intake in chicks. Also, central administration of IGF-2 suppresses food intake in rats. In the present study, we evaluated whether IGF-2 is involved in the regulation of food intake in chicks. We also examined the effects of fasting on the mRNA levels of IGF binding proteins (IGFBPs) in the liver and hypothalamus, because IGFBPs bind IGF-1 and -2 in plasma and block their binding to the receptors, and locally expressed IGFBPs also influence IGFs binding to the receptors in mammals. Intracerebroventricular administration of IGF-2 significantly suppressed food intake in chicks. The mRNA levels of IGFBPs in the hypothalamus were not affected by six hours of fasting. On the other hand, six hours of fasting markedly increased the mRNA levels of hepatic IGFBP-1 and -2 (5.47- and 6.95-fold, respectively). The mRNA levels of IGFBP-3 were also significantly increased (1.36-fold) by six hours of fasting, whereas the mRNA levels of IGF-2, IGFBP-4, and -5 were unchanged. These findings suggest that circulating IGF-2 may be involved in satiety signals, but its physiological role may be regulated by IGFBPs production in the liver in chicks.


Asunto(s)
Pollos/fisiología , Ingestión de Alimentos/efectos de los fármacos , Factor II del Crecimiento Similar a la Insulina/farmacología , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Pollos/metabolismo , Ayuno/metabolismo , Hipotálamo/metabolismo , Inyecciones Intraventriculares , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/administración & dosificación , Hígado/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
AAPS PharmSciTech ; 22(3): 84, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649887

RESUMEN

Prediction of performance of traditional, reformulated, and novel oral formulations in adults and pediatrics is of great importance. This study was conducted to assess solubility of celecoxib in age-appropriate fasted- and fed-state gastric and intestinal biorelevant media, classify celecoxib into biopharmaceutical classification system (BCS), and assess the effects of age-related developmental changes in the composition and volume of gastrointestinal fluids on the solubility and performance of oral formulations containing celecoxib. Solubility of celecoxib was assessed at 37°C in the pH range specified by the BCS-based criteria in 13 age-appropriate biorelevant media reflective of the gastric and proximal small intestinal environment in both fasted and fed states in adults and different pediatric subpopulations. A validated HPLC-UV method was used to quantify celecoxib. Experimental and computational molecular descriptors and in vivo pharmacokinetic data were used to assign the permeability class of celecoxib. Celecoxib belonged to BCS class 2. The pediatric to adult solubility ratios were outside the 80-125% boundaries in 3 and borderline in 1 biorelevant media. Significant age-related variability could be predicted for oral formulations containing celecoxib intended for pediatric use. Findings of this study indicated that the criteria used in the adult BCS might not be directly applied to pediatric subpopulations.


Asunto(s)
Productos Biológicos/clasificación , Productos Biológicos/farmacocinética , Celecoxib/clasificación , Celecoxib/farmacocinética , Ayuno/metabolismo , Absorción Gastrointestinal/fisiología , Administración Oral , Adulto , Antiinflamatorios no Esteroideos/clasificación , Antiinflamatorios no Esteroideos/farmacocinética , Líquidos Corporales/química , Líquidos Corporales/metabolismo , Niño , Preescolar , Evaluación Preclínica de Medicamentos/métodos , Predicción , Absorción Gastrointestinal/efectos de los fármacos , Humanos , Lactante , Recién Nacido , Permeabilidad , Solubilidad
8.
J Ethnopharmacol ; 274: 114072, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33781876

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The ancient Chinese herbal formula Longdan Xiegan Tang (LXT, also called Gentiana Longdancao Decoction to Drain the Liver) treats insulin resistance- and inflammation-associated liver injuries in clinical practice. AIM OF THE STUDY: To investigate the molecular mechanisms underlying LXT-elicited improvement of the liver injuries. MATERIALS AND METHODS: Male rats were co-treated with olanzapine (5 mg/kg) and LXT extract (50 and 500 mg/kg) for eight weeks. Blood parameters were determined enzymatically or by ELISA. Gene/protein expression was analyzed by Real-Time PCR, Western blot and/or immunohistochemistry. RESULTS: LXT attenuated olanzapine-induced liver injury manifested by hyperactivities of plasma alanine aminotransferase and aspartate aminostransferase, hyperbilirubinemia and hypoalbuminemia. Furthermore, LXT improved hepatic insulin resistance that was indicated by hyperinsulinemia, the increased HOMA-IR index, and hepatic over-phosphorylation of Ser307 in insulin receptor substrate (IRS)1, Ser731 in IRS2, Tyr607 in phosphoinositide 3-kinase p85α and Ser473 in AKT at baseline. Mechanistically, LXT inhibited olanzapine-triggered hepatic over-phosphorylation of both IκB kinase (IKK)α/ß and nuclear factor (NF)κB p65 proteins, and mRNA overexpression of tumor necrosis factor α, interleukin 6, interleukin 1ß and CD68. More importantly, LXT restored the decreases in angiotensin-converting enzyme 2 (ACE2) protein level, and its downstream targets Ang (1-7) content and Mas receptor expression. CONCLUSIONS: The present results demonstrate that LXT attenuates liver injury and hepatic insulin resistance by regulating the ACE2/Ang (1-7)/Mas axis-mediated anti-inflammatory pathway in rats. Our findings provide a better understanding of LXT for treatment of insulin resistance- and inflammation-associated liver injuries.


Asunto(s)
Antiinflamatorios/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Angiotensina I/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Antiinflamatorios/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Citocinas/genética , Medicamentos Herbarios Chinos/farmacología , Ayuno/metabolismo , Quinasa I-kappa B/metabolismo , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , FN-kappa B/metabolismo , Olanzapina , Fragmentos de Péptidos/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/genética , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/genética
9.
J Ethnopharmacol ; 274: 114052, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33753147

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis (Huang-Qin in Chinese) is a dry root of the perennial herb Scutellaria baicalensis Georgi, which has been used extensively in current prescriptions. Scutellaria baicalensis is an herb high in flavonoids, and baicalein is the one flavonoid found in the highest amount in Scutellaria baicalensis. AIM OF THE STUDY: Influenza virus could cause mild respiratory tract illness to severe pneumonia and even death. Baicalein has been proved to be one of the effective components against the influenza virus. However, there have been few reports on human trials of baicalein. The purpose of this study was to evaluate the safety of baicalein in vivo and analyze its pharmacokinetic characteristics. MATERIALS AND METHODS: Three randomized studies were conducted to evaluate the pharmacokinetics (PK), safety, tolerability, and food effects of baicalein tablets. In the 7-month single-dose safety study, 60 subjects were enrolled and randomized to receive 100-800 mg baicalein tablets or placebo. In the single-dose PK study, 40 subjects were enrolled and randomized to receive 200 mg, 400 mg, 600 mg, 800 mg baicalein tablets. In the study of food effect on PK of baicalein, an additional 10 subjects were enrolled in the 400 mg group, this part of the trial lasted for 7 months. Blood and urine samples for PK analysis were collected at a pre-specified time. PK properties in both fasted and fed states were evaluated, as well as safety and tolerability. RESULTS: Among the 80 subjects who were evaluable for the single-dose safety and tolerability, 56 adverse events (AEs) were observed in 32/80 subjects, of which 49 events were from 28/68 subjects in baicalein group and 7 events were from 4/12 subjects in placebo group. All AEs were mild and resolved without any medical intervention. The most common AEs were elevated high-sensitivity C-reactive protein (hs-CRP) level and high triglycerides. After a single administration of baicalein tablets (200 mg, 400 mg, 600 mg, or 800 mg), Cmax were 280.44, 628.80, 845.20, 489.55 ng/mL; AUC0-∞ were 2035.57, 2939.31, 4494.88, and 3754.43 h*ng/mL, respectively. And t1/2z ranged from 7.80 to 14.91 h. The exposure of baicalein and its metabolites increased in a less than dose-proportional manner. CONCLUSION: Baicalein tablets within the studied dose range were safe and well-tolerated in healthy Chinese subjects with no serious or severe adverse effects. Further investigation will be needed to assess the safety and efficacy in the target patients.


Asunto(s)
Flavanonas/farmacocinética , Interacciones Alimento-Droga , Adulto , Pueblo Asiatico , Método Doble Ciego , Ayuno/metabolismo , Femenino , Flavanonas/efectos adversos , Flavanonas/sangre , Flavanonas/orina , Voluntarios Sanos , Humanos , Masculino , Comprimidos , Adulto Joven
10.
Nutrients ; 13(2)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572630

RESUMEN

The brain renin-angiotensin system (RAS) has been recently involved in the homeostatic regulation of energy. Our goal was to analyse the influence of a diet rich in saturated fatty acids (butter) against one enriched in monounsaturated fatty acids (olive oil) on hypothalamic RAS, and their relationship with the metabolism of fatty acids. Increases in body weight and visceral fat, together with an increase in aminopeptidase A expression and reductions in AngII and AngIV were observed in the hypothalamus of animals fed with the butter diet. In this group, a marked reduction in the expression of genes related to lipid metabolism (LPL, CD36, and CPT-1) was observed in liver and muscle. No changes were found in terms of body weight, total visceral fat and the expression of hepatic genes related to fatty acid metabolism in the olive oil diet. The expressions of LPL and CD36 were reduced in the muscles, although the decrease was lower than in the butter diet. At the same time, the fasting levels of leptin were reduced, no changes were observed in the hypothalamic expression of aminopeptidase A and decreases were noted in the levels of AngII, AngIV and AngIII. These results support that the type of dietary fat is able to modify the hypothalamic profile of RAS and the body energy balance, related to changes in lipid metabolism.


Asunto(s)
Mantequilla , Hipotálamo/metabolismo , Metabolismo de los Lípidos , Aceite de Oliva/metabolismo , Sistema Renina-Angiotensina/fisiología , Angiotensina II/análogos & derivados , Angiotensina II/metabolismo , Angiotensina III/metabolismo , Animales , Peso Corporal , Antígenos CD36/metabolismo , Dieta Alta en Grasa , Metabolismo Energético , Ayuno/metabolismo , Expresión Génica , Glutamil Aminopeptidasa/metabolismo , Grasa Intraabdominal/crecimiento & desarrollo , Leptina/metabolismo , Metabolismo de los Lípidos/genética , Lipoproteína Lipasa/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Aumento de Peso
11.
BMC Pharmacol Toxicol ; 21(1): 88, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317621

RESUMEN

BACKGROUND: A novel, high bioavailability oral, enteric coated tablet formulation of S-adenosylmethionine (MSI-195) has been developed for life science application. The present research reports on a Phase 1 study to (i) determine the safety of single doses of MSI-195 (ii) to determine the dose proportionality of MSI-195 at doses of 400, 800 and 1600 mg (iii) determine the pharmacokinetics of MSI-195 compared with a commercial reference product (SAM-e Complete™) over 24 h and (iv) to determine the effect of food on the pharmacokinetic profile of MSI-195 in human subjects. METHODS: This study was a pharmacokinetic and safety evaluation of MSI-195 and a commercial comparator broken into two stages. The first stage was an exploratory single ascending dose design of MSI-195 in 8 healthy normal male volunteers. The second stage was a single dose evaluation, targeting 26 male and female volunteers at set doses of MSI-195 and commercial comparator in a cross-over design followed by a food effect study on MSI-195. Plasma samples were collected and assayed for S-adenosylmethionine using a validated HPLC method with MS/MS detection. The main absorption and disposition parameters were calculated using a non-compartmental approach with a log-linear terminal phase assumption. Statistical analysis was based on an ANOVA model or t test as appropriate. RESULTS: MSI-195 was found to be generally well tolerated with an adverse event profile similar to the SAM-e Complete™ comparator product. The relative bioavailability of MSI-195 was approximately 2.8-fold higher than SAM-e Complete based on area under the curve (AUC) ratios for the two products and the MSI-195 formulation exposure based on AUC was found to be approximately dose proportional. There was a significant food effect for MSI-195 with a delayed time to maximum absorption Tmax, going from 4.5 h under fasted conditions to 13 h under fed conditions, and area under the curve with food reduced to 55% of that seen under fasting conditions. CONCLUSIONS: The overall conclusion was that MSI-195 was well tolerated and has markedly higher bioavailability compared with both the SAM-e Complete™ commercial product tested and, on a per mg basis, products reported in other literature. TRIAL REGISTRATION: ClinicalTrials.gov, identifier NCT04623034 . Retrospectively registered Nov 9, 2020.


Asunto(s)
Suplementos Dietéticos , Composición de Medicamentos/métodos , Interacciones Alimento-Droga/fisiología , S-Adenosilmetionina/administración & dosificación , S-Adenosilmetionina/farmacocinética , Administración Oral , Adulto , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Ayuno/metabolismo , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , S-Adenosilmetionina/química , Adulto Joven
12.
Mech Ageing Dev ; 192: 111358, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32961167

RESUMEN

It is known that insulin secreted by pancreatic ß-cells enters the brain by crossing the blood-brain barrier. However, it was demonstrated that insulin expression occurs in various brain regions as well. Albeit the list of insulin actions in the brain is long and it includes control of energy homeostasis, neuronal survival, maintenance of synaptic plasticity and cognition, not much is known about the adaptive significance of insulin synthesis in brain. We previously reported that short-term fasting promotes insulin expression and subsequent activation of insulin receptor in the rat periventricular nucleus. In order to uncover a physiological importance of the fasting-induced insulin expression in hypothalamus, we analyzed the effect of short-term food deprivation on the expression of several participants of PI3K/AKT/mTOR and Ras/MAPK signaling pathways that are typically activated by this hormone. We found that the hypothalamic content of total and activated IRS1, IRS2, PI3K, and mTOR remained unchanged, but phosphorylated AKT1/2/3 was decreased. The levels of activated ERK1/2 were increased after six-hour fasting. Moreover, activated ERK1/2 was co-expressed with activated insulin receptor in the nucleus arcuatus. Our previously published and current findings suggest that the ERK activation in hypothalamus was at least partially initiated by the centrally produced insulin.


Asunto(s)
Ayuno/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Fosforilación , Ratas , Receptor de Insulina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
13.
Ann Nutr Metab ; 76(5): 297-303, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32950986

RESUMEN

BACKGROUND: COVID-19 pandemic, a global threat, adversely affects all daily lives, altered governmental plans around the world, and urges the development of therapeutics and prophylactics to avoid the expansion of the viral infection. With the recent gradual opening after long lockdown, several recommendations have been placed, with dietary modification as one of the most important approaches that have been appraised. SUMMARY: Here, we are reviewing how changing the host metabolism, particularly changing the host metabolic state from the carbohydrate-dependent glycolytic state to a fat-dependent ketogenic state, may affect viral replication. Furthermore, the impact of intermittent fasting (IF) in triggering metabolic switch along with the impact of supplementation with medium-chain triglycerides (MCTs) such as lauric acid in repressing the envelope formation and viral replication is also addressed. The amalgamation of IF and a ketogenic diet rich in MCTs is thought to work as a prophylactic measure for normal people and adjunct therapy for infected persons. Key Message: A diet regimen of ketogenic breakfast along with supplementation with two doses of lauric acid-rich MCTs at breakfast and lunch times, followed by 8-12-h IF and a dinner rich with fruits and vegetables, could be a potential prophylactic strategy and adjuvant therapy to combat SARS-CoV-2 infections.


Asunto(s)
COVID-19/metabolismo , Control de Enfermedades Transmisibles/métodos , Dieta Cetogénica/métodos , Ayuno/metabolismo , Replicación Viral/fisiología , Ayuno/fisiología , Humanos , Pandemias , Triglicéridos/administración & dosificación , Triglicéridos/metabolismo
14.
J Nutr Biochem ; 83: 108419, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32580132

RESUMEN

The intermittent fasting (IF) might have benefits on metabolism and food intake. Twelve-week old C57BL/6 J mice were fed a control diet (C, 10% kcal fat), a high-fat diet (HF, 50% kcal fat) or a high-fructose diet (HFru, 50% kcal fructose) for 8 weeks, then half of the animals in each group underwent IF (24 h fed, 24 h fasting) for an additional 4 weeks. Although food intake on the fed day remained the same for all groups, all fasting groups showed a reduction in body mass compared to their counterparts. IF reduced total cholesterol, triacylglycerol, fasting glucose, fasting insulin resistance index, and plasma leptin, but increased plasma adiponectin. IF reduced Leptin gene expression in the HF-IF group, but increased proinflammatory markers in the hypothalamus, also in the C-IF group. Both groups HFru-IF and C-IF, showed alterations in the leptin signaling pathway (Leptin, OBRb, and SOCS3), mainly in the HFru-IF group, suggesting leptin resistance. NPY and POMC neuropeptides labeled the neurons of the hypothalamus by immunofluorescence, corroborating qualitatively other quantitative findings of the study. In conclusion, current results are convincing in demonstrating the IF effect on central regulation of food intake control, as shown by NPY and POMC neuropeptide expressions, resulting in a lower weight gain. Besides, IF improves glycemia, lipid metabolism, and consequently insulin and leptin resistance. However, there is increased expression of inflammatory markers in mouse hypothalamus challenged by the HF and HFru diets, which in the long term may induce adverse effects.


Asunto(s)
Adipoquinas/metabolismo , Ayuno/metabolismo , Fructosa/metabolismo , Hipotálamo/metabolismo , Insulina/sangre , Neuropéptidos/sangre , Adipoquinas/genética , Adiponectina/sangre , Animales , Glucemia/metabolismo , Peso Corporal , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/metabolismo , Fructosa/efectos adversos , Humanos , Leptina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Triglicéridos/metabolismo
15.
Pharmacol Res Perspect ; 8(2): e00589, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32302064

RESUMEN

Adequate calcium intake is important for the prevention of bone loss and osteoporosis. For some populations such as those of Southeast Asia where calcium intake is very low, supplements represent a suitable dietary source of calcium. The objective of this study was to compare the relative oral bioavailability of calcium from calcium glucoheptonate, a highly soluble calcium salt containing 8.2% of elemental calcium, to that of calcium carbonate. A single-dose, randomized-sequence, open-label, two-period crossover study, with a 7-day washout period, was conducted in 24 Indonesian healthy adult volunteers. After a 12-hour (overnight) fast, subjects received either two oral ampoules of 250 mg/10 mL of calcium glucoheptonate each or one effervescent tablet of calcium carbonate containing 500 mg of elemental calcium. The relative oral bioavailability of calcium from calcium glucoheptonate as compared to calcium carbonate was 92% within 6 hours and 89% within 12 hours after study drug administration. The 90% confidence intervals for the mean test/reference ratios of the maximum plasma concentration and the area under the concentration-time curve at 12 hours post-administration were 77.09%-120.31% and 60.58%-122.30%, respectively. Five subjects experienced a total of eight adverse events which were all mild and transient; no serious adverse events or deaths were reported. These results indicate that calcium glucoheptonate is associated with a high relative bioavailability of calcium compared to calcium carbonate, and is well-tolerated. Calcium glucoheptonate might thus be a potential choice for calcium supplementation in Southeast Asian populations.


Asunto(s)
Carbonato de Calcio/farmacocinética , Azúcares Ácidos/farmacocinética , Administración Oral , Adulto , Disponibilidad Biológica , Carbonato de Calcio/efectos adversos , Estudios Cruzados , Suplementos Dietéticos , Ayuno/metabolismo , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Azúcares Ácidos/efectos adversos , Adulto Joven
16.
Eur J Pharm Biopharm ; 151: 81-90, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32298757

RESUMEN

Abiraterone acetate is a potent drug used for the treatment of metastatic castration resistant prostate cancer. However, currently marketed product containing crystalline abiraterone acetate exhibits strong positive food effect which results in strict dosing regimen. In the present work, a rational approach towards design of novel abiraterone acetate formulations that would allow increased bioavailability on a fasting stomach and thus decreased food effect is presented. Precipitation experiments in biorelevant media were designed to assess pH induced precipitation of the drug and a pool of polymeric excipients was then screened for their potential to inhibit precipitation. The best performing polymeric excipients were subsequently used as carriers for the preparation of amorphous solid dispersions. Two main approaches were followed in order to formulate the drug. The first approach relies on the suppression of precipitation from a supersaturated solution whereas the second one is based on the hypothesis that when the release of the drug is tuned, optimal uptake of the drug can be reached. Optimized formulation prototypes were tested in a rat animal model in an incomplete block, randomized bioequivalence study to assess their relative bioavailability under fasting conditions. We show that both formulation approaches lead to increased bioavailability of abiraterone acetate on a fasting stomach with bioavailability in rats being enhanced up to 250% compared to the original drug product containing crystalline drug.


Asunto(s)
Acetato de Abiraterona/metabolismo , Acetato de Abiraterona/química , Animales , Disponibilidad Biológica , Evaluación Preclínica de Medicamentos , Liberación de Fármacos/fisiología , Excipientes/química , Ayuno/metabolismo , Interacciones Alimento-Droga/fisiología , Concentración de Iones de Hidrógeno , Masculino , Polímeros/química , Ratas , Ratas Wistar , Equivalencia Terapéutica
17.
Biochem Soc Trans ; 48(1): 51-59, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32096539

RESUMEN

Much of the world's prominent and burdensome chronic diseases, such as diabetes, Alzheimer's, and heart disease, are caused by impaired metabolism. By acting as both an efficient fuel and a powerful signalling molecule, the natural ketone body, d-ß-hydroxybutyrate (ßHB), may help circumvent the metabolic malfunctions that aggravate some diseases. Historically, dietary interventions that elevate ßHB production by the liver, such as high-fat diets and partial starvation, have been used to treat chronic disease with varying degrees of success, owing to the potential downsides of such diets. The recent development of an ingestible ßHB monoester provides a new tool to quickly and accurately raise blood ketone concentration, opening a myriad of potential health applications. The ßHB monoester is a salt-free ßHB precursor that yields only the biologically active d-isoform of the metabolite, the pharmacokinetics of which have been studied, as has safety for human consumption in athletes and healthy volunteers. This review describes fundamental concepts of endogenous and exogenous ketone body metabolism, the differences between the ßHB monoester and other exogenous ketones and summarises the disease-specific biochemical and physiological rationales behind its clinical use in diabetes, neurodegenerative diseases, heart failure, sepsis related muscle atrophy, migraine, and epilepsy. We also address the limitations of using the ßHB monoester as an adjunctive nutritional therapy and areas of uncertainty that could guide future research.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/uso terapéutico , Diabetes Mellitus/dietoterapia , Dieta Cetogénica , Suplementos Dietéticos , Epilepsia/dietoterapia , Ayuno/metabolismo , Insuficiencia Cardíaca/dietoterapia , Hepatocitos/metabolismo , Humanos , Enfermedades Neurodegenerativas/dietoterapia , Sepsis/dietoterapia
18.
Acta Physiol (Oxf) ; 228(4): e13437, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31900990

RESUMEN

AIM: Neurons in the arcuate nucleus of the hypothalamus are involved in regulation of food intake and energy expenditure, and dysregulation of signalling in these neurons promotes development of obesity. The role of the rate-limiting enzyme in the NAD+ salvage pathway, nicotinamide phosphoribosyltransferase (NAMPT), for regulation energy homeostasis by the hypothalamus has not been extensively studied. METHODS: We determined whether Nampt mRNA or protein levels in the hypothalamus of mice were affected by diet-induced obesity, by fasting and re-feeding, and by leptin and ghrelin treatment. Primary hypothalamic neurons were treated with FK866, a selective inhibitor of NAMPT, or rAAV carrying shRNA directed against Nampt, and levels of reactive oxygen species (ROS) and mitochondrial respiration were assessed. Fasting and ghrelin-induced food intake was measured in mice in metabolic cages after intracerebroventricular (ICV)-mediated FK866 administration. RESULTS: NAMPT levels in the hypothalamus were elevated by administration of ghrelin and leptin. In diet-induced obese mice, both protein and mRNA levels of NAMPT decreased in the hypothalamus. NAMPT inhibition in primary hypothalamic neurons significantly reduced levels of NAD+ , increased levels of ROS, and affected the expression of Agrp, Pomc and genes related to mitochondrial function. Finally, ICV-induced NAMPT inhibition by FK866 did not cause malaise or anhedonia, but completely ablated fasting- and ghrelin-induced increases in food intake. CONCLUSION: Our findings indicate that regulation of NAMPT levels in hypothalamic neurons is important for the control of fasting- and ghrelin-induced food intake.


Asunto(s)
Ayuno/metabolismo , Ghrelina/metabolismo , Hipotálamo/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Acrilamidas/administración & dosificación , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Línea Celular , Ingestión de Alimentos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Piperidinas/administración & dosificación , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo
19.
Cell Metab ; 30(4): 833-844.e7, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31474567

RESUMEN

The hypothalamus plays a key role in the detection of energy substrates to regulate energy homeostasis. Tanycytes, the hypothalamic ependymo-glia, are located at a privileged position to integrate multiple peripheral inputs. We observed that tanycytes produce and secrete Fgf21 and are located close to Fgf21-sensitive neurons. Fasting, likely via the increase in circulating fatty acids, regulates this central Fgf21 production. Tanycytes store palmitate in lipid droplets and oxidize it, leading to the activation of a reactive oxygen species (ROS)/p38-MAPK signaling pathway, which is essential for tanycytic Fgf21 expression upon palmitate exposure. Tanycytic Fgf21 deletion triggers an increase in lipolysis, likely due to impaired inhibition of key neurons during fasting. Mice deleted for tanycytic Fgf21 exhibit increased energy expenditure and a reduction in fat mass gain, reminiscent of a browning phenotype. Our results suggest that tanycytes sense free fatty acids to maintain body lipid homeostasis through Fgf21 signaling within the hypothalamus.


Asunto(s)
Células Ependimogliales/metabolismo , Ayuno/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hipotálamo/metabolismo , Palmitatos/metabolismo , Células 3T3-L1 , Animales , Células Ependimogliales/citología , Hipotálamo/citología , Gotas Lipídicas/metabolismo , Lipólisis , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
20.
Neurosci Lett ; 712: 134498, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31526832

RESUMEN

Broiler and layer chicks have been selected for higher and lower food intake and body weight gain, respectively. It has recently been reported that glutamate decarboxylase (Gad1) mRNA, a gamma-aminobutyric acid (GABA) synthetic enzyme gene, is a reliable proxy for GABA release. Previous studies have revealed that GABAergic system has a stimulatory role on food intake in both mammals and birds. Over the recent years, evidence has identified the presence of GABAergic neurons as either the first- or second-order neurons within the various feeding nuclei of hypothalamus of laboratory rodents. They respond to the negative energy balance representing a critical role for GABA in the regulation of food intake. In the current study, the mRNA abundance of Gad 1 and Gad 2 was measured within the hypothalamus of both broiler and layer free fed, 12 h-fasted and 12 h-fasted / 3 h refed chicks. Furthermore, the effect of intracerebroventricular (ICV) injection of GABA was studied on food intake of chicks. The results indicated an increase in both Gad 1 and 2 expressions during fasting which tended to return to the baseline after refeeding. However, this increase was greater in broilers than in layers. The results also showed that ICV injection of GABA had no effect on food intake with the exception of an increase in free fed broilers. This study suggests a role for hypothalamic GABAergic system in birds that respond to negative energy balance, which seems to be more considerable in broilers than in layers.


Asunto(s)
Metabolismo Energético/fisiología , Glutamato Descarboxilasa/metabolismo , Hipotálamo/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Pollos , Ingestión de Alimentos/fisiología , Ayuno/metabolismo , Femenino , Glutamato Descarboxilasa/genética , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA