Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Comput Aided Mol Des ; 34(12): 1219-1228, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32918236

RESUMEN

SARS-CoV-2 recently jumped species and rapidly spread via human-to-human transmission to cause a global outbreak of COVID-19. The lack of effective vaccine combined with the severity of the disease necessitates attempts to develop small molecule drugs to combat the virus. COVID19_GIST_HSA is a freely available online repository to provide solvation thermodynamic maps of COVID-19-related protein small molecule drug targets. Grid inhomogeneous solvation theory maps were generated using AmberTools cpptraj-GIST, 3D reference interaction site model maps were created with AmberTools rism3d.snglpnt and hydration site analysis maps were created using SSTMap code. The resultant data can be applied to drug design efforts: scoring solvent displacement for docking, rational lead modification, prioritization of ligand- and protein- based pharmacophore elements, and creation of water-based pharmacophores. Herein, we demonstrate the use of the solvation thermodynamic mapping data. It is hoped that this freely provided data will aid in small molecule drug discovery efforts to defeat SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Modelos Químicos , Simulación de Dinámica Molecular , Terapia Molecular Dirigida , Pandemias , Neumonía Viral/tratamiento farmacológico , Termodinámica , Proteínas no Estructurales Virales/efectos de los fármacos , Antivirales/química , Betacoronavirus/química , Sitios de Unión , COVID-19 , Dominio Catalítico , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Proteínas no Estructurales Virales/química , Agua , Tratamiento Farmacológico de COVID-19
2.
Comput Biol Med ; 124: 103936, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32738628

RESUMEN

Virtual screening of phytochemicals was performed through molecular docking, simulations, in silico ADMET and drug-likeness prediction to identify the potential hits that can inhibit the effects of SARS-CoV-2. Considering the published literature on medicinal importance, 154 phytochemicals with analogous structure from limonoids and triterpenoids were selected to search potential inhibitors for the five therapeutic protein targets of SARS-CoV-2, i.e., 3CLpro (main protease), PLpro (papain-like protease), SGp-RBD (spike glycoprotein-receptor binding domain), RdRp (RNA dependent RNA polymerase) and ACE2 (angiotensin-converting enzyme 2). The in silico computational results revealed that the phytochemicals such as glycyrrhizic acid, limonin, 7-deacetyl-7-benzoylgedunin, maslinic acid, corosolic acid, obacunone and ursolic acid were found to be effective against the target proteins of SARS-CoV-2. The protein-ligand interaction study revealed that these phytochemicals bind with the amino acid residues at the active site of the target proteins. Therefore, the core structure of these potential hits can be used for further lead optimization to design drugs for SARS-CoV-2. Also, the medicinal plants containing these phytochemicals like licorice, neem, tulsi, citrus and olives can be used to formulate suitable therapeutic approaches in traditional medicines.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/química , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Limoninas/farmacología , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Triterpenos/farmacología , Enzima Convertidora de Angiotensina 2 , Antivirales/química , Antivirales/farmacocinética , Sitios de Unión , COVID-19 , Biología Computacional , Simulación por Computador , ARN Polimerasa Dependiente de ARN de Coronavirus , Evaluación Preclínica de Medicamentos , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Limoninas/química , Limoninas/farmacocinética , Simulación del Acoplamiento Molecular , Pandemias , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/efectos de los fármacos , Fitoquímicos/química , Fitoquímicos/farmacocinética , Fitoquímicos/farmacología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/efectos de los fármacos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Triterpenos/química , Triterpenos/farmacocinética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas Virales/química , Proteínas Virales/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
3.
OMICS ; 24(10): 568-580, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32757981

RESUMEN

Although the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is wreaking havoc and resulting in mortality and morbidity across the planet, novel treatments are urgently needed. Drug repurposing offers an innovative approach in this context. We report here new findings on the in silico potential of several antimalarial drugs for repurposing against COVID-19. We conducted analyses by docking the compounds against two SARS-CoV-2-specific targets: (1) the receptor binding domain spike protein and (2) the main protease of the virus (MPro) using the Schrödinger software. Importantly, the docking analysis revealed that doxycycline (DOX) showed the most effective binding to the spike protein of SARS-CoV-2, whereas halofantrine and mefloquine bound effectively with the main protease among the antimalarial drugs evaluated in the present study. The in silico approach reported here suggested that DOX could potentially be a good candidate for repurposing for COVID-19. In contrast, to decipher the actual potential of DOX and halofantrine against COVID-19, further in vitro and in vivo studies are called for. Drug repurposing warrants consideration as a viable research and innovation avenue as planetary health efforts to fight the COVID-19 continue.


Asunto(s)
Antimaláricos/farmacología , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Reposicionamiento de Medicamentos/métodos , Neumonía Viral/tratamiento farmacológico , Antimaláricos/química , Antivirales/química , Betacoronavirus/química , Sitios de Unión , COVID-19 , Simulación por Computador , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/efectos de los fármacos , Doxiciclina/química , Doxiciclina/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/virología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
4.
Theranostics ; 10(16): 7034-7052, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32641977

RESUMEN

This review provides an update for the international research community on the cell modeling tools that could accelerate the understanding of SARS-CoV-2 infection mechanisms and could thus speed up the development of vaccines and therapeutic agents against COVID-19. Many bioengineering groups are actively developing frontier tools that are capable of providing realistic three-dimensional (3D) models for biological research, including cell culture scaffolds, microfluidic chambers for the culture of tissue equivalents and organoids, and implantable windows for intravital imaging. Here, we review the most innovative study models based on these bioengineering tools in the context of virology and vaccinology. To make it easier for scientists working on SARS-CoV-2 to identify and apply specific tools, we discuss how they could accelerate the discovery and preclinical development of antiviral drugs and vaccines, compared to conventional models.


Asunto(s)
Antivirales/aislamiento & purificación , Antivirales/farmacología , Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/prevención & control , Vacunas Virales/aislamiento & purificación , Vacunas Virales/farmacología , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/inmunología , Bioingeniería/métodos , Bioingeniería/tendencias , Reactores Biológicos , COVID-19 , Vacunas contra la COVID-19 , Técnicas de Cultivo de Célula , Simulación por Computador , Infecciones por Coronavirus/inmunología , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/tendencias , Evaluación de Medicamentos/métodos , Evaluación de Medicamentos/tendencias , Farmacorresistencia Viral , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Modelos Biológicos , Organoides/citología , Organoides/virología , Neumonía Viral/inmunología , SARS-CoV-2 , Nanomedicina Teranóstica
5.
Theranostics ; 10(16): 7448-7464, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32642005

RESUMEN

The COVID-19 pandemic is an emerging threat to global public health. While our current understanding of COVID-19 pathogenesis is limited, a better understanding will help us develop efficacious treatment and prevention strategies for COVID-19. One potential therapeutic target is angiotensin converting enzyme 2 (ACE2). ACE2 primarily catalyzes the conversion of angiotensin I (Ang I) to a nonapeptide angiotensin or the conversion of angiotensin II (Ang II) to angiotensin 1-7 (Ang 1-7) and has direct effects on cardiac function and multiple organs via counter-regulation of the renin-angiotensin system (RAS). Significant to COVID-19, ACE2 is postulated to serve as a major entry receptor for SARS-CoV-2 in human cells, as it does for SARS-CoV. Many infected individuals develop COVID-19 with fever, cough, and shortness of breath that can progress to pneumonia. Disease progression promotes the activation of immune cells, platelets, and coagulation pathways that can lead to multiple organ failure and death. ACE2 is expressed by epithelial cells of the lungs at high level, a major target of the disease, as seen in post-mortem lung tissue of patients who died with COVID-19, which reveals diffuse alveolar damage with cellular fibromyxoid exudates bilaterally. Comparatively, ACE2 is expressed at low level by vascular endothelial cells of the heart and kidney but may also be targeted by the virus in severe COVID-19 cases. Interestingly, SARS-CoV-2 infection downregulates ACE2 expression, which may also play a critical pathogenic role in COVID-19. Importantly, targeting ACE2/Ang 1-7 axis and blocking ACE2 interaction with the S protein of SARS-CoV-2 to curtail SARS-CoV-2 infection are becoming very attractive therapeutics potential for treatment and prevention of COVID-19. Here, we will discuss the following subtopics: 1) ACE2 as a receptor of SARS-CoV-2; 2) clinical and pathological features of COVID-19; 3) role of ACE2 in the infection and pathogenesis of SARS; 4) potential pathogenic role of ACE2 in COVID-19; 5) animal models for pathological studies and therapeutics; and 6) therapeutics development for COVID-19.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/metabolismo , Neumonía Viral/virología , Receptores Virales/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Enzima Convertidora de Angiotensina 2 , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/química , Betacoronavirus/patogenicidad , Betacoronavirus/fisiología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Modelos Animales de Enfermedad , Interacciones Microbiota-Huesped/fisiología , Humanos , Ratones , Modelos Biológicos , Pandemias , Neumonía Viral/terapia , Sistema Renina-Angiotensina/fisiología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Nanomedicina Teranóstica , Vacunas Virales/aislamiento & purificación , Internalización del Virus
6.
Drug Dev Ind Pharm ; 46(8): 1345-1353, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32643448

RESUMEN

PURPOSE: Huashi Baidu formula (HSBDF) was developed to treat the patients with severe COVID-19 in China. The purpose of this study was to explore its active compounds and demonstrate its mechanisms against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through network pharmacology and molecular docking. METHODS: All the components of HSBDF were retrieved from the pharmacology database of TCM system. The genes corresponding to the targets were retrieved using UniProt and GeneCards database. The herb-compound-target network was constructed by Cytoscape. The target protein-protein interaction network was built using STRING database. The core targets of HSBDF were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The main active compounds of HSBDF were docked with SARS-CoV-2 and angiotensin converting enzyme II (ACE2). RESULTS: Compound-target network mainly contained 178 compounds and 272 corresponding targets. Key targets contained MAPK3, MAPK8, TP53, CASP3, IL6, TNF, MAPK1, CCL2, PTGS2, etc. There were 522 GO items in GO enrichment analysis (p < .05) and 168 signaling pathways (p < .05) in KEGG, mainly including TNF signaling pathway, PI3K-Akt signaling pathway, NOD-like receptor signaling pathway, MAPK signaling pathway, and HIF-1 signaling pathway. The results of molecular docking showed that baicalein and quercetin were the top two compounds of HSBDF, which had high affinity with ACE2. CONCLUSION: Baicalein and quercetin in HSBDF may regulate multiple signaling pathways through ACE2, which might play a therapeutic role on COVID-19.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Simulación del Acoplamiento Molecular/métodos , Farmacología Clínica/métodos , Neumonía Viral/tratamiento farmacológico , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/química , Betacoronavirus/genética , COVID-19 , China , Bases de Datos Factuales , Ontología de Genes , Marcación de Gen , Genes Virales/efectos de los fármacos , Genes Virales/genética , Humanos , Medicina Tradicional China , Pandemias , Peptidil-Dipeptidasa A/efectos de los fármacos , Peptidil-Dipeptidasa A/genética , SARS-CoV-2 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tratamiento Farmacológico de COVID-19
7.
ChemMedChem ; 15(20): 1921-1931, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32700795

RESUMEN

Coronavirus disease 2019 (COVID-19) has spread out as a pandemic threat affecting over 2 million people. The infectious process initiates via binding of SARS-CoV-2 Spike (S) glycoprotein to host angiotensin-converting enzyme 2 (ACE2). The interaction is mediated by the receptor-binding domain (RBD) of S glycoprotein, promoting host receptor recognition and binding to ACE2 peptidase domain (PD), thus representing a promising target for therapeutic intervention. Herein, we present a computational study aimed at identifying small molecules potentially able to target RBD. Although targeting PPI remains a challenge in drug discovery, our investigation highlights that interaction between SARS-CoV-2 RBD and ACE2 PD might be prone to small molecule modulation, due to the hydrophilic nature of the bi-molecular recognition process and the presence of druggable hot spots. The fundamental objective is to identify, and provide to the international scientific community, hit molecules potentially suitable to enter the drug discovery process, preclinical validation and development.


Asunto(s)
Betacoronavirus/química , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , Antivirales/metabolismo , Betacoronavirus/metabolismo , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , Neumonía Viral/tratamiento farmacológico , Dominios Proteicos , SARS-CoV-2
8.
Int J Biol Macromol ; 164: 331-343, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32679328

RESUMEN

Since the outbreak of the novel coronavirus disease COVID-19, caused by the SARS-CoV-2 virus, it has spread rapidly worldwide and poses a great threat to public health. This is the third serious coronavirus outbreak in <20 years, following SARS in 2002-2003 and MERS in 2012. So far, there are almost no specific clinically effective drugs and vaccines available for COVID-19. Polysaccharides with good safety, immune regulation and antiviral activity have broad application prospects in anti-virus, especially in anti-coronavirus applications. Here, we reviewed the antiviral mechanisms of some polysaccharides, such as glycosaminoglycans, marine polysaccharides, traditional Chinese medicine polysaccharides, and their application progress in anti-coronavirus. In particular, the application prospects of polysaccharide-based vaccine adjuvants, nanomaterials and drug delivery systems in the fight against novel coronavirus were also analyzed and summarized. Additionally, we speculate the possible mechanisms of polysaccharides anti-SARS-CoV-2, and propose the strategy of loading S or N protein from coronavirus onto polysaccharide capped gold nanoparticles vaccine for COVID-19 treatment. This review may provide a new approach for the development of COVID-19 therapeutic agents and vaccines.


Asunto(s)
Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Coronavirus/efectos de los fármacos , Polisacáridos/farmacología , Vacunas Virales/farmacología , Animales , Antivirales/química , Antivirales/uso terapéutico , Betacoronavirus/química , Betacoronavirus/inmunología , COVID-19 , Vacunas contra la COVID-19 , Coronavirus/inmunología , Infecciones por Coronavirus/inmunología , Humanos , Modelos Moleculares , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/prevención & control , Polisacáridos/química , Polisacáridos/uso terapéutico , SARS-CoV-2 , Vacunas Virales/química , Vacunas Virales/inmunología
9.
Molecules ; 25(11)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545268

RESUMEN

Flavonoids are widely used as phytomedicines. Here, we report on flavonoid phytomedicines with potential for development into prophylactics or therapeutics against coronavirus disease 2019 (COVID-19). These flavonoid-based phytomedicines include: caflanone, Equivir, hesperetin, myricetin, and Linebacker. Our in silico studies show that these flavonoid-based molecules can bind with high affinity to the spike protein, helicase, and protease sites on the ACE2 receptor used by the severe acute respiratory syndrome coronavirus 2 to infect cells and cause COVID-19. Meanwhile, in vitro studies show potential of caflanone to inhibit virus entry factors including, ABL-2, cathepsin L, cytokines (IL-1ß, IL-6, IL-8, Mip-1α, TNF-α), and PI4Kiiiß as well as AXL-2, which facilitates mother-to-fetus transmission of coronavirus. The potential for the use of smart drug delivery technologies like nanoparticle drones loaded with these phytomedicines to overcome bioavailability limitations and improve therapeutic efficacy are discussed.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus Humano OC43/efectos de los fármacos , Flavonoides/farmacología , Peptidil-Dipeptidasa A/química , Neumonía Viral/tratamiento farmacológico , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2 , Animales , Antivirales/química , Betacoronavirus/química , Betacoronavirus/crecimiento & desarrollo , Sitios de Unión , COVID-19 , Cloroquina/química , Cloroquina/farmacología , Infecciones por Coronavirus/genética , Coronavirus Humano OC43/química , Coronavirus Humano OC43/crecimiento & desarrollo , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Flavonoides/química , Humanos , Interleucinas/antagonistas & inhibidores , Interleucinas/química , Interleucinas/genética , Interleucinas/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/virología , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/virología , Ratones , Simulación del Acoplamiento Molecular , Nanopartículas/administración & dosificación , Nanopartículas/química , Pandemias , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Fitoterapia/métodos , Neumonía Viral/genética , Cultivo Primario de Células , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Termodinámica , Internalización del Virus/efectos de los fármacos
10.
Comput Biol Med ; 121: 103749, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32568687

RESUMEN

This paper continues a recent study of the spike protein sequence of the COVID-19 virus (SARS-CoV-2). It is also in part an introductory review to relevant computational techniques for tackling viral threats, using COVID-19 as an example. Q-UEL tools for facilitating access to knowledge and bioinformatics tools were again used for efficiency, but the focus in this paper is even more on the virus. Subsequence KRSFIEDLLFNKV of the S2' spike glycoprotein proteolytic cleavage site continues to appear important. Here it is shown to be recognizable in the common cold coronaviruses, avian coronaviruses and possibly as traces in the nidoviruses of reptiles and fish. Its function or functions thus seem important to the coronaviruses. It might represent SARS-CoV-2 Achilles' heel, less likely to acquire resistance by mutation, as has happened in some early SARS vaccine studies discussed in the previous paper. Preliminary conformational analysis of the receptor (ACE2) binding site of the spike protein is carried out suggesting that while it is somewhat conserved, it appears to be more variable than KRSFIEDLLFNKV. However compounds like emodin that inhibit SARS entry, apparently by binding ACE2, might also have functions at several different human protein binding sites. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 is again argued to be a convenient model pharmacophore perhaps representing an ensemble of targets, and it is noted that it occurs both in lung and alimentary tract. Perhaps it benefits the virus to block an inflammatory response by inhibiting the dehydrogenase, but a fairly complex web involves several possible targets.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/prevención & control , Glicoproteína de la Espiga del Coronavirus/química , Vacunas Virales/inmunología , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Animales , Antivirales/farmacología , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/inmunología , Sitios de Unión , COVID-19 , Vacunas contra la COVID-19 , Biología Computacional , Coronavirus/química , Coronavirus/genética , Coronavirus/inmunología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Diseño de Fármacos , Farmacorresistencia Viral/genética , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Modelos Moleculares , Mutación , Peptidomiméticos/farmacología , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , SARS-CoV-2 , Homología de Secuencia de Aminoácido , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Virales/genética
11.
Nature ; 581(7808): 252-255, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32415276

Asunto(s)
Antivirales/farmacología , Betacoronavirus/química , Betacoronavirus/inmunología , Diseño de Fármacos , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química , Vacunas Virales , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Enzima Convertidora de Angiotensina 2 , Animales , Antivirales/química , Azoles/farmacología , Betacoronavirus/efectos de los fármacos , Betacoronavirus/enzimología , Vacunas contra la COVID-19 , China , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Proteasas Similares a la Papaína de Coronavirus , ARN Polimerasa Dependiente de ARN de Coronavirus , Microscopía por Crioelectrón , Cristalización , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Evaluación Preclínica de Medicamentos , Alemania , Ensayos Analíticos de Alto Rendimiento , Humanos , Isoindoles , Ratones , National Institutes of Health (U.S.)/economía , National Institutes of Health (U.S.)/organización & administración , Compuestos de Organoselenio/farmacología , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de Proteasas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sincrotrones , Factores de Tiempo , Reino Unido , Estados Unidos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/inmunología
12.
Biochem Biophys Res Commun ; 528(1): 35-38, 2020 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-32451080

RESUMEN

The recent release of COVID-19 spike glycoprotein allows detailed analysis of the structural features that are required for stabilizing the infective form of its quaternary assembly. Trying to disassemble the trimeric structure of COVID-19 spike glycoprotein, we analyzed single protomer surfaces searching for concave moieties that are located at the three protomer-protomer interfaces. The presence of some druggable pockets at these interfaces suggested that some of the available drugs in Drug Bank could destabilize the quaternary spike glycoprotein formation by binding to these pockets, therefore interfering with COVID-19 life cycle. The approach we propose here can be an additional strategy to fight against the deadly virus. Ligands of COVID-19 spike glycoprotein that we have predicted in the present computational investigation, might be the basis for new experimental studies in vitro and in vivo.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Neumonía Viral/tratamiento farmacológico , Multimerización de Proteína/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/química , Secuencia de Aminoácidos , Antivirales/química , Antivirales/farmacología , Antivirales/uso terapéutico , Betacoronavirus/química , Betacoronavirus/fisiología , Sitios de Unión , COVID-19 , Infecciones por Coronavirus/epidemiología , Ligandos , Modelos Moleculares , Pandemias , Neumonía Viral/epidemiología , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/uso terapéutico
13.
J Integr Med ; 18(3): 229-241, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32307268

RESUMEN

OBJECTIVE: Lung-toxin Dispelling Formula No. 1, referred to as Respiratory Detox Shot (RDS), was developed based on a classical prescription of traditional Chinese medicine (TCM) and the theoretical understanding of herbal properties within TCM. Therapeutic benefits of using RDS for both disease control and prevention, in the effort to contain the coronavirus disease 2019 (COVID-19), have been shown. However, the biochemically active constituents of RDS and their mechanisms of action are still unclear. The goal of the present study is to clarify the material foundation and action mechanism of RDS. METHODS: To conduct an analysis of RDS, an integrative analytical platform was constructed, including target prediction, protein-protein interaction (PPI) network, and cluster analysis; further, the hub genes involved in the disease-related pathways were identified, and the their corresponding compounds were used for in vitro validation of molecular docking predictions. The presence of these validated compounds was also measured in samples of the RDS formula to quantify the abundance of the biochemically active constituents. In our network pharmacological study, a total of 26 bioinformatic programs and databases were used, and six networks, covering the entire Zang-fu viscera, were constructed to comprehensively analyze the intricate connections among the compounds-targets-disease pathways-meridians of RDS. RESULTS: For all 1071 known chemical constituents of the nine ingredients in RDS, identified from established TCM databases, 157 passed drug-likeness screening and led to 339 predicted targets in the constituent-target network. Forty-two hub genes with core regulatory effects were extracted from the PPI network, and 134 compounds and 29 crucial disease pathways were implicated in the target-constituent-disease network. Twelve disease pathways attributed to the Lung-Large Intestine meridians, with six and five attributed to the Kidney-Urinary Bladder and Stomach-Spleen meridians, respectively. One-hundred and eighteen candidate constituents showed a high binding affinity with SARS-coronavirus-2 3-chymotrypsin-like protease (3CLpro), as indicated by molecular docking using computational pattern recognition. The in vitro activity of 22 chemical constituents of RDS was validated using the 3CLpro inhibition assay. Finally, using liquid chromatography mass spectrometry in data-independent analysis mode, the presence of seven out of these 22 constituents was confirmed and validated in an aqueous decoction of RDS, using reference standards in both non-targeted and targeted approaches. CONCLUSION: RDS acts primarily in the Lung-Large Intestine, Kidney-Urinary Bladder and Stomach-Spleen meridians, with other Zang-fu viscera strategically covered by all nine ingredients. In the context of TCM meridian theory, the multiple components and targets of RDS contribute to RDS's dual effects of health-strengthening and pathogen-eliminating. This results in general therapeutic effects for early COVID-19 control and prevention.


Asunto(s)
Antivirales/química , Betacoronavirus/química , Infecciones por Coronavirus/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Neumonía Viral/tratamiento farmacológico , Antivirales/uso terapéutico , Betacoronavirus/enzimología , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/química , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Espectrometría de Masas , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/virología , Mapas de Interacción de Proteínas , SARS-CoV-2 , Proteínas no Estructurales Virales/química
14.
Nature ; 582(7811): 289-293, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32272481

RESUMEN

A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1-4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 µM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.


Asunto(s)
Betacoronavirus/química , Cisteína Endopeptidasas/química , Descubrimiento de Drogas/métodos , Modelos Moleculares , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Antivirales/química , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , COVID-19 , Células Cultivadas/virología , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/enzimología , Infecciones por Coronavirus/virología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Humanos , Pandemias , Neumonía Viral/enzimología , Neumonía Viral/virología , Inhibidores de Proteasas/farmacología , Estructura Terciaria de Proteína , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA