Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 52(51): 9375-84, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24251446

RESUMEN

Tuberculosis remains a global health emergency that calls for treatment regimens directed at new targets. Here we explored lipoamide dehydrogenase (Lpd), a metabolic and detoxifying enzyme in Mycobacterium tuberculosis (Mtb) whose deletion drastically impairs Mtb's ability to establish infection in the mouse. Upon screening more than 1.6 million compounds, we identified N-methylpyridine 3-sulfonamides as potent and species-selective inhibitors of Mtb Lpd affording >1000-fold selectivity versus the human homologue. The sulfonamides demonstrated low nanomolar affinity and bound at the lipoamide channel in an Lpd-inhibitor cocrystal. Their selectivity could be attributed, at least partially, to hydrogen bonding of the sulfonamide amide oxygen with the species variant Arg93 in the lipoamide channel. Although potent and selective, the sulfonamides did not enter mycobacteria, as determined by their inability to accumulate in Mtb to effective levels or to produce changes in intracellular metabolites. This work demonstrates that high potency and selectivity can be achieved at the lipoamide-binding site of Mtb Lpd, a site different from the NAD⁺/NADH pocket targeted by previously reported species-selective triazaspirodimethoxybenzoyl inhibitors.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Dihidrolipoamida Deshidrogenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/enzimología , Sulfonamidas/farmacología , Ácido Tióctico/análogos & derivados , Antituberculosos/efectos adversos , Antituberculosos/química , Arginina/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bencenoacetamidas/efectos adversos , Bencenoacetamidas/química , Bencenoacetamidas/farmacología , Sitios de Unión , Transporte Biológico/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Dihidrolipoamida Deshidrogenasa/química , Dihidrolipoamida Deshidrogenasa/genética , Dihidrolipoamida Deshidrogenasa/metabolismo , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Moduladores del Transporte de Membrana/efectos adversos , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/farmacología , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Sulfonamidas/efectos adversos , Sulfonamidas/química , Ácido Tióctico/metabolismo
2.
Adv Healthc Mater ; 2(9): 1252-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23495231

RESUMEN

The majority of anticancer therapeutics have failed to control the target cancers. Thus, new rational design concepts are critical. In most of the biological reactions, a cascade pathway is used to activate appropriate responses. In the cascade pathway, a small signal derived from neighboring environments can be amplified and it further triggers overwhelming and specialized responses. It can be applied to achieve powerful therapeutic effects for novel drug design strategies. Inspired by this concept, we design a preferential dual anti-cancer therapeutic cassette composed of (i) DNA/RNA nanostructures as both anticancer containers and target ligands and (ii) a gold nanocrystal as localized heat inducers. We demonstrate that this multi-modular platform is superior to conventional cancer medications in that it had higher drug loading efficiency, tunable drug release, and intrinsic serum stability characteristics. Both doxorubicin chemotherapy and thermal ablation exert a powerful synergistic killing effect that resulted in prostate cancer regression both in vitro and in vivo. We speculate that our novel anti-cancer drug system can be adapted to effectively destroy many different types of solid cancers.


Asunto(s)
Luz , Nanopartículas/química , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/uso terapéutico , Antibióticos Antineoplásicos/toxicidad , Bencenoacetamidas/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , ADN/química , Doxorrubicina/química , Doxorrubicina/uso terapéutico , Doxorrubicina/toxicidad , Diseño de Fármacos , Oro/química , Humanos , Hipertermia Inducida , Masculino , Nanopartículas del Metal/química , Nanopartículas del Metal/efectos de la radiación , Nanopartículas del Metal/uso terapéutico , Ratones , Ratones Desnudos , Piperidonas/química , Neoplasias de la Próstata/tratamiento farmacológico , ARN/química , Trasplante Heterólogo
3.
J Biol Chem ; 286(16): 13977-84, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21362619

RESUMEN

Two-pore domain potassium (K(2P)) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K(2P) channels. We describe A1899 as a potent and highly selective blocker of the K(2P) channel TASK-1. As A1899 acts as an open-channel blocker and binds to residues forming the wall of the central cavity, the drug was used to further our understanding of the channel pore. Using alanine mutagenesis screens, we have identified residues in both pore loops, the M2 and M4 segments, and the halothane response element to form the drug binding site of TASK-1. Our experimental data were used to validate a K(2P) open-pore homology model of TASK-1, providing structural insights for future rational design of drugs targeting K(2P) channels.


Asunto(s)
Benzamidas/farmacología , Bencenoacetamidas/farmacología , Proteínas del Tejido Nervioso/química , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/química , Potasio/química , Alanina/química , Animales , Benzamidas/química , Bencenoacetamidas/química , Sitios de Unión , ADN Complementario/metabolismo , Diseño de Fármacos , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Mutagénesis , Mutagénesis Sitio-Dirigida , Oocitos/citología , Técnicas de Placa-Clamp , Conformación Proteica , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA