Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0301205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625974

RESUMEN

The present study investigated the potential role of different essential amino acids (AA) in striped catfish (Pangasius hypophthalmus). Fish (initial weight = 17.91±0.27 g, n = 260) were fed with eight isonitrogenous (30%), and isolipidic diets (6%) formulated to include different combinations of tryptophan (Trp), methionine (Met), and lysine (Lys) (T0: Zero AA, T1: Trp, T2: Lys, T3: Met, T4: Trp+Met, T5: Lys+Trp, T6: Met+Lys, T7: Lys+Trp+Met) for eight weeks. The dose of amino acid supplementation, whether individually or in combination, was 5g of each amino acid per kg of diet. The trial comprised eight treatments, with each treatment consisted of three replicates (n = 10/replicate). At the end of the growth experiment, the highest total body weight, crude protein, digestive enzymatic activity, immune response, and amino acids level were observed in treatments supplemented with amino acids compared to T0. After the growth experiment, fish in all treatments were exposed to Staphylococcus aureus (5×105 CFU/ml). For bacterial challenge trial, the T0 treatment was designated as positive (+ve T0) and negative control (-ve T0). Following the S. aureus challenge, fish fed with amino acids showed a better response to reactive oxygen species and lipid peroxidation, as indicated by the increased levels of catalase and superoxide dismutase. Conversely, the concentration of malondialdehyde gradually decreased in all treatments compared to the +ve T0 treatment. It is concluded that supplementation of amino acids improved the growth, protein content, and immunocompetency against S. aureus in striped catfish. The most favorable outcomes in striped catfish were shown by fish supplemented with T7 diet. These essential amino acids hold potential as efficient supplements for use in the intensive aquaculture for striped catfish.


Asunto(s)
Bagres , Lisina , Animales , Aminoácidos , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos , Resistencia a la Enfermedad , Lisina/farmacología , Metionina/farmacología , Racemetionina , Staphylococcus aureus , Triptófano/farmacología
2.
Mol Phylogenet Evol ; 195: 108071, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579933

RESUMEN

Phylogenomic analysis based on nucleotide sequences of 398 nuclear gene loci for 67 representatives of the leafhopper genus Neoaliturus yielded well-resolved estimates of relationships among species of the genus. Subgenus Neoaliturus (Neoaliturus) is consistently paraphyletic with respect to Neoaliturus (Circulifer). The analysis revealed the presence of at least ten genetically divergent clades among specimens consistent with the previous morphology-based definition of the leafhopper genus "Circulifer" which includes three previously recognized "species complexes." Specimens of the American beet leafhopper, N. tenellus (Baker), collected from the southwestern USA consistently group with one of these clades, comprising specimens from the eastern Mediterranean. Some of the remaining lineages are consistent with ecological differences previously observed among eastern Mediterranean populations and suggest that N. tenellus, as previously defined, comprises multiple monophyletic species, distinguishable by slight morphological differences.


Asunto(s)
Beta vulgaris , Bagres , Hemípteros , Animales , Filogenia , Hemípteros/genética
3.
Sci Rep ; 14(1): 7647, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561426

RESUMEN

The persistent challenges posed by pollution and climate change are significant factors disrupting ecosystems, particularly aquatic environments. Numerous contaminants found in aquatic systems, such as ammonia and metal toxicity, play a crucial role in adversely affecting aquaculture production. Against this backdrop, fish feed was developed using quinoa husk (the byproduct of quinoa) as a substitute for fish meal. Six isonitrogenous diets (30%) and isocaloric diets were formulated by replacing fish meal with quinoa husk at varying percentages: 0% quinoa (control), 15, 20, 25, 30 and 35%. An experiment was conducted to explore the potential of quinoa husk in replacing fish meal and assess its ability to mitigate ammonia and arsenic toxicity as well as high-temperature stress in Pangasianodon hypophthalmus. The formulated feed was also examined for gene regulation related to antioxidative status, immunity, stress proteins, growth regulation, and stress markers. The gene regulation of sod, cat, and gpx in the liver was notably upregulated under concurrent exposure to ammonia, arsenic, and high-temperature (NH3 + As + T) stress. However, quinoa husk at 25% downregulated sod, cat, and gpx expression compared to the control group. Furthermore, genes associated with stress proteins HSP70 and DNA damage-inducible protein (DDIP) were significantly upregulated in response to stressors (NH3 + As + T), but quinoa husk at 25% considerably downregulated HSP70 and DDIP to mitigate the impact of stressors. Growth-responsive genes such as myostatin (MYST) and somatostatin (SMT) were remarkably downregulated, whereas growth hormone receptor (GHR1 and GHRß), insulin-like growth factors (IGF1X, IGF2X), and growth hormone gene were significantly upregulated with quinoa husk at 25%. The gene expression of apoptosis (Caspase 3a and Caspase 3b) and nitric oxide synthase (iNOS) were also noticeably downregulated with quinoa husk (25%) reared under stressful conditions. Immune-related gene expression, including immunoglobulin (Ig), toll-like receptor (TLR), tumor necrosis factor (TNFα), and interleukin (IL), strengthened fish immunity with quinoa husk feed. The results revealed that replacing 25% of fish meal with quinoa husk could improve the gene regulation of P. hypophthalmus involved in mitigating ammonia, arsenic, and high-temperature stress in fish.


Asunto(s)
Arsénico , Bagres , Chenopodium quinoa , Animales , Suplementos Dietéticos/análisis , Chenopodium quinoa/genética , Arsénico/toxicidad , Amoníaco , Ecosistema , Dieta , Antioxidantes , Caspasas , Alimentación Animal/análisis
4.
Dev Comp Immunol ; 157: 105184, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38643939

RESUMEN

Ammonia toxicity in fish is closely related to ferroptosis, oxidative stress, and inflammatory responses. Iron is an essential trace element that plays a key role in many biological processes for cells and organisms, including ferroptosis, oxidative stress response, and inflammation. This study aimed to investigate the effect of iron on indicators of fish exposed to ammonia, specifically on the three aspects mentioned above. The head kidney macrophages of yellow catfish were randomly assigned to one of four groups: CON (normal control), AM (0.046 mg L-1 total ammonia nitrogen), Fe (20 µg mL-1 FeSO4), and Fe + AM (20 µg mL-1 FeSO4, 0.046 mg L-1 total ammonia nitrogen). The cells were pretreated with FeSO4 for 6 h followed by ammonia for 24 h. The study found that iron supplementation led to an excessive accumulation of iron and ROS in macrophages, but it did not strongly induce ferroptosis, oxidative stress, or inflammatory responses. This was supported by a decrease in T-AOC, and the downregulation of SOD, as well as an increase in GSH levels and the upregulation of TFR1, CAT and Nrf2. Furthermore, the mRNA expression of HIF-1, p53 and the anti-inflammatory M2 macrophage marker Arg-1 were upregulated. The results also showed that iron supplementation increased the progression of some macrophages from early apoptosis to late apoptotic cells. However, the combined treatment of iron and ammonia resulted in a stronger intracellular ferroptosis, oxidative stress, and inflammatory reaction compared to either treatment alone. Additionally, there was a noticeable increase in necrotic cells in the Fe + AM and AM groups. These findings indicate that the biological functions of iron in macrophages of fish may vary inconsistently in the presence or absence of ammonia stress.


Asunto(s)
Amoníaco , Bagres , Ferroptosis , Riñón Cefálico , Inflamación , Hierro , Macrófagos , Estrés Oxidativo , Animales , Bagres/inmunología , Riñón Cefálico/inmunología , Riñón Cefálico/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Inflamación/inmunología , Hierro/metabolismo , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Enfermedades de los Peces/inmunología , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas
5.
PLoS One ; 19(3): e0298414, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483918

RESUMEN

ß-glucan is a well-documented feed additive for its potent immunostimulatory properties in many farmed fish species. This study examined how it can also be a promising growth promoter, modulate antioxidant enzyme activities, and act as an anti-stress agent in striped catfish (Pangasianodon hypophthalmus). A 12-week feeding experiment was untaken to determine the effects of dietary ß-glucan supplementation at graded levels (0, 0.5, 1.0, and 1.5 g kg-1). Measured indicators suggest that a dietary inclusion level of 1.5 g kg-1 ß-glucan gave the highest positive responses: weight gain (120.10 g fish-1), survival (98.30%), and lower FCR (1.70) (P<0.05). Whole body proximate analysis had only revealed that crude protein was significantly affected by the dietary inclusion of ß-glucan (P<0.05), with the highest protein content (19.70%) being in fish that were fed with 1.5 g kg-1 ß-glucan. Although other inclusion levels (i.e., 0.5 and 1 g kg-1) of ß-glucan did not enhance body protein content (P>0.05). The assessment of fatty acid composition in muscle, liver, and adipose tissues showed modifications with the inclusion of ß-glucan. Antioxidative-related enzyme activities (inc. catalase, glutathione peroxidase, and superoxide dismutase) that were measured in the liver had higher levels when fed with ß-glucan inclusion diets (P<0.05). Following the feed trial, fish were subjected to crowding stress treatment. It was subsequently found that catfish fed with ß-glucan-based diet groups had lower levels of blood stress-related indicators compared to the control group with no dietary ß-glucan. The use of 1.5 g kg-1 of dietary ß-glucan resulted in the lowest measured levels of cortisol (43.13 ng mL-1) and glucose (50.16 mg dL-1). This study has demonstrated that the dietary inclusion of ß-glucan can have functional benefits beyond the immunological enhancements in striped catfish. Furthermore, its use can increase production levels and mitigate the stress associated with intensive farming practices.


Asunto(s)
Bagres , beta-Glucanos , Animales , Alimentación Animal/análisis , Antioxidantes/farmacología , beta-Glucanos/farmacología , Dieta/veterinaria , Suplementos Dietéticos/análisis
6.
Sci Rep ; 14(1): 2252, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278845

RESUMEN

It is an urgent needs to address climate change and pollution in aquatic systems using suitable mitigation measures to avoid the aquatic animals' extinction. The vulnerability and extinction of the aquatic animals in the current scenario must be addressed to enhance safe fish food production. Taking into consideration of such issues in fisheries and aquaculture, an experiment was designed to mitigate high temperature (T) and low pH stress, as well as arsenic (As) pollution in fish using copper (Cu) containing diets. In the present investigation, the Cu-containing diets graded with 0, 4, 8, and 12 mg kg-1 were prepared and fed to Pangasianodon hypophthalmus reared under As, low pH, and high-temperature stress. The gene expression was highly affected in terms of the primary, secondary, and tertiary stress response, whereas supplementation of Cu-containing diet mitigates the stress response. Oxidative stress genes such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were significantly upregulated by stressors (As, As + T, and As + pH + T). Whereas, heat shock protein (HSP 70), inducible nitric oxide synthase (iNOS), metallothionine (MT), caspase 3a (Cas 3a), and cytochrome P450 (CYP 450) were highly upregulated by stressors, while dietary Cu at 8 mg kg-1 diet significantly downregulated these gene expressions. Indeed, the immunity-related genes viz. TNFα, Ig, TLR, and immune-related attributes viz. albumin, globulin, total protein, A:G ratio, blood glucose, NBT, and myeloperoxidase (MPO) were also improved with Cu-containing diets. Cu containing diets substantially improved neurotransmitter enzyme (AChE) and vitamin C (Vit C). DNA damage was also reduced with supplementation of Cu at 8 mg kg-1 diet. The growth index viz. final body weight gain (%), specific growth rate, protein efficiency ratio, food conversion ratio, relative feed intake, and daily growth index were noticeably enhanced by Cu diets (4 and 8 mg kg-1 diet). The growth-related genes expressions viz. growth hormone (GH), growth hormone regulator 1 (Ghr1), growth hormone regulator ß (Ghrß,) myostatin (MYST), and somatostatin (SMT) supported the growth enhancement with Cu at 8 mg kg-1 diet. The bioaccumulation of As was reduced with Cu-containing diets. The fish were infected with Aeromonas hydrophila at the end of the 105 days experimental trial. Cu at 8 mg kg-1 diet improved immunity, reduced the cumulative mortality, and enhanced the relative percentage survival of the fish. The results revealed that the innovative Cu diets could reduce the extinction of the fish against climate change and pollution era and produce the safest production that is safe to humans for consumption.


Asunto(s)
Bagres , Suplementos Dietéticos , Animales , Humanos , Antioxidantes/metabolismo , Cobre , Dieta , Bagres/fisiología , Hormona del Crecimiento , Alimentación Animal/análisis
7.
Cell Biochem Biophys ; 82(1): 247-257, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38183602

RESUMEN

The present study aimed to investigate the purified protein from the epidermal mucus of marine catfish Tachysurus dussumieri on the human colon cancer cell line. The bioactive protein was purified with the Anion exchange chromatography and the collected fractions were then tested to assess cell viability in HT 29 cells through the MTT assay. The most responding active purified protein fraction (PPF III) was characterized with the MALDI-TOF/MS it shared a similar homology and sequence with 90% of antimicrobial peptides from external secretions of amphibians. Typical morphological changes of apoptotic cells, including cell shrinkage and detachment, DNA damage, and nuclear condensation were observed after the treatment of bioactive protein. PPF III triggered ROS, increasing the LDH activity, disruption of mitochondrial membrane potential, and upregulation of Cleaved caspase 3/9, Cytochrome-c, Bax, and downregulation of Bcl-2 protein and gene expression on HT 29 cells.


Asunto(s)
Bagres , Neoplasias del Colon , Animales , Humanos , Apoptosis , Bagres/metabolismo , Extractos Vegetales/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Células HT29 , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial
8.
PLoS One ; 19(1): e0294949, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38289940

RESUMEN

The present study investigated the potential role of Bacillus subtilis as probiotic in striped catfish (Pangasius hypophthalmus). Fish (initial weight = 150.00±2.63g n = 180) were stocked in circular tanks. Four isonitrogenous (30%) and isolipidic (3.29%) diets were formulated having supplementation of B. subtilis at four different levels (P0; 0, P1: 1×106, P2: 1×108 and P3: 1×1010 CFU/g). Each treatment had three replicates, while each replicate had fifteen fish. The trial started on second week of July and continued for eight weeks. Growth, feed conversion ratio, crude protein content, the concentration of amylase and protease, the profile of both dispensable and non-dispensable amino acids in all four dietary groups increased with a gradual increase of B. subtilis in the diet. At the end of growth experiment, fish in all four groups were exposed to Staphylococcus aureus (5×105 CFU/ml). After S. aureus challenge, fish fed with B. subtilis responded better to damage caused by reactive oxygen species and lipid peroxidation and better survival rate. The catalase and superoxide dismutase level also increased in response to bacterial challenge in B. subtilis fed groups. On the other hand, the concentration of malondialdehyde gradually decreased in these groups (+ve P0 >P1>P2>P3). It is concluded that supplementation of B. subtilis as a probiotic improved the growth, protein content, antioxidant response and immunocompetency against S. aureus in striped catfish. The optimum dosage of B. subtilis, at a concentration of 1×1010 CFU/g, resulted in the most favorable outcomes in striped catfish. This single bacterial strain can be used as an effective probiotic in large scale production of aquafeed for striped catfish. Future studies can investigate this probiotic's impact in the intensive culture of the same species.


Asunto(s)
Bagres , Probióticos , Animales , Resistencia a la Enfermedad , Bacillus subtilis/química , Staphylococcus aureus , Probióticos/farmacología , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos
9.
Biol Trace Elem Res ; 202(3): 1249-1263, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37392362

RESUMEN

A 12 week feeding trial was conducted to evaluate the effects of dietary zinc levels on Heteropneustes fossilis. Triplicate groups of fish were fed isoproteic (CP; 400 g/kg) and isocaloric (GE; 17.89 kJ/g) diets increasing levels of zinc (0, 5, 10, 15, 20, 25, 30 mg/kg) achieved by supplementing zinc sulphate heptahydrate to basal diet. Analysed concentrations of zinc in diets were 10.68, 15.83, 21.34, 26.74, 30.61, 34.91 and 41.34 mg/kg. Growth indices increased linearly (P<0.05) up to 26.74 mg/kg Zn. The protein and ash content of whole body also improved significantly up to 26.74 mg/kg Zn. Whole body fat content showed inverse pattern. Haematological parameters also showed an improving trend with the increase in dietary zinc up to 26.74 mg/kg and then levelled off. Activities of antioxidant enzymes were improved with the increase in dietary zinc level up to 26.74 mg/kg followed by no significant change (P>0.05). Serum lysozyme activity also exhibited the similar pattern. Immune response in terms of the activities of lysozyme, alkaline phosphatase and myeloperoxidase was also improved with the increase in dietary zinc levels up to 26.74 mg/kg. Dietary zinc levels affected significantly the whole body as well as vertebrae mineralization. Broken-line regression analysis of weight gain, vertebrae zinc activity, serum superoxide dismutase and protease activity against increasing amounts of dietary zinc revealed that the inclusion of zinc in diet in the range of 26.82-29.84 mg/kg is optimum for growth, haematological indices, antioxidant status, immune response and tissue mineralization in fingerling H. fossilis. The information obtained from present study would be helpful in formulating the zinc-balanced commercial feeds to improve the growth and health status of this important fish, thus contributing to aquaculture production and strengthening the food security.


Asunto(s)
Calcinosis , Bagres , Animales , Alimentación Animal/análisis , Antioxidantes/metabolismo , Bagres/metabolismo , Dieta , Suplementos Dietéticos/análisis , Muramidasa , Proteínas , Zinc/farmacología
10.
Fish Physiol Biochem ; 50(1): 239-258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37656302

RESUMEN

Pollution and climate change pose significant threats to aquatic ecosystems, with adverse impacts on aquatic animals, including fish. Climate change increases the toxicity of metal in aquatic ecosystems. To understand the severity of metal pollution and climate change, an experiment was conducted to delineate the mitigation potential of selenium (Se) and selenium nanoparticles (Se-NPs) against lead (Pb) and high temperature stress in Pangasianodon hypophthalmus. For the experiment, five isonitrogenous and isocaloric diets were prepared, varying in selenium supplementation as Se at 0, 1, and 2 mg kg-1 diet, and Se-NPs at 1 and 2 mg kg-1 diet. The fish in stressor groups were exposed to Pb (1/20th of LC50 concentration, 4 ppm) and high temperature (34 °C) throughout the experiment. The results demonstrated that dietary supplementation of Se at 1 and 2 mg kg-1 diet, as well as Se-NPs at 1 mg kg-1 diet, significantly reduced (p < 0.01) the levels of lactate dehydrogenase and malate dehydrogenase in both liver and muscle tissues. Additionally, the levels of alanine aminotransferase and aspartate aminotransferase in both gill and liver tissues were significantly decreased (p < 0.01) with the inclusion of Se and Se-NPs in the diets. Furthermore, the enzymes glucose-6-phosphate dehydrogenase in gill and liver tissues, fructose 1,6-bisphosphatase in liver and muscle tissues, and acid phosphatase in liver tissue were remarkably reduced (p < 0.01) due to the supplementation of Se and Se-NPs. Moreover, dietary supplementation of Se and Se-NPs significantly enhanced (p < 0.01) the activity of pyruvate kinase, glucokinase, hexokinase, alkaline phosphatase, ATPase, protease, amylase, lipase, and RNA/DNA ratio in the fish. Histopathological examination of gill and liver tissues also indicated that Se and Se-NPs protected against structural damage caused by lead and high-temperature stress. Moreover, the study examined the bioaccumulation of selenium and lead in muscle, water, and diets. The aim of the study revealed that Se and Se-NPs effectively protected the fish from lead toxicity and high-temperature stress, while also improving the function of cellular metabolic enzymes in P. hypophthalmus.


Asunto(s)
Bagres , Nanopartículas , Selenio , Animales , Plomo/metabolismo , Ecosistema , Antioxidantes/metabolismo , Bagres/fisiología
11.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 163-173, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37609860

RESUMEN

Edwardsiella tarda is one of the most common causes of fish diseases that hinder aquaculture. Oxidative stress in farm animals can induce a number of pathological disorders, production and general animal welfare. The use of exogenous dietary nonenzymatic antioxidants such as alpha-lipoic acid (ALA) can stop a pro-oxidant state and thus appears to have the potential to modulate the immune system and protect fish from bacterial infection. Thus, this study investigates the stimulatory effect of dietary ALA on growth performance, antioxidant capacity, liver enzymes, immunity and protection of African catfish, Clarias gariepinus (B.), against an infection with E. tarda. Five isonitrogenous and isocaloric diets (400 g/kg of crude protein) containing ALA at doses of 0.0 (control), 500, 1000, 1500 or 2000 mg/kg diet were served to 300 juveniles of African catfish (mean weight = 8.2 ± 0.2 g) adequately thrice per day for 12 weeks. Thereafter, 0.1 mL of E. tarda (ATCC 15947; 1.0 × 108 CFU/mL) was intraperitoneally injected into 10 fish from each tank and was monitored for 14 days. The results showed that ALA-fortified diets significantly boosted the fish growth, feed consumption and utilization and feed conversion ratio but no did not affect fish survival rate. The highest final fish weight (g), weight growth (g) and weight gain (%) were all considerably higher in fish fed with ALA-fortified diets (p < 0.05), especially from 1000 to 200 mg/kg ALA than the control group. Also, an enhanced hemato-biochemical, antioxidant and immune indices were noticed in African catfish-fed ALA-enriched diets. In a dose-dependent order, the levels of haematological indices such Ht, Hb, RBCs, WBCs and platelets were markedly increased (p < 0.05). Additionally, fish fed with ALA-based diets showed substantial (p < 0.05) declines in aspartate and alanine aminotransferase values, with the lowest values being found in the 2000 mg/kg diet while control group had highest values. Further, African catfish fed the feed fortified with 2000 mg ALA/kg diet showed the highest levels of lysozyme, respiratory burst, proteases and esterase activities (p < 0.05). Following exposure of fish to E. tarda infection, a significant reduction in the mortality was obtained in African catfish fed with ALA-based diets, especially from 1500 to 2000 mg ALA/kg diet (3.3%); while fish fed with the control diet had highest mortality (86.7%). Therefore, diets supplemented with ALA evoked fish growth performance, antioxidants and nonspecific immunity of African catfish. Also, resistance of African catfish to E. Tarda infection were raised when fed ALA-fortified diets at optimum inclusion rate of 1300 mg ALA/kg diet.


Asunto(s)
Bagres , Enfermedades de los Peces , Ácido Tióctico , Animales , Antioxidantes/metabolismo , Ácido Tióctico/farmacología , Edwardsiella tarda/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Hígado/metabolismo , Alimentación Animal/análisis , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/metabolismo
12.
J Environ Manage ; 351: 119677, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042084

RESUMEN

Sweet orange Citrus sinensis peel is a phytobiotic agricultural waste with bioactive compounds that have potential functional properties as a growth promoter and immune stimulator. This study aims to evaluate the dietary effects of sweet orange peel (SOP) as a feed additive on growth enhancement of juvenile bagrid catfish Mystus nemurus and their disease resistance ability against Aeromonas hydrophila infection. Four experimental diets were formulated to contain 0 (SOP0, control), 4 (SOP4), 8 (SOP8) and 12 g/kg (SOP12) SOP. After 90 d of the feeding experiment, improvement in weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio were observed in the fish fed with SOP4. While fish survival was not significantly affected, hepatosomatic and viscerosomatic indices were significantly higher in fish fed with SOP12. Muscle protein was higher in fish fed with SOP4, SOP8, and SOP12 than in control but muscle lipids showed an opposite trend. A 14-d post-challenge test against A. hydrophila revealed no significant effect on the fish survival. Nevertheless, fish fed SOP4 encountered delayed bacterial infection compared to other treatments and fish fed with SOP0 and SOP4 performed numerically better survival. Infected fish showed skin depigmentation, haemorrhagic signs at the abdomen and anus, internal bleeding, and stomach and intestine enlargement. In conclusion, SOP4 could be recommended as a growth promoter while slightly delaying A. hydrophila infection in M. nemurus.


Asunto(s)
Bagres , Citrus sinensis , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Suplementos Dietéticos , Aeromonas hydrophila/fisiología , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Alimentación Animal/análisis , Dieta
13.
J Fish Dis ; 47(3): e13902, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38041240

RESUMEN

To prevent catfish idiopathic anaemia, diets fortified with iron have been adopted as a regular practice on commercial catfish farms to promote erythropoiesis. However, the effects of prolonged exposure of excess dietary iron on production performance and disease resistance for hybrid catfish (Ictalurus punctatus × I. furcatus) remains unknown. Four experimental diets were supplemented with ferrous monosulphate to provide 0, 500, 1000, and 1500 mg of iron per kg of diet. Groups of 16 hybrid catfish juveniles (~22.4 g) were stocked in each of 20, 110-L aquaria (n = 5), and experimental diets were offered to the fish to apparent satiation for 12 weeks. At the end of the study, production performance, survival, condition indices, as well as protein and iron retention were unaffected by the dietary treatments. Blood haematocrit and the iron concentration in the whole-body presented a linear increase with the increasing the dietary iron. The remaining fish from the feeding trial was challenged with Edwardsiella ictaluri. Mortality was mainly observed for the dietary groups treated with iron supplemented diets. The results for this study suggest that iron supplementation beyond the required levels does affect the blood production, and it may increase their susceptibility to E. ictaluri infection.


Asunto(s)
Bagres , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Ictaluridae , Animales , Resistencia a la Enfermedad , Edwardsiella ictaluri , Hierro/farmacología , Hierro de la Dieta , Hematócrito , Enfermedades de los Peces/prevención & control , Dieta/veterinaria , Suplementos Dietéticos , Infecciones por Enterobacteriaceae/prevención & control , Infecciones por Enterobacteriaceae/veterinaria
14.
J Fish Dis ; 47(4): e13910, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38153008

RESUMEN

Enteric septicemia of catfish (ESC), caused by the gram-negative enteric bacteria Edwardsiella ictaluri, is a significant threat to catfish aquaculture in the southeastern United States. Antibiotic intervention can reduce mortality; however, antibiotic use results in an imbalance, or dysbiosis, of the gut microbiota, which may increase susceptibility of otherwise healthy fish to enteric infections. Herein, recovery of the intestinal microbiota and survivability of channel catfish in response to ESC challenge was evaluated following a 10-day course of florfenicol and subsequent probiotic or prebiotic supplementation. Following completion of florfenicol therapy, fish were transitioned to a basal diet or diets supplemented with a probiotic or prebiotic for the remainder of the study. Digesta was collected on Days 0, 4, 8 and 12, beginning on the first day after cessation of antibiotic treatment, and gut microbiota was characterized by Illumina sequencing of the 16S rRNA gene (V4 region). Remaining fish were challenged with E. ictaluri and monitored for 32 days post-challenge. Florfenicol administration resulted in dysbiosis characterized by inflated microbial diversity, which began to recover in terms of diversity and composition 4 days after cessation of florfenicol administration. Fish fed the probiotic diet had higher survival in response to ESC challenge than the prebiotic (p = .019) and negative control (p = .029) groups.


Asunto(s)
Bagres , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Microbioma Gastrointestinal , Ictaluridae , Probióticos , Tianfenicol/análogos & derivados , Animales , Edwardsiella ictaluri/fisiología , Prebióticos , Disbiosis , ARN Ribosómico 16S , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Antibacterianos/farmacología , Suplementos Dietéticos , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/prevención & control , Infecciones por Enterobacteriaceae/veterinaria
15.
Fish Physiol Biochem ; 50(2): 813-826, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38112905

RESUMEN

The study evaluated the effects of diverse cinnamaldehyde (CIN) supplementation doses on the physiological attributes, feed utilization, growth, and body composition of striped catfish Pangasianodon hypophthalmus. The study incorporated five doses of CIN supplementation, namely 0, 0.5, 1, 1.5, and 2 g kg-1 feed, with four replicates per group. Commercial extruded isonitrogenous and isoenergetic feeds with crude protein and gross energy levels of 28.46% ± 0.23% and 3858.70 ± 18.06 kcal kg-1, respectively, were used as test feeds. The initial weight of striped catfish was 5.57 ± 0.02 g, and 30 fish were maintained in each cage (2 × 1 × 1 m3) for 60 days. The results illustrated that the incorporation of CIN into the diet increases amylase and lipase levels and the ability of striped catfish to accumulate glucose, as the glucose tolerance test revealed that CIN 1.0 and 1.5 g kg-1 reduced glucose content to its basal level at 3-4 h postinjection and upregulated the insulin receptor, hexokinase, and hormone-sensitive lipase genes. CIN 1.5 g kg-1 also increased plasma total protein and high-density lipoprotein levels and reduced triglyceride and cholesterol levels. CIN 1.0-2.0 g kg-1 increased antioxidant capacity by increasing the levels of superoxide dismutase and glutathione and decreasing malondialdehyde levels. CIN 1.5 g kg-1 was the best treatment for increasing final weight, the specific growth rate, protein retention, and the protein efficiency ratio and for decreasing the feed conversion ratio. CIN additionally increased meat protein and decreased meat and liver lipid content. This study concluded that 1.24 g kg-1 is the optimal CIN dose calculated from the equation Y = - 0.1487x2 + 0.3702x + 5.0724 (R2 = 0.71) to increase growth and feed efficiency in striped catfish by increasing nonprotein catabolism and exerting antioxidant effects.


Asunto(s)
Acroleína/análogos & derivados , Bagres , Animales , Antioxidantes , Suplementos Dietéticos , Composición Corporal , Glucosa
16.
PLoS One ; 18(10): e0291954, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37796907

RESUMEN

Soybean lecithin (SBL) is usually added to aquafeed as a lipid source because aquatic animals cannot synthesize phospholipids. Hence, this study aimed to investigate the role of SBL on the growth, nutrient consumption, digestive enzyme activity, blood parameters, and antioxidant capability of striped catfish. The fish were fed on five experimental diets with five grading levels of SBL (0, 2, 4, 6, and 8%) for 60 days. The final weight, weight gain, specific growth rate, feed intake, and protein efficiency ratio were markedly higher in striped catfish treated with 2-4% SBL than the control level (0% SBL). However, the lowest feed conversion ratio was in the fish-fed groups of 4-6% SBL. The carcass lipid content was significantly higher in fish fed 2-4% SBL compared to the control level (0% SBL). The lipase, amylase, and protease activities were significantly increased in the fish fed 2-6% SBL compared to 0% SBL-fed group. The gradually increased levels of SBL improved the structural appearance and increased the intestinal villi length and branching appearance. The triglycerides and total cholesterol were increased in the fish fed with 4, 6, and 8% compared to the control level, with the highest being in the fish fed with 8%. The lysozyme activity was higher in the fish fed with 2, 4, and 6% of SBL compared to the control level, with higher activity in the fish fed with 2 and 4% than 6%. Superoxide dismutase, glutathione peroxidase, and catalase activities were increased in the fish fed with 2, 4, and 6% SBL. The malondialdehyde level was lower in the fish fed with 4-6% SBL compared to the control level. The regression analysis revealed that the optimum dose of SBL is required at 3.65-4.42% for better productivity and health performances in striped catfish.


Asunto(s)
Bagres , Lecitinas , Animales , Lecitinas/farmacología , Antioxidantes , Glycine max , Dieta , Suplementos Dietéticos/análisis , Alimentación Animal/análisis
17.
Fish Shellfish Immunol ; 142: 109177, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37863127

RESUMEN

Aquatic animal health management has become a crucial component in the goal of increasing catfish aquaculture productivity. Additionally, hybrid catfish (Clarias gariepinus × C. macrocephalus) has been promoted as a highly profitable freshwater fish in Asia. Interestingly, the crucial diseases induced by Aeromonas hydrophila have been reported to greatly impede catfish production. To overcome this challenge, the aim was to investigate the effects of the oral administration of potentially synbiotic chitosan (CH) and Acinetobacter KU011TH (AK) on the growth performance, immunological responses, and disease resistance of hybrid catfish against A. hydrophila. The control group was fed a basal diet (A), the diet fed to treatment group B was supplemented with 20 mL of CH/kg diet (B), and the experimental feed fed to groups C-D was mixed with 1 × 108, 1 × 109 and 1 × 1010 CFU/mL AK coated with 20 mL of CH/kg diet. Five different groups of juvenile hybrid catfish were continuously fed the 5 formulated feeds for 4 weeks. The results revealed that all tested feeds did not significantly enhance the hybrid catfish's average daily gain, specific growth rate, feed conversion ratio, hematocrit and erythrocyte counts. Interestingly, the application of CH and AK significantly increased the leukocyte counts, respiratory burst, lysozyme activity, alternative complement pathway hemolytic activity, and bactericidal activity (P < 0.05). The expression levels of the immune-related genes in the whole blood, head kidney, and spleen were significantly increased after CH-AK application (P < 0.05), but this finding was not observed in the liver (P > 0.05). Additionally, after 14 days of A. hydrophila peritoneal injection, the fish in group C showed significantly higher survival rates of approximately 70.0 % compared with the control fish in groups B, D, and E (52.5 %, 40.0 %, 45.0 %, and 45.0 %, respectively) (P < 0.05). These results collectively suggest that short-term application of the diet fed to group C effectively boosted the immune responses and disease resistance of hybrid catfish against A. hydrophila.


Asunto(s)
Bagres , Quitosano , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Resistencia a la Enfermedad , Quitosano/farmacología , Suplementos Dietéticos , Dieta/veterinaria , Alimentación Animal/análisis , Aeromonas hydrophila/fisiología , Infecciones por Bacterias Gramnegativas/veterinaria
18.
Sci Rep ; 13(1): 15900, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741912

RESUMEN

Ammonia and arsenic pollution, along with the impact of climate change, represent critical factors influencing both the quantity and quality of aquaculture production. Recent developments have underscored the significance of these issues, as they not only disrupt aquatic ecosystems but also have far reaching consequences for human health. To addressed above challenges, an experiment was conducted to delineate the potential of manganese nanoparticles (Mn-NPs) to mitigate arsenic and ammonia pollution as well as high temperature stress in Pangasianodon hypophthalmus. The fish were exposed to different combination of arsenic and ammonia pollution as well as high temperature stress, while simultaneously incorporating diets enriched with Mn-NPs. The inclusion of Mn-NPs at 3 mg kg-1 in the diet led to a noteworthy downregulation of cortisol and HSP 70 gene expression, indicating their potential in mitigating stress responses. Furthermore, immune related gene expressions were markedly altered in response to the stressors but demonstrated improvement with the Mn-NPs diet. Interestingly, the expression of inducible nitric oxide synthase (iNOS), caspase (CAS), metallothionine (MT) and cytochrome P450 (CYP450) genes expression were prominently upregulated, signifying a stress response. Whereas, Mn-NPs at 3 mg kg-1 diet was significantly downregulated theses gene expression and reduces the stress. In addition to stress-related genes, we evaluated the growth-related gene expressions such as growth hormone (GH), growth hormone regulator 1 (GHR1 and GHRß), Insulin like growth factor (IGF1 and IGF2) were significantly upregulated whereas, myostatin and somatostatin were downregulated upon the supplementation of dietary Mn-NPs with or without stressors in fish. The gene expression of DNA damage inducible protein and DNA damage in response to head DNA % and tail DNA % was protected by Mn-NPs diets. Furthermore, Mn-NPs demonstrated a capacity to enhance the detoxification of arsenic in different fish tissues, resulting in reduced bioaccumulation of arsenic in muscle and other tissues. This finding highlights Mn-NPs as a potential solution for addressing bioaccumulation associated risks. Our study aimed to comprehensively examined the role of dietary Mn-NPs in mitigating the multiple stressors using gene regulation mechanisms, with enhancing the productive performance of P. hypophthalmus.


Asunto(s)
Arsénico , Bagres , Hormona de Crecimiento Humana , Animales , Humanos , Manganeso/toxicidad , Amoníaco , Ecosistema , Bagres/genética , Hormona del Crecimiento
19.
Cell Mol Biol (Noisy-le-grand) ; 69(8): 144-147, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37715404

RESUMEN

Fish sperm cryopreservation has been attempted on roughly freshwater and marine species since 1953. This study sought to assess the potential of various plant extracts to function as natural antimicrobial agents in the frozen semen of African catfish (Clarias gariepinus). Diluted sperm was packaged in 0.25ml straws and left for 10min equilibration at 4°C. Following equilibration, the straws were exposed to liquid nitrogen vapor for 10 min and plunged into the liquid nitrogen (-196°C) and then thawed in a water bath at 35°C for 20s. Sperm samples were put into sterile 1.5 ml tubes immediately after thawing and the microbial count was detected with classical microbiological culture method. In the results of microbiological analyses, these tree plant extracts especially Echinacea purpurea were found highly effective for decreasing bacterial contamination levels of African catfish (C. gariepinus) semen. These plant extracts may have the potential for antibacterial effect, and they can be useful for the dilution of semen.


Asunto(s)
Bagres , Semen , Masculino , Animales , Espermatozoides , Criopreservación/veterinaria , Antibacterianos
20.
Chemosphere ; 340: 139906, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37611771

RESUMEN

Increasing loading of phosphorus (P) into freshwater systems is deemed as one of the key drivers triggering harmful algal blooms (HABs). However, conventional water quality monitoring of P normally uses the operational cutoff (e.g., 450-nm filter membrane) to separate particulate and dissolved phases (entities passing through the 450-nm membrane are regarded as dissolved phase), which completely neglects the roles of small colloids (450-100 nm) and nanoparticles (100-1 nm). Herein, a new particle size separation approach was used to separate water samples collected from catfish aquaculture ponds in west Alabama into six size fractions: large particles (>1000 nm), large colloids (1000-450 nm), small colloids (450-100 nm), large nanoparticles (100-50 nm), small nanoparticles (50-1 nm), and the truly dissolved phase (<1 nm). The speciation and concentration of P in these six size fractions were then investigated using Hedley's sequential extraction method. The new particle size separation results showed that particle loading (mass) followed the order: >1000 nm, 450-100 nm, 1000-450 nm, 100-50 nm, and 50-1 nm. This is mainly due to the abundance of large-sized (>1000 nm) zooplankton and phytoplankton such as algae and cyanobacteria in the catfish aquaculture ponds. Importantly, the small colloid (450-100 nm) and nanoparticle (100-1 nm) size fractions, which were previously regarded as the dissolved phase using the 450-nm membrane filtration operation, accounted for ∼41.8% of the total particle mass. The Hedley's sequential extraction results showed that sodium hydroxide (NaOH)-extracted P represented the largest P pool, followed by water (H2O)- and sodium bicarbonate (NaHCO3)-extracted P pools. Smaller particles exhibited a higher loading of P due to their large surface areas. These new findings suggest that the new particle size separation approach needs to be adopted for future water quality monitoring and mitigation of HABs in freshwater ecosystems.


Asunto(s)
Bagres , Nanopartículas , Animales , Fósforo , Estanques , Alabama , Ecosistema , Acuicultura , Coloides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA