Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.069
Filtrar
Más filtros

Intervalo de año de publicación
1.
Fitoterapia ; 176: 105964, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663561

RESUMEN

Berberine was used as the lead compound in the present study to design and synthesize novel berberine derivatives by splicing bromine bridges of different berberine carbon chain lengths coupled nitric oxide donors, and their lipid lowering activities were assessed in a variety of ways. This experiment synthesized 17 new berberine nitric oxide donor derivatives. Compared with berberine hydrochloride, most of the compounds exhibited certain glycerate inhibitory activity, and compounds 6a, 6b, 6d, 12b and 12d showed higher inhibitory activity than berberine, with 6a, 6b and 6d having significant inhibitory activity. In addition, compound 6a linked to furazolidone nitric oxide donor showed better NO release in experiments; In further mechanistic studies, we screened and got two proteins, PCSK9 and ACLY, and docked two proteins with 17 compounds, and found that most of the compounds bound better with ATP citrate lyase (ACLY), among which there may be a strong interaction between compound 6a and ACLY, and the interaction force was better than the target drug Bempedoic Acid, which meaning that 6a may exert hypolipidemic effects by inhibiting ACLY; moreover, we also found that 6a may had the better performance in gastrointestinal absorption, blood-brain barrier permeability, Egan, Muegge class drug principle model calculation and bioavailability.


Asunto(s)
Berberina , Hipolipemiantes , Donantes de Óxido Nítrico , Berberina/farmacología , Berberina/análogos & derivados , Berberina/síntesis química , Berberina/química , Hipolipemiantes/farmacología , Hipolipemiantes/síntesis química , Hipolipemiantes/química , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/síntesis química , Donantes de Óxido Nítrico/química , Humanos , Estructura Molecular , ATP Citrato (pro-S)-Liasa/antagonistas & inhibidores , ATP Citrato (pro-S)-Liasa/metabolismo , Proproteína Convertasa 9/metabolismo , Simulación del Acoplamiento Molecular , Animales , Barrera Hematoencefálica/efectos de los fármacos , Óxido Nítrico/metabolismo , Inhibidores de PCSK9
2.
Open Vet J ; 14(1): 292-303, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633147

RESUMEN

Background: Paracetamol (PCM) overdosing induces hepatotoxicity, which can result in death if the dose is high enough and the patients are not given N-acetyl cysteine. Berberine (BBR) has a variety of biological proprieties including anti-inflammatory and antioxidant activities. Aim: Assessment of the potential effect of BBR and selenium when used alone or together on the PCM-induced acute hepatic toxicity in rats. Methods: This research involved 40 clinically healthy mature adult male albino rats, their weights ranged from 150 to 200 g and housed in standard conditions. Our study involved evaluating the potential effect of BBR and selenium when used alone or together on the PCM-induced acute hepatic toxicity via estimation of the liver function tests, determination of the antioxidant enzyme activities, lipid peroxidation markers, immune-modulatory effects, liver histopathological, and immunohistochemical studies. Results: Co-treatment of BBR (150 mg/kg BW) with selenium (5 mg/kg BW) showed significant improvement in the liver function parameters, the antioxidant enzyme activities, reduction in the nitric oxide (NO), lysozyme, malondialdehyde (MDA), TNF-α, and TGF-ß1 levels, and marked elevation in the IgM levels. Conclusion: Altogether, BBR, selenium, or both augment antioxidant activity and alleviate PCM-induced hepatic toxicity.


Asunto(s)
Berberina , Selenio , Humanos , Ratas , Masculino , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Acetaminofén/farmacología , Selenio/farmacología , Berberina/farmacología , Berberina/uso terapéutico , Estrés Oxidativo , Ratas Wistar
3.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612606

RESUMEN

Vulvovaginal candidiasis (VVC) is a real gynecological problem among women of reproductive age from 15 to 49. A recent analysis showed that 75% of women will have an occurrence at least once per year, while 5% are observed to have recurrent vaginal mycosis-these patients may become unwell four or more times a year. This pathology is caused in 85-90% of cases by fungi of the Candida albicans species. It represents an intractable medical problem for female patients due to pain and pruritus. Due to the observation of an increasing number of strains resistant to standard preparations and an increase in the recurrence of this pathology when using local or oral preferential therapy, such as fluconazole, an analysis was launched to develop alternative methods of treating VVC using herbs such as dill, turmeric, and berberine. An in-depth analysis of databases that include scientific articles from recent years made it possible to draw satisfactory conclusions supporting the validity of herbal therapy for the pathology in question. Although phytotherapy has not yet been approved by the Food and Drug Administration, it appears to be a promising therapeutic solution for strains that are resistant to existing treatments. There is research currently undergoing aimed at comparing classical pharmacotherapy and herbal therapy in the treatment of vaginal candidiasis for the purpose of increasing medical competence and knowledge for the care of the health and long-term comfort of gynecological patients.


Asunto(s)
Berberina , Candidiasis Vulvovaginal , Estados Unidos , Humanos , Femenino , Candidiasis Vulvovaginal/tratamiento farmacológico , Fitoterapia , Candida , Vagina
4.
J Nat Med ; 78(3): 590-598, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38573419

RESUMEN

Baicalin and berberine are biologically active constituents of the crude drugs Scutellaria root and Coptis rhizome/Phellodendron bark, respectively. Baicalin and berberine are reported to combine together as a 1:1 complex that forms yellow precipitates by electrostatic interaction in decoctions of Kampo formulae containing these crude drugs. However, the structural basis and mechanism for the precipitate formation of this compound-compound interaction in aqueous solution remains unclarified. Herein, we searched for berberine derivatives in the Coptis rhizome that interact with baicalin and identified the chemical structures involved in the precipitation formation. Precipitation assays showed that baicalin formed precipitates with berberine and coptisine but not with palmatine and epiberberine. Thus, the 2,3-methylenedioxy structure may be crucial to the formation of the precipitates, and electrostatic interaction is necessary but is not sufficient. In this multicomponent system experiment, palmatine formed a dissociable complex with baicalin and may competitively inhibit the formation of berberine and coptisine precipitation with baicalin. Therefore, the precipitation formed by berberine and baicalin was considered to be caused by the aggregation of the berberine-baicalin complex, and the 2,3-methylenedioxy structure is likely crucial to the aggregation of the complex.


Asunto(s)
Berberina , Flavonoides , Berberina/química , Berberina/análogos & derivados , Flavonoides/química , Alcaloides de Berberina/química , Coptis/química , Agua/química , Estructura Molecular , Rizoma/química
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 639-642, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660879

RESUMEN

Berberine, a traditional Chinese medicine, is an isoquinoline alkaloid extracted from the rhizome of Coptis chinensis. It has anti-inflammatory and antidiarrheal effects and is commonly used in the treatment of infections and gastrointestinal diseases. In recent years, studies have found that berberine can play a wide range of anti-cancer effects in the treatment of leukemia, lymphoma, multiple myeloma, etc. In hematologic malignancies, berberine can induce autophagy, promote apoptosis, regulate cell cycle, inhibit inflammatory response, cause oxidative damage to cancer cells and interact with miRNA to inhibit the proliferation, migration and colony formation of cancer cells. This paper will review the role and related mechanisms of berberine in hematological malignancies.


Asunto(s)
Apoptosis , Berberina , Neoplasias Hematológicas , Berberina/farmacología , Humanos , Neoplasias Hematológicas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , MicroARNs
6.
Nano Lett ; 24(17): 5154-5164, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602357

RESUMEN

Developing novel strategies for defeating osteoporosis has become a world-wide challenge with the aging of the population. In this work, novel supramolecular nanoagonists (NAs), constructed from alkaloids and phenolic acids, emerge as a carrier-free nanotherapy for efficacious osteoporosis treatment. These precision nanoagonists are formed through the self-assembly of berberine (BER) and chlorogenic acid (CGA), utilizing noncovalent electrostatic, π-π, and hydrophobic interactions. This assembly results in a 100% drug loading capacity and stable nanostructure. Furthermore, the resulting weights and proportions of CGA and BER within the NAs are meticulously controlled with strong consistency when the CGA/BER assembly feed ratio is altered from 1:1 to 1:4. As anticipated, our NAs themselves could passively target osteoporotic bone tissues following prolonged blood circulation, modulate Wnt signaling, regulate osteogenic differentiation, and ameliorate bone loss in ovariectomy-induced osteoporotic mice. We hope this work will open a new strategy to design efficient herbal-derived Wnt NAs for dealing with intractable osteoporosis.


Asunto(s)
Berberina , Ácido Clorogénico , Osteoporosis , Osteoporosis/tratamiento farmacológico , Animales , Ratones , Berberina/farmacología , Berberina/uso terapéutico , Berberina/química , Berberina/administración & dosificación , Berberina/farmacocinética , Ácido Clorogénico/química , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Ácido Clorogénico/administración & dosificación , Femenino , Humanos , Osteogénesis/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/patología , Nanoestructuras/química , Nanoestructuras/uso terapéutico
7.
Biol Pharm Bull ; 47(4): 827-839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38599826

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease with progressive loss of dopaminergic neurons in substantia nigra and the presence of α-synuclein-immunoreactive inclusions. Gaucher's disease is caused by homozygous mutations in ß-glucocerebrosidase gene (GBA). GBA mutation carriers have an increased risk of PD. Coptis chinensis (C. chinensis) rhizome extract is a major herb widely used to treat human diseases. This study examined the association of GBA L444P mutation with Taiwanese PD in 1016 cases and 539 controls. In addition, the protective effects of C. chinensis rhizome extract and its active constituents (berberine, coptisine, and palmatine) against PD were assayed using GBA reporter cells, LC3 reporter cells, and cells expressing mutated (A53T) α-synuclein. Case-control study revealed that GBA L444P carriers had a 3.93-fold increased risk of PD (95% confidence interval (CI): 1.37-11.24, p = 0.006) compared to normal controls. Both C. chinensis rhizome extract and its constituents exhibited chemical chaperone activity to reduce α-synuclein aggregation. Promoter reporter and endogenous GBA protein analyses revealed that C. chinensis rhizome extract and its constituents upregulated GBA expression in 293 cells. In addition, C. chinensis rhizome extract and its constituents induced autophagy in DsRed-LC3-expressing 293 cells. In SH-SY5Y cells expressing A53T α-synuclein, C. chinensis rhizome extract and its constituents reduced α-synuclein aggregation and associated neurotoxicity by upregulating GBA expression and activating autophagy. The results of reducing α-synuclein aggregation, enhancing GBA expression and autophagy, and protecting against α-synuclein neurotoxicity open up the therapeutic potentials of C. chinensis rhizome extract and constituents for PD.


Asunto(s)
Berberina , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Berberina/análogos & derivados , Estudios de Casos y Controles , Coptis chinensis , Neuronas Dopaminérgicas/metabolismo , Mutación , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Rizoma
8.
J Transl Med ; 22(1): 225, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429794

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent worldwide, emerging as a significant health issue on a global scale. Berberine exhibits potential for treating NAFLD, but clinical evidence remains inconclusive. This meta-analysis was conducted to assess the efficacy and safety of berberine for treating NAFLD. METHODS: This study was registered with PROSPERO (No. CRD42023462338). Identification of randomized controlled trials (RCTs) involved searching 6 databases covering the period from their initiation to 9 September 2023. The primary outcomes comprised liver function markers such as glutamyl transpeptidase (GGT), alanine transaminase (ALT), aspartate transaminase (AST), lipid indices including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), homeostasis model assessment for insulin resistance (HOMA-IR) and body mass index (BMI). Review Manager 5.4 and STATA 17.0 were applied for analysis. RESULTS: Among 10 RCTs involving 811 patients, berberine demonstrated significant reductions in various parameters: ALT (standardized mean difference (SMD) = - 0.72), 95% confidence interval (Cl) [- 1.01, - 0.44], P < 0.00001), AST (SMD = - 0.79, 95% CI [- 1.17, - 0.40], P < 0.0001), GGT (SMD = - 0.62, 95% CI [- 0.95, - 0.29], P = 0.0002), TG (SMD = - 0.59, 95% CI [- 0.86, - 0.31], P < 0.0001), TC(SMD = - 0.74, 95% CI [- 1.00, - 0.49], P < 0.00001), LDL-C (SMD = - 0.53, 95% CI [- 0.88, - 0.18], P = 0.003), HDL-C (SMD = - 0.51, 95% CI [- 0.12, 1.15], P = 0.11), HOMA-IR (SMD = - 1.56, 95% CI [- 2.54, - 0.58], P = 0.002), and BMI (SMD = - 0.58, 95% CI [- 0.77, - 0.38], P < 0.00001). Importantly, Berberine exhibited a favorable safety profile, with only mild gastrointestinal adverse events reported. CONCLUSION: This meta-analysis demonstrates berberine's efficacy in improving liver enzymes, lipid profile, and insulin sensitivity in NAFLD patients. These results indicate that berberine shows promise as an adjunct therapy for NAFLD. Trial registration The protocol was registered with PROSPERO (No. CRD42023462338). Registered on September 27, 2023.


Asunto(s)
Berberina , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Berberina/efectos adversos , HDL-Colesterol , LDL-Colesterol , Lípidos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Resultado del Tratamiento , Triglicéridos
9.
J Appl Biomater Funct Mater ; 22: 22808000241235442, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38497242

RESUMEN

Given the numerous adverse effects of lung cancer treatment, more research on non-toxic medications is urgently needed. Curcumin (CUR) and berberine (BBR) combat drug resistance by controlling the expression of multidrug resistant pump (MDR1). Fascinatingly, combining these medications increases the effectiveness of preventing lung cancer. Their low solubility and poor stability, however, restrict their therapeutic efficacy. Because of the improved bioavailability and increased encapsulation effectiveness of water-insoluble medicines, surfactant-based nanovesicles have recently received a great deal of attention. The current study sought to elucidate the Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. The impact of several tween (20, 60, and 80) types with varied hydrophobic tails on BBR/CUR-TNV was evaluated. Additionally, the MDR1 activity and apoptosis rate of the BBR/CUR-TNV combination therapy were assessed. The encapsulation effectiveness of TNV was affected by the type of tween. With the TNV made from tween 60, cholesterol, and PEG (47.5: 47.5:5), more encapsulation effectiveness was attained. By combining CUR with BBR, especially when given in TNV, apoptosis increased. Additionally, when CUR and BBR were administered in combination, they significantly reduced the risk of MDR1 development. The current work suggests that the delivery of berberine and curcumin as a combination medication therapy via tween-based nanovesicles may be a potential lung cancer treatment.


Asunto(s)
Berberina , Carcinoma , Curcumina , Neoplasias Pulmonares , Humanos , Apoptosis , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , Carcinoma/tratamiento farmacológico , Curcumina/farmacología , Curcumina/uso terapéutico , Quimioterapia Combinada , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Nanomedicina , Polisorbatos/farmacología
10.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474561

RESUMEN

Berberis species have a long history of use in traditional Chinese medicine, Ayurvedic medicine, and Western herbal medicine. The aim of this study was the quantification of the main isoquinoline alkaloids in extracts obtained from various Berberis species by HPLC, in vitro and in silico determination of anti-cholinesterase activity, and in vitro and in vivo investigations of the cytotoxic activity of the investigated plant extracts and alkaloid standards. In particular, Berberis species whose activity had not been previously investigated were selected for the study. In the most investigated Berberis extracts, a high content of berberine and palmatine was determined. Alkaloid standards and most of the investigated plant extracts exhibit significant anti-cholinesterase activity. Molecular docking results confirmed that both alkaloids are more favourable for forming complexes with acetylcholinesterase compared to butyrylcholinesterase. The kinetic results obtained by HPLC-DAD indicated that berberine noncompetitively inhibited acetylcholinesterase, while butyrylcholinesterase was inhibited in a mixed mode. In turn, palmatine exhibited a mixed inhibition of acetylcholinesterase. The cytotoxic activity of berberine and palmatine standards and plant extracts were investigated against the human melanoma cell line (A375). The highest cytotoxicity was determined for extract obtained from Berberis pruinosa cortex. The cytotoxic properties of the extract were also determined in the in vivo investigations using the Danio rerio larvae xenograft model. The obtained results confirmed a significant effect of the Berberis pruinosa cortex extract on the number of cancer cells in a living organism. Our results showed that extracts obtained from Berberis species, especially the Berberis pruinosa cortex extract, can be recommended for further in vivo experiments in order to confirm the possibility of their application in the treatment of neurodegenerative diseases and human melanoma.


Asunto(s)
Alcaloides , Antineoplásicos , Berberina , Berberis , Melanoma , Humanos , Berberina/farmacología , Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Alcaloides/farmacología , Extractos Vegetales/farmacología
11.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474567

RESUMEN

Berberine is a natural isoquinoline alkaloid with low toxicity, which exists in a wide variety of medicinal plants. Berberine has been demonstrated to exhibit potent prevention of indomethacin-induced gastric injury (GI) but the related mechanism remains unclear. In the present study, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics was applied for the first time to investigate the alteration of serum metabolites in the protection of berberine against indomethacin-induced gastric injury in rats. Subsequently, bioinformatics was utilized to analyze the potential metabolic pathway of the anti-GI effect of berberine. The pharmacodynamic data indicated that berberine could ameliorate gastric pathological damage, inhibit the level of proinflammatory factors in serum, and increase the level of antioxidant factors in serum. The LC-MS-based metabolomics analysis conducted in this study demonstrated the presence of 57 differential metabolites in the serum of rats with induced GI caused by indomethacin, which was associated with 29 metabolic pathways. Moreover, the study revealed that berberine showed a significant impact on the differential metabolites, with 45 differential metabolites being reported between the model group and the group treated with berberine. The differential metabolites were associated with 24 metabolic pathways, and berberine administration regulated 14 of the 57 differential metabolites, affecting 14 of the 29 metabolic pathways. The primary metabolic pathways affected were glutathione metabolism and arachidonic acid metabolism. Based on the results, it can be concluded that berberine has a gastroprotective effect on the GI. This study is particularly significant since it is the first to elucidate the mechanism of berberine's action on GI. The results suggest that berberine's action may be related to energy metabolism, oxidative stress, and inflammation regulation. These findings may pave the way for the development of new therapeutic interventions for the prevention and management of NSAID-induced GI disorders.


Asunto(s)
Berberina , Gastropatías , Ratas , Animales , Indometacina , Berberina/farmacología , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem , Metabolómica/métodos , Gastropatías/tratamiento farmacológico
12.
J Ethnopharmacol ; 327: 118039, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38479545

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The anti-tumor related diseases of Coptidis Rhizoma (Huanglian) were correlated with its traditional use of removing damp-heat, clearing internal fire, and counteracting toxicity. In the recent years, Coptidis Rhizoma and its components have drawn extensive attention toward their anti-tumor related diseases. Besides, Coptidis Rhizoma is traditionally used as an anti-inflammatory herb. Epiberberine (EPI) is a significant alkaloid isolated from Coptidis Rhizoma, and exhibits multiple pharmacological activities including anti-inflammatory. However, the effect of epiberberine on breast cancer and the inflammatory factors of metastatic breast cancer-induced osteolysis has not been demonstrated clearly. AIM OF THE STUDY: Bone metastatic breast cancer can lead to osteolysis via inflammatory factors-induced osteoclast differentiation and function. In this study, we try to analyze the effect of epiberberine on breast cancer and the inflammatory factors of metastatic breast cancer-induced osteolysis. METHODS: To evaluate whether epiberberine could suppress bone metastatic breast cancer-induced osteolytic damage, healthy female Balb/c mice were intratibially injected with murine triple-negative breast cancer 4T1 cells. Then, we examined the inhibitory effect and underlying mechanism of epiberberine on breast cancer-induced osteoclastogenesis in vitro. Xenograft assay was used to study the effect of epiberberine on breast cancer cells in vivo. Moreover, we also studied the inhibitory effects and underlying mechanisms of epiberberine on RANKL-induced osteoclast differentiation and function in vitro. RESULTS: The results show that epiberberine displayed potential therapeutic effects on breast cancer-induced osteolytic damage. Besides, our results show that epiberberine inhibited breast cancer cells-induced osteoclast differentiation and function by inhibiting secreted inflammatory cytokines such as IL-8. Importantly, we found that epiberberine directly inhibited RANKL-induced differentiation and function of osteoclast without cytotoxicity. Mechanistically, epiberberine inhibited RANKL-induced osteoclastogensis via Akt/c-Fos signaling pathway. Furthermore, epiberberine combined with docetaxel effectively protected against bone loss induced by metastatic breast cancer cells. CONCLUSIONS: Our findings suggested that epiberberine may be a promising natural compound for treating bone metastatic breast cancer-induced osteolytic damage by inhibiting IL-8 and is worthy of further exploration in preclinical and clinical trials.


Asunto(s)
Berberina/análogos & derivados , Neoplasias Óseas , Neoplasias de la Mama , Medicamentos Herbarios Chinos , Osteólisis , Humanos , Femenino , Animales , Ratones , Osteólisis/tratamiento farmacológico , Osteólisis/metabolismo , Osteólisis/patología , Neoplasias de la Mama/patología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/metabolismo , Interleucina-8/metabolismo , Osteoclastos , Osteogénesis , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/secundario , Antiinflamatorios/farmacología , Ligando RANK/metabolismo
13.
Sci China Life Sci ; 67(5): 1010-1026, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38489007

RESUMEN

Alveolar bone regeneration has been strongly linked to macrophage polarization. M1 macrophages aggravate alveolar bone loss, whereas M2 macrophages reverse this process. Berberine (BBR), a natural alkaloid isolated and refined from Chinese medicinal plants, has shown therapeutic effects in treating metabolic disorders. In this study, we first discovered that culture supernatant (CS) collected from BBR-treated human bone marrow mesenchymal stem cells (HBMSCs) ameliorated periodontal alveolar bone loss. CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro. To clarify the underlying mechanism, the bioactive materials were applied to different animal models. We discovered macrophage colony-stimulating factor (M-CSF), which regulates macrophage polarization and promotes bone formation, a key macromolecule in the CS. Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats. Colony-stimulating factor 1 receptor (CSF1R) inhibitor or anti-human M-CSF (M-CSF neutralizing antibody, Nab) abolished the therapeutic effects of the CS of BBR-treated HBMSCs. Moreover, AKT phosphorylation in macrophages was activated by the CS, and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab. These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis. Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets. Overall, our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.


Asunto(s)
Pérdida de Hueso Alveolar , Berberina , Regeneración Ósea , Factor Estimulante de Colonias de Macrófagos , Macrófagos , Células Madre Mesenquimatosas , Berberina/farmacología , Humanos , Animales , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Regeneración Ósea/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratas , Factor Estimulante de Colonias de Macrófagos/metabolismo , Pérdida de Hueso Alveolar/metabolismo , Masculino , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Células Cultivadas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones
14.
Phytomedicine ; 128: 155456, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537446

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is a heterogeneous metabolic and endocrine disorder that causes anovulatory infertility and abnormal folliculogenesis in women of reproductive age. Several studies have revealed inflammation in PCOS follicles, and recent evidence suggests that Berberine (BBR) effectively reduces inflammatory responses in PCOS, however, the underlying mechanisms remain unclear. PURPOSE: To determine the underlying mechanisms by which BBR alleviates inflammation in PCOS. STUDY DESIGN: Primary human GCs from healthy women and women with PCOS, and KGN cells were used for in vitro studies. ICR mice were used for in vivo studies. METHODS: Gene expression was measured using RT-qPCR. HAS2, inflammatory cytokines, and serum hormones were assayed by ELISA. Protein expression profiles were assayed by Western blot. Chronic low-grade inflammatory mouse models were developed by intraperitoneal injection with LPS, and PCOS mouse models were established by subcutaneous intraperitoneal injection of DHEA. BBR and 4-MU were administered by gavage. Ovarian morphologic changes were evaluated using H&E staining. HAS2 expression in the ovary was assayed using Western blot and immunohistochemistry. RESULTS: Our results confirmed that HAS2 expression and hyaluronan (HA) accumulation are closely associated with inflammatory responses in PCOS. Data obtained from in vitro studies showed that HAS2 and inflammatory genes (e.g., MCP-1, IL-1ß, and IL-6) are significantly upregulated in PCOS samples and LPS-induced KGN cells compared to their control groups. In addition, these effects were reversed by blocking HAS2 expression or HA synthesis using BBR or 4-MU, respectively. Furthermore, HAS2 overexpression induces the expression of inflammatory genes in PCOS. These results were further confirmed in LPS- and DHEA-induced mouse models, where inflammatory genes were reduced by BBR or 4-MU, and ovarian morphology was restored. CONCLUSIONS: Our results define previously unknown links between HAS2 and chronic low-grade inflammation in the follicles of women with PCOS. BBR exerts its anti-inflammatory effects by down-regulating HAS2. This study provides a novel therapeutic target for alleviating ovarian inflammation in women with PCOS.


Asunto(s)
Berberina , Modelos Animales de Enfermedad , Hialuronano Sintasas , Inflamación , Ratones Endogámicos ICR , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Berberina/farmacología , Femenino , Animales , Humanos , Hialuronano Sintasas/metabolismo , Inflamación/tratamiento farmacológico , Ratones , Ácido Hialurónico , Adulto , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Deshidroepiandrosterona/farmacología , Ovario/efectos de los fármacos , Lipopolisacáridos , Citocinas/metabolismo
15.
Phytomedicine ; 128: 155517, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518650

RESUMEN

BACKGROUND: Berberine is the main bioactive constituent of Coptis chinensis, a quaternary ammonium alkaloid. While berberine's cardiovascular benefits are well-documented, its impact on thrombosis remains not fully understood. PURPOSE: This study investigates the potential of intestinal microbiota as a novel target for preventing thrombosis, with a focus on berberine, a natural compound known for its effectiveness in managing cardiovascular conditions. METHODS: Intraperitoneal injection of carrageenan induces the secretion of chemical mediators such as histamine and serotonin from mast cells to promote thrombosis. This model can directly and visually observe the progression of thrombosis in a time-dependent manner. Thrombosis was induced by intravenous injection of 1 % carrageenan solution (20 mg/kg) to all mice except the vehicle control group. Quantitative analysis of gut microbiota metabolites through LC/MS. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of gut microbiota on thrombosis were explored by fecal microbiota transplantation. RESULTS: Our research shows that berberine inhibits thrombosis by altering intestinal microbiota composition and related metabolites. Notably, berberine curtails the biosynthesis of phenylacetylglycine, a thrombosis-promoting coproduct of the host-intestinal microbiota, by promoting phenylacetic acid degradation. This research underscores the significance of phenylacetylglycine as a thrombosis-promoting risk factor, as evidenced by the ability of intraperitoneal phenylacetylglycine injection to reverse berberine's efficacy. Fecal microbiota transplantation experiment confirms the crucial role of intestinal microbiota in thrombus formation. CONCLUSION: Initiating our investigation from the perspective of the gut microbiota, we have, for the first time, unveiled that berberine inhibits thrombus formation by promoting the degradation of phenylacetic acid, consequently suppressing the biosynthesis of PAG. This discovery further substantiates the intricate interplay between the gut microbiota and thrombosis. Our study advances the understanding that intestinal microbiota plays a crucial role in thrombosis development and highlights berberine-mediated intestinal microbiota modulation as a promising therapeutic approach for thrombosis prevention.


Asunto(s)
Berberina , Microbioma Gastrointestinal , Fenilacetatos , Trombosis , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Berberina/farmacología , Berberina/análogos & derivados , Trombosis/prevención & control , Masculino , Ratones , Fenilacetatos/farmacología , Carragenina , Coptis/química , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Trasplante de Microbiota Fecal , ARN Ribosómico 16S
16.
Phytomedicine ; 128: 155258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522318

RESUMEN

BACKGROUND: Traditional Chinese Medicine (TCM), renowned for its holistic approach with a 2000-year history of utilizing natural remedies, offers unique advantages in disease prevention and treatment. Berberine, found in various Chinese herbs, has been employed for many years, primarily for addressing conditions such as diarrhea and dysentery. Berberine has recently become a research focus owing to its pharmacological activities and benefits to human bodies. However, little is known about the anti-inflammatory mechanism of berberine. PURPOSE: To summarize recent findings regarding the pharmacological effects and mechanisms of berberine anti-inflammation and highlight and predict the potential therapeutic effects and systematic mechanism of berberine. METHODS: Recent studies (2013-2023) on the pharmacological effects and mechanisms of berberine anti-inflammation were retrieved from Web of Science, PubMed, Google Scholar, and Scopus up to July 2023 using relevant keywords. Network pharmacology and bioinformatics analysis were employed to predict the therapeutic effects and mechanisms of berberine against potential diseases. RESULTS: The related pharmacological mechanisms of berberine anti-inflammation include the inhibition of inflammatory cytokine production (e.g., IL-1ß, IL-6, TNF-α), thereby attenuating the inflammatory response; Inhibiting the activation of NF-κB signaling pathway and IκBα degradation; Inhibiting the activation of MAPK signaling pathway; Enhancing the activation of the STAT1 signaling pathway; Berberine interacts directly with cell membranes through a variety of pathways, thereby influencing cellular physiological activities. Berberine enhances human immunity and modulates immune system function, which is integral to addressing certain autoimmune and tumour-related health concerns. CONCLUSION: This study expounds on the correlation between berberine and inflammatory diseases, encapsulating the mechanisms through which berberine treats select typical inflammatory ailments. Furthermore, it delves into a deeper understanding of berberine's effectiveness by integrating network pharmacology and molecular docking techniques in the context of treating inflammatory diseases. It provides guidance and reference for berberine's subsequent revelation of the modern scientific connotation of Chinese medicine.


Asunto(s)
Antiinflamatorios , Berberina , Inflamación , Farmacología en Red , Animales , Humanos , Antiinflamatorios/farmacología , Berberina/farmacología , Berberina/química , Citocinas/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Inflamación/tratamiento farmacológico , Medicina Tradicional China/métodos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Wound Repair Regen ; 32(3): 279-291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38353052

RESUMEN

Pressure ulcer (PU) is a worldwide problem that is difficult to address because of the related inflammatory response, local hypoxia, and repeated ischaemia/reperfusion, causing great suffering and financial burden to patients. Traditional Chinese medicine turtle plate powder can treat skin trauma, but its composition is complex and inconvenient to use. Here, we combined cholesterol myristate (S8) with berberine (BBR), with anti-inflammatory and antibacterial effects, as a drug and used hydroxypropyl methylcellulose and polyvinylpyrrolidone K30 as carriers to construct a novel film-forming polymeric solution (S8 + BBR FFPS), comprehensively study its reparative effect on PU and explore the potential mechanism in rat PU models. The results showed that S8 + BBR FFPS inhibits excessive inflammatory response, promotes re-epithelialization, and promotes hair follicle growth during the healing process of PU, which may be related to the activation of the Wnt/ß-catenin signalling pathway by S8 + BBR FFPS to mediate hair follicle stem cell proliferation and maintain skin homeostasis. Therefore, S8 + BBR FFPS may be a potential candidate for the treatment of chronic skin injury, and its association with the Wnt/ß-catenin signalling pathway may provide new ideas to guide the design of biomaterial-based wound dressings for chronic wound repair.


Asunto(s)
Berberina , Modelos Animales de Enfermedad , Úlcera por Presión , Vía de Señalización Wnt , Cicatrización de Heridas , Animales , Masculino , Ratas , Berberina/farmacología , Berberina/uso terapéutico , Proliferación Celular/efectos de los fármacos , Polímeros/farmacología , Úlcera por Presión/tratamiento farmacológico , Ratas Sprague-Dawley , Vía de Señalización Wnt/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
18.
Curr Rev Clin Exp Pharmacol ; 19(4): 312-326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361373

RESUMEN

Berberine is a natural product with a wide range of pharmacological effects. It has antimicrobial, anti-cancer, anti-inflammatory, anti-hyperlipidemic, neuroprotective, and cholesterollowering properties, among others. It has been used in traditional Chinese and Ayurvedic medicine for 3000 years and is generally well-tolerated with few side effects. Its main drawback is low oral bioavailability, which has hindered widespread clinical use. However, recent interest has surged with the emergence of evidence that berberine is effective in treating cancer, diabetes, Alzheimer's disease, and cardiovascular disease via multiple mechanisms. It enhances insulin sensitivity and secretion by pancreatic ß-cells in Type 2 Diabetes Mellitus in addition to reducing pro-inflammatory cytokines such as IL-6, IL-1ß, TLR4 and TNF-α. These cytokines are elevated in Alzheimer's disease, cardiovascular disease, and diabetes. Reductions in pro-inflammatory cytokine levels are associated with positive outcomes such as improved cognition, reduced cardiovascular events, and improved glucose metabolism and insulin sensitivity. Berberine is a natural PCSK9 inhibitor, which contributes to its hypolipidemic effects. It also increases low-density lipoprotein receptor expression, reduces intestinal cholesterol absorption, and promotes cholesterol excretion from the liver to the bile. This translates into a notable decrease in LDL cholesterol levels. High LDL cholesterol levels are associated with increased cardiovascular disease risk. Novel synthetic berberine derivatives are currently being developed that optimize LDL reduction, bioavailability, and other pharmacokinetic properties.


Asunto(s)
Enfermedad de Alzheimer , Berberina , Enfermedades Cardiovasculares , Neoplasias , Inhibidores de PCSK9 , Humanos , Berberina/farmacología , Berberina/uso terapéutico , Berberina/farmacocinética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Animales , Neoplasias/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Proproteína Convertasa 9/metabolismo
19.
Clin Rheumatol ; 43(3): 959-969, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38305937

RESUMEN

OBJECTIVE: Fibroblast-like synoviocytes (FLS) play a critical role on the exacerbation and deterioration of rheumatoid arthritis (RA). Aberrant activation of FLS pyroptosis signaling is responsible for the hyperplasia of synovium and destruction of cartilage of RA. This study investigated the screened traditional Chinese medicine berberine (BBR), an active alkaloid extracted from the Coptis chinensis plant, that regulates the pyroptosis of FLS and secretion of inflammatory factors in rheumatoid arthritis. METHODS: First, BBR was screened using a high-throughput drug screening strategy, and its inhibitory effect on RA-FLS was verified by in vivo and in vitro experiments. Second, BBR was intraperitoneally administrated into the collagen-induced arthritis rat model, and the clinical scores, arthritis index, and joint HE staining were evaluated. Third, synovial tissues of CIA mice were collected, and the expression of NLRP3, cleaved-caspase-1, GSDMD-N, Mst1, and YAP was detected by Western blot. RESULTS: The administration of BBR dramatically alleviated the severity of collagen-induced arthritis rat model with a decreased clinical score and inflammation reduction. In addition, BBR intervention significantly attenuates several pro-inflammatory cytokines (interleukin-1ß, interleukin-6, interleukin-17, and interleukin-18). Moreover, BBR can reduce the pyroptosis response (caspase-1, NLR family pyrin domain containing 3, and gasdermin D) of the RA-FLS in vitro, activating the Hippo signaling pathway (Mammalian sterile 20-like kinase 1, yes-associated protein, and transcriptional enhanced associate domains) so as to inhibit the pro-inflammatory effect of RA-FLS. CONCLUSION: These results support the role of BBR in RA and may have therapeutic implications by directly repressing the activation, migration of RA-FLS, which contributing to the attenuation of the progress of CIA. Therefore, targeting PU.1 might be a potential therapeutic approach for RA. Besides, BBR inhibited RA-FLS pyroptosis by downregulating of NLRP3 inflammasomes (NLRP3, caspase-1) and eased the pro-inflammatory activities via activating the Hippo signaling pathway, thereby improving the symptom of CIA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Berberina , Ratas , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , Berberina/metabolismo , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Membrana Sinovial/metabolismo , Caspasas/metabolismo , Caspasas/farmacología , Caspasas/uso terapéutico , Fibroblastos/metabolismo , Células Cultivadas , Proliferación Celular , Mamíferos
20.
J Ethnopharmacol ; 326: 117901, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38341112

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Wuji Wan (WJW) is a traditional Chinese medicine formula that can be found in the "Prescriptions of Taiping Benevolent Dispensary" that has been employed in treating gastric discomfort, burning epigastric pain, and gastric reflux for hundreds of years and has shown promise for treating gastric ulcers (GUs). However, the active components and mechanism of action against GUs remain unclear. AIM OF THE STUDY: The aim of this study was to explore the active components of WJW and elucidate the underlying mechanism involved in treating GUs. MATERIALS AND METHODS: Initially, cell viability was measured by a cell counting kit 8 (CCK-8) assay to evaluate the efficacy of WJW-containing serum in vitro. The gastric ulcer index, ulcer inhibition rate, hematoxylin and staining (H&E), and periodic acid-Schiff (PAS) staining were used to evaluate the therapeutic effect of WJW in vivo. Subsequently, the levels of inflammatory factors and oxidative stress factors were determined using an enzyme-linked immunosorbent assays (ELISA) on in vitro and in vivo samples. Additionally, UPLC-Q Exactive Plus Orbitrap HRMS was used to analyze the components that were absorbed into the blood of WJW and its metabolites. Network pharmacology and metabolomics were subsequently used to identify the targets and pathways. Real-time quantitative PCR (RT‒qPCR) and Western blotting were used to verify the mRNA and protein levels of the key targets and pathways. Finally, the active components were identified by molecular docking to verify the binding stability of the components and key targets. RESULTS: WJW-containing serum ameliorated ethanol-induced damage in GES-1 cells and promoted cell healing. WJW-containing serum reduced IL-6, TNF-α, MDA, and LDH levels while increasing IL-10, SOD, and T-AOC levels in the cells. Moreover, WJW treatment resulted in decreased IL-6, TNF-α, and MDA levels and increased IL-10, SOD, PGE2, and NO levels in GUs rats. In addition, eight components of WJW were absorbed into the blood. The network pharmacology results revealed 192 common targets for blood entry components and GUs, and KEGG analysis revealed that apoptosis signaling pathways were the main pathways involved in WJW activity against GUs. Metabolomic screening was used to identify 13 differential metabolites. There were 23 common targets for blood entry components, GUs, and differential metabolites, with the key targets TNF (TNF-α), AKT1, PTGS2 (COX2) and MAPK1. WJW significantly inhibited the expression of Bax, Caspase-9, Caspase-3, cleaved Caspase-9, cleaved Caspase-3, TNF-α, COX2, and p-p44/42 MAPK while promoting the expression of Bcl-2 and p-AKT1. Molecular docking revealed that the active components of WJW for the treatment of GUs are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. CONCLUSIONS: WJW treatment reduces inflammation and oxidative stress injury and inhibits apoptosis signaling pathways. The main active components are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. In this paper, we provide a new strategy for exploring the active components of traditional Chinese medicine formulas for the treatment of diseases based on target mechanisms.


Asunto(s)
Berberina , Medicamentos Herbarios Chinos , Glucósidos , Monoterpenos , Úlcera Gástrica , Animales , Ratas , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Caspasa 3 , Caspasa 9 , Interleucina-10 , Ciclooxigenasa 2 , Interleucina-6 , Simulación del Acoplamiento Molecular , Farmacología en Red , Factor de Necrosis Tumoral alfa , Superóxido Dismutasa , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA