Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.413
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 809-818, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621885

RESUMEN

Scutellariae Radix extract is one of the important components in Shuganning Injection. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) method was established for simultaneously determining five components in Shuganning Injection and Scutellariae Radix extract in bile, urine, and feces of rats, so as to reveal the difference in the excretion process of Shuganning Injection and Scutellariae Radix extract in rats and explore the law of the excretion process of the five components in vivo before and after the compatibility of Scutellariae Radix. Rats were injected with Shuganning Injection and Scutellariae Radix extract(4.2 mL·kg~(-1)), respectively, and the excretion of baicalin, baicalein, oroxylin A, oroxylin A-7-O-ß-D-glucuronide, and scutellarin in bile, urine, and feces of rats in 24 h was observed. The results showed that except for baicalin, the other four index components were excreted as prototype components in a high proportion after intravenous injection of Shuganning Injection and Scutellariae Radix extract in rats, respectively. The excretion of each component was relatively high in urine and less in feces and bile. After the compatibility of Scutellariae Radix extract, the accumulative excretion of five index components in rats all decreased. Among them, the cumulative excretion of baicalein in bile, urine, and feces significantly decreased by 26.67%, 48.11%, and 31.01%. The cumulative excretion of baicalin in bile, urine, and feces decreased significantly by 70.69%, 19.43%, and 31.22%. The result showed that the five index components in Scutellariae Radix extract were mainly excreted by the kidneys, and other components in Shuganning Injection delayed the excretion process and prolonged the residence time. This study is of great significance for elucidating the compatibility rationality of Shuganning Injection.


Asunto(s)
Bilis , Scutellaria baicalensis , Ratas , Animales , Cromatografía Liquida , Espectrometría de Masas en Tándem , Flavonoides , Heces , Cromatografía Líquida de Alta Presión
2.
Molecules ; 28(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38138590

RESUMEN

BS1801 is a selenium-containing drug candidate with potential for treating liver and lung fibrosis. To fully elucidate the biotransformation of BS1801 in animals and provide sufficient preclinical drug metabolism data for human mass balance study, the metabolism of BS1801 in rats was investigated. We used radiolabeling techniques to investigate the mass balance, tissue distribution, and metabolite identification of BS1801 in Sprague-Dawley/Long-Evans rats after a single oral dose of 100 mg/kg (100 µCi/kg) [14C]BS1801: 1. The mean recovery of radioactive substances in urine and feces was 93.39% within 168 h postdose, and feces were the main excretion route. 2. Additionally, less than 1.00% of the dose was recovered from either urine or bile. 3. BS1801-related components were widely distributed throughout the body. 4. Fifteen metabolites were identified in rat plasma, urine, feces, and bile, and BS1801 was detected only in feces. 5. BS1801-M484, the methylation product obtained via a N-Se bond reduction in BS1801, was the most abundant drug-related component in plasma. The main metabolic pathways of BS1801 were reduction, amide hydrolysis, oxidation, and methylation. Overall, BS1801 was distributed throughout the body, and excreted mainly as an intact BS1801 form through feces. No differences were observed between male and female rats in distribution, metabolism, and excretion of BS1801.


Asunto(s)
Selenio , Ratas , Masculino , Femenino , Humanos , Animales , Ratas Sprague-Dawley , Selenio/análisis , Ratas Long-Evans , Bilis/química , Hígado/metabolismo , Biotransformación , Heces/química , Administración Oral
3.
Chin J Nat Med ; 21(9): 710-720, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37777320

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. In particular, increasing evidence has showed that astrocyte-mediated neuroinflammation is involved in the pathogenesis of PD. As a precious traditional Chinese medicine, bear bile powder (BBP) has a long history of use in clinical practice. It has numerous activities, such as clearing heat, calming the liver wind and anti-inflammation, and also exhibits good therapeutic effect on convulsive epilepsy. However, whether BBP can prevent the development of PD has not been elucidated. Hence, this study was designed to explore the effect and mechanism of BBP on suppressing astrocyte-mediated neuroinflammation in a mouse model of PD. PD-like behavior was induced in the mice by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg·kg-1) for five days, followed by BBP (50, 100, and 200 mg·kg-1) treatment daily for ten days. LPS stimulated rat C6 astrocytic cells were used as a cell model of neuroinflammation. THe results indicated that BBP treatment significantly ameliorated dyskinesia, increased the levels of tyrosine hydroxylase (TH) and inhibited astrocyte hyperactivation in the substantia nigra (SN) of PD mice. Furthermore, BBP decreased the protein levels of glial fibrillary acidic protein (GFAP), cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS), and up-regulated the protein levels of takeda G protein-coupled receptor 5 (TGR5) in the SN. Moreover, BBP significantly activated TGR5 in a dose-dependent manner, and decreased the protein levels of GFAP, iNOS and COX2, as well as the mRNA levels of GFAP, iNOS, COX2, interleukin (IL) -1ß, IL-6 and tumor necrosis factor-α (TNF-α) in LPS-stimulated C6 cells. Notably, BBP suppressed the phosphorylation of protein kinase B (AKT), inhibitor of NF-κB (IκBα) and nuclear factor-κB (NF-κB) proteins in vivo and in vitro. We also observed that TGR5 inhibitor triamterene attenuated the anti-neuroinflammatory effect of BBP on LPS-stimulated C6 cells. Taken together, BBP alleviates the progression of PD mice by suppressing astrocyte-mediated inflammation via TGR5.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Ursidae , Humanos , Ratones , Ratas , Animales , Anciano , Persona de Mediana Edad , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Astrocitos/metabolismo , Astrocitos/patología , Polvos/metabolismo , Polvos/farmacología , Polvos/uso terapéutico , Ursidae/metabolismo , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Lipopolisacáridos/farmacología , Bilis , Ratones Endogámicos C57BL , Microglía , Modelos Animales de Enfermedad
4.
Fitoterapia ; 168: 105518, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37121408

RESUMEN

Arisaema cum Bile (Dan Nanxing in Chinese, DNX) have been employed to treat allergic asthma. However, the active components and its mechanisms remain unknown. Therefore, the systematic pharmacology approach-experimental validation was performed in this study. Each 5, 6, and 10 compounds of DNX were obtained by HPLC analysis, TCMSP, and literature report, respectively. A total of 379 targets on all these compounds were acquired from Swiss Target Prediction, and 1973 targets on allergic asthma were predicated. The KEGG enrichment analysis was performed. Furthermore, a rat model of allergic asthma was established and DNX (450 mg/kg, p.o.) was given for 2 weeks. DNX treatment prevented OVA-induced pathological changes in lung cell of irregular arrange and necrotic bronchial epithelial. It also decreased inflammatory cytokines IL-4, IL-5, and IL-13 of serum and BALF, and increased IL-12 and IFN-γ. The main MAPK signaling pathway predicted by KEGG enrichment was verified, as indicated by the decreased protein expression of JNK (p < 0.05 & p < 0.01), ERK (p < 0.05), and p38 MAPK (p < 0.01) in lung tissue. These findings indicated that DNX attenuated OVA-induced allergic asthma mainly by decreasing the MAPK signaling pathway.


Asunto(s)
Arisaema , Asma , Ratas , Animales , Ratones , Arisaema/metabolismo , Bilis , Ovalbúmina/efectos adversos , Farmacología en Red , Estructura Molecular , Asma/tratamiento farmacológico , Asma/inducido químicamente , Asma/metabolismo , Citocinas/metabolismo , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
5.
Chem Phys Lipids ; 252: 105289, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36813145

RESUMEN

Sphingomyelin (SM) and cholesterol complex to form functional liquid-ordered (Lo) domains. It has been suggested that the detergent resistance of these domains plays a key role during gastrointestinal digestion of the milk fat globule membrane (MFGM), which is rich in both SM and cholesterol. Small-angle X-ray scattering was employed to determine the structural alterations that occur when milk sphingomyelin (MSM)/cholesterol, egg sphingomyelin (ESM)/cholesterol, soy phosphatidylcholine (SPC)/cholesterol, and milk fat globule membrane (MFGM) phospholipid/cholesterol model bilayer systems were incubated with bovine bile under physiological conditions. The persistence of diffraction peaks was indicative of multilamellar vesicles of MSM with cholesterol concentrations > 20 % mol, and also for ESM with or without cholesterol. The complexation of ESM with cholesterol is therefore capable of inhibiting the resulting vesicles from disruption by bile at lower cholesterol concentrations than MSM/cholesterol. After subtraction of background scattering by large aggregates in the bile, a Guinier fitting was used to determine changes in the radii of gyration (Rgs) over time for the biliary mixed micelles after mixing the vesicle dispersions with bile. Swelling of the micelles by phospholipid solubilization from vesicles was a function of cholesterol concentration, with less swelling of the micelles occurring as the cholesterol concentration was increased. With 40% mol cholesterol, the Rgs of the bile micelles mixed with MSM/cholesterol, ESM/cholesterol, and MFGM phospholipid/cholesterol were equal to the control (PIPES buffer + bovine bile), indicating negligible swelling of the biliary mixed micelles.


Asunto(s)
Bilis , Fosfolípidos , Animales , Bovinos , Micelas , Esfingomielinas/química , Ácidos y Sales Biliares , Fosfatidilcolinas/química , Colesterol/química , Lecitinas
6.
Chem Biodivers ; 20(3): e202201109, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36760194

RESUMEN

Bear bile powder (BBP) is a rare animal-derived traditional Chinese medicine, and it has been widely used to treat visual disorders and hepatobiliary diseases in East Asia. However, there is still a lack of reliable quality control methods for BBP. This study was designed to establish a comprehensive quality map of BBP based on bile acids. High-performance liquid chromatography coupled with charged aerosol detector (HPLC-CAD) was used for fingerprint establishment and quantitative analysis of BBP. The similarities of HPLC-CAD chromatograms for 50 batches of BBP were more than 0.95, while the similarities of reference chromatograms between 6 other animal bile and BBP were low than 0.7. Additionally, five bile acids in BBP, including tauroursodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid, ursodesoxycholic acid, and chenodeoxycholic acid, were simultaneously quantified. This method has been validated with good regression as well as satisfactory precision, sensitivity, stability, repeatability, and accuracy. Using this method, the contents of five bile acids in BBP samples from five producing areas were determined and compared. Furthermore, Fisher linear discriminant analysis was performed to discriminate the geographic origins of BBP. The result demonstrated that HPLC-CAD fingerprint combined with multi-components quantification is an effective and reliable method for quality control of BBP, it could be a meaningful reference for the quality evaluation of medicinal bile.


Asunto(s)
Medicamentos Herbarios Chinos , Ursidae , Animales , Bilis/química , Ácidos y Sales Biliares/análisis , Quimiometría , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Polvos/análisis , Ursidae/metabolismo
7.
Environ Sci Pollut Res Int ; 30(6): 16525-16538, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36190628

RESUMEN

The fast-growing urbanization and slow progress in the field of waste management have led to the accumulation of large quantities of animal wastes. The present work focused on the synthesis of low-cost and eco-friendly chicken bile juice-mediated silver nanoparticles (BJ-AgNP). Results reveal that bile juices have enough potentiality towards the synthesis of almost uniform sizes (average size < 50 nm) of BJ-AgNPs which remains stable for more than 6 months. Response surface methodology (RSM) successfully demonstrated the optimised condition of BJ-AgNP synthesis. Factors like concentration of salt and bile extract and temperature are significantly responsible for nanoparticle synthesis. The synthesis of nanoparticle was further characterized using UV-Vis, TEM, FESEM, XRD, FTIR, TGA, and EDS. The synthesised nanoparticle showed excellent bactericidal activity against both Gram positive and Gram negative bacteria with MIC and MBC of 40 and 50 µg/mL for Bacillus subtilis (MTCC-441) and 60 and 60 µg/mL for Eschecheria coli (MTCC-1687) respectively. The synthesised nanoparticle also exhibited as an antibiofilm activity against B. subtilis, with ~89% biofilm inhibition efficacy at 4 X MIC, having optimal bacterial concentration of 106 CFU/mL. Therefore, the present findings clearly demonstrated that an absolute animal waste could be a valuable ingredient in the field of therapeutic nanoscience.


Asunto(s)
Nanopartículas del Metal , Animales , Plata/farmacología , Pollos , Antibacterianos/farmacología , Bilis , Bacterias Grampositivas , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Biopelículas , Extractos Vegetales
8.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6509-6518, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38212008

RESUMEN

This study investigated the differences in excretion kinetics of three alkaloids and their four metabolites from Simiao Pills in normal and type 2 diabetic rats. The diabetes model was established in rats by injection of streptozotocin, and the alkaloids in urine, feces, and bile of normal and diabetic rats were detected by LC-MS/MS to explore the effect of diabetes on alkaloid excretion of Simiao Pills. The results showed that 72 h after intragastric administration of the extract of Simiao Pills, feces were the main excretion route of alkaloids from Simiao Pills. The total excretion rates of magnoflorine and berberine in normal rats were 4.87% and 56.54%, which decreased to 2.35% and 35.53% in diabetic rats, which had statistical significance(P<0.05). The total excretion rates of phellodendrine, magnoflorine, and berberine in the urine of diabetic rats decreased significantly, which were 53.57%, 60.84%, and 52.78% of those in normal rats, respectively. After 12 h of intragastric administration, the excretion rate of berberine in the bile of diabetic rats increased significantly, which was 253.33% of that of normal rats. In the condition of diabetes, the excretion rate of berberine metabolite, thalifendine significantly decreased in urine and feces, but significantly increased in bile. The total excretion rates of jateorrhizine and palmatine in the urine increased significantly, and t_(1/2) and K_e changed significantly. The results showed that diabetes affected the in vivo process of alkaloids from Simiao Pills, reducing their excretion in the form of prototype drug, affecting the biotransformation of berberine, and ultimately increasing the exposure of alkaloids in vivo, which would be conducive to the hypoglycemic effect of alkaloids. This study provides references for the clinical application and drug development of Simiao Pills in diabetes.


Asunto(s)
Alcaloides , Berberina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas , Animales , Bilis/metabolismo , Cromatografía Liquida/métodos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Heces , Alcaloides/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
9.
J Agric Food Chem ; 70(37): 11554-11559, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36070527

RESUMEN

Improving standardized in vitro digestion protocols for phytosterols (PSs) is critical for understanding their bioaccessibility (BA) in food products and supplements. In this study, in vitro BA of phytosterol esters (PSEs) and free cholesterol (Ch) was compared under modified digestion conditions. The addition of Ch esterase (CE) to the INFOGEST model containing bovine bile resulted in a 70% increase in PS BA and an 18.5% reduction in Ch micellarization. Relative to the standardized INFOGEST model, substitution of pure bile salts (PBSs) did not significantly change PS BA or Ch micellarization. In the presence of CE, the substitution resulted in a 49.9% reduction in PS BA and a 13% increase in Ch micellarization. The differing results may be due to inhibitory effects of PBSs on the activity of intestinal enzymes, including CE. These results suggest that the INFOGEST model should include Ch esterase and the continued use of bile extract to evaluate PS BA.


Asunto(s)
Ácidos y Sales Biliares , Fitosteroles , Animales , Bilis , Bovinos , Colesterol , Digestión , Esterasas , Extractos Vegetales , Esteroles
10.
J Pharm Biomed Anal ; 220: 115005, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36087496

RESUMEN

Sinomenium acutum stem is widely used to treat rheumatoid arthritis, gout, ankylosing spondylitis and other diseases in China. However, its metabolism in vivo is still unclear. In this study, UPLC-Q-TOF/MS was used to analyze the main components and their metabolites in rats after oral administration of Sinomenium acutum stem extract. A total of 41 compounds were identified from the ethanol extract of Sinomenium acutum stem based on the established database and the reference substance; a total of 25 prototype components and 107 metabolites (74 phase I metabolites and 33 phase II metabolites) were speculated and identified in the plasma, urine, bile and feces of rats administered. The metabolic pathways included hydroxylation, demethylation, dehydrogenation, glucuronidation and acetylation. In conclusion, this study revealed the metabolism of Sinomenium acutum stem in vivo, which may provide a better basis for the study of Sinomenium acutum stem and provide useful chemical information on the material basis and pharmacological mechanism of drug efficay.


Asunto(s)
Alcaloides , Medicamentos Herbarios Chinos , Administración Oral , Alcaloides/análisis , Animales , Bilis/metabolismo , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Etanol/análisis , Heces/química , Ratas , Sinomenium
11.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4284-4291, 2022 Aug.
Artículo en Chino | MEDLINE | ID: mdl-36046854

RESUMEN

Fel Ursi(bear bile) has been used as medicine for a long history, with wide clinical applications and definite curative efficacy. Fel Ursi has good pharmacodynamic activities in the treatment of liver and gallbladder diseases, and cardiovascular and cerebrovascular diseases. According to the places of origin, traditional Fel Ursi is divided into "Dongdan" and "Nandan". According to the gallbladder properties, it is divided into "Jindan" "Tiedan" "Caihuadan", and "Youdan". With the development of bear bile drainage technology, Pulvis Fellis Ursi has entered the market and been used clinically instead of Fel Ursi. At present, obtaining artificial Pulvis Fellis Ursi by chemical compounding and biotransformation is the hotspot in medical research, which can solve the shortage problem of bear bile resources, and also protect endangered animals. The quality problem of Fel Ursi in the market is prominent, with counterfeit products prepared from sheep bile, cow bile, pig bile, and chicken bile. Due to the scarcity of bear bile resources, the related research contents are scattered, and there is a lack of systematic analysis and summary. This paper focused on the development of Fel Ursi to clarify the source and classification of traditional Fel Ursi, and summarized the harvesting, processing, identification, and use of Fel Ursi. Additionally, the paper also compared the quality standards of Fel Ursi, summarized the technological development process of Pulvis Fellis Ursi, and prospected the modern research and clinical application of Pulvis Fellis Ursi, which is expected to provided references for the collation of bear bile resources, the clinical application of Fel Ursi, the development of Fel Ursi drugs, and related research on artificial Pulvis Fellis Ursi.


Asunto(s)
Bilis , Ursidae , Animales , Medicina Tradicional China
12.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4469-4479, 2022 Aug.
Artículo en Chino | MEDLINE | ID: mdl-36046877

RESUMEN

This study was designed to determine the metabolites of Yiqi Baoyuan Prescription(YQBYP) in rats. The ultra-high performance liquid chromatography coupled to time-of-flight mass spectrometry(UPLC-TOF-MS) and mass defect filter(MDF) were employed to analyze the metabolites of YQBYP in rat plasma, bile, urine and feces. Chromatographic separation was conducted on Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 µm) under gradient elution with 0.1% formic acid aqueous solution(A)-acetonitrile(B), and the column temperature was 30 ℃. Electrospray ion(ESI) source was used under positive and negative ion modes, with capillary voltage of 3.0 kV and mass scanning range of m/z 100-1 000. In this experiment, 9 prototype components and 36 metabolites were identified in rat plasma, bile, urine and feces samples. The results showed that the main metabolic pathways of YQBYP in rats involved methylation, demethylation, oxidation, and other phase Ⅰ reactions as well as glucuronidation, sulfation, and other phase Ⅱ reactions. This study provided scientific basis for clarifying the therapeutic material basis of YQBYP and product development.


Asunto(s)
Bilis , Prescripciones , Administración Oral , Animales , Bilis/química , Cromatografía Líquida de Alta Presión/métodos , Heces/química , Ratas , Ratas Sprague-Dawley
13.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4682-4690, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164875

RESUMEN

This paper clarified the scientific connotation of the changes in cold and heat properties of Arisaematis Rhizoma and Arisaema Cum Bile through investigating the changes of substance and energy metabolism after drug intervention in the rats with normal and cold/heat syndrome, so as to improve the method of evaluating the drug properties of Chinese medicine. After one week of adaptive feeding, healthy male SD rats were randomly divided into three parts: normal rats, heat syndrome rat models, and cold syndrome rat models. Through ice water bath and oral euthyrox(120 µg·kg~(-1)), the models of cold syndrome and heat syndrome were induced, respectively. The models were made at 9:00 am. and administrated by gavage at 3:00 pm. every day. All administration groups were administrated with Arisaematis Rhizoma and Arisaema Cum Bile decoction, respectively, and the blank group was given the same dose of normal saline. After continuous administration for 15 d, the rats were anesthetized by chloral hydrate, blood was taken from abdominal aorta, and the hearts and livers were removed and stored at-80 ℃. The changes in the body weight and anal temperature of rats during administration were detected, and the liver coefficient of rats was detected after removing the liver. Enzyme-linked immunosorbent assay(ELISA) was adopted to detect the expression level of the indexes related to substance and energy metabolism in liver and heart of rat, and Western blot was used to detect the expression of key proteins in AMPK/mTOR signaling pathway for further verification. The results showed that Arisaematis Rhizoma enhanced the expression level of enzymes related to substance and energy metabolism in the normal and cold and heat syndrome rat models, and increased anal temperature, which exhibited warm(hot) drug property. Arisaema Cum Bile inhibited the level of substance and energy metabolism in rats, and reduced anal temperature, which showed cold(cool) drug property. Chinese Pharmacopoeia has recorded "Arisaematis Rhizoma has warm property and Arisaema Cum Bile has cool property", which is consistent with the phenomenon in this study. Therefore, it is feasible to evaluate the drug properties of Chinese medicine based on the substance and energy metabolism of normal and cold/heat syndrome model rats, which completes the method of evaluating drug properties of Chinese medicine.


Asunto(s)
Arisaema , Respuesta al Choque por Frío , Medicamentos Herbarios Chinos , Golpe de Calor , Proteínas Quinasas Activadas por AMP , Animales , Arisaema/química , Bilis , Hidrato de Cloral , Respuesta al Choque por Frío/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Metabolismo Energético , Golpe de Calor/terapia , Calor , Masculino , Ratas , Ratas Sprague-Dawley , Solución Salina , Síndrome , Serina-Treonina Quinasas TOR , Tiroxina , Agua
14.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4846-4853, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164894

RESUMEN

Animal medicine is an important part of traditional Chinese medicine(TCM). Bear bile is one of the rare animal-derived medicinal materials with the functions of clearing the liver, promoting bile secretion, calming the liver, relieving convulsions, clearing heat, and removing toxins. From the Jin Dynasty to the Tang Dynasty, bear bile was mainly used to treat internal diseases, surgical diseases, and pediatric diseases with limitations. At present, bear bile has been used to treat various diseases in pediatrics, gynecology, internal medicine, and surgery. Studies on the chemical constituents and pharmacological effects of bear bile mostly focused on bile acids. Although the non-bile acids also showed certain pharmacological effects, their mechanism of action was less investigated. At present, the source animals of bear bile are national second-class protected animals. Obtaining transformed bear bile powder through biotransformation is expected to alleviate the shortage of bear bile resources to a certain extent. Although related research on bear bile substitutes has protected bear bile resources, there are problems in functional quantification and modern interpretation. It is necessary to sort out the functions and indications of bear bile recorded in ancient books according to related modern research. This study firstly reviewed the evolution of bear bile functions and indications, analyzed the chemical components of bear bile, sorted out the relevant records of the efficacy and clinical application of bear bile in ancient books, and summarized the research progress in the safety of bear bile based on the modern pharmacological effects and clinical applications of bear bile, which is conducive to the clarification of modern efficacy and functional quantification of bear bile and the tentative exploration of the modern interpretation of bear bile.


Asunto(s)
Ursidae , Animales , Bilis/metabolismo , Ácidos y Sales Biliares , Humanos , Medicina Tradicional China , Polvos , Ursidae/metabolismo
15.
Anal Chim Acta ; 1221: 340152, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35934382

RESUMEN

The aqueous solution extracted from raw bile juice is composed primarily of bile salts, with lower levels of bilirubin and its derivatives. Among them, the bilirubin and bilirubin-derived metabolites are the only surface-enhanced Raman scattering (SERS)-active components. An analytical scheme indirectly responsive and able to utilize all bile components, including SERS-inactive bile salts, was explored for SERS-based discrimination of gallbladder (GB) polyp and GB cancer. Initially, the surface of a SERS substrate (Au nanodendrite on Ni foil (AuND@NiF)) was covered with an alkanethiol molecule to generate a SERS signal and attract bile components by mutual interaction. For more effective recognition of bile components, 4 independent substrates covered with 4 different alkanethiols with various functional groups (SH(CH2)2CH3, SH(CH2)2NH2, SH(CH2)2COOH, and SH(CH2)2OH) were prepared. The SERS peaks of each substrate clearly varied on interaction with pure bile components as well as aqueous bile samples, and the SERS peaks in each substrate were individually characteristic. When the principal component (PC) scores of spectra obtained using the SH(CH2)2CH3- and SH(CH2)2OH-covered substrates were combined, the k-Nearest Neighbor-based discrimination accuracy was 100%, superior to those (90.6-96.9%) using individual substrates. The use of complementary bile component-induced spectral information provided by the two substrates was responsible for accurate discrimination. On the other hand, when bare AuND@NiF recognizing only SERS-active bilirubin derivatives was used, discrimination was unsatisfactory (accuracy: 75.0%).


Asunto(s)
Neoplasias de la Vesícula Biliar , Nanopartículas del Metal , Bilis/química , Ácidos y Sales Biliares/análisis , Bilirrubina/análisis , Estudios de Factibilidad , Neoplasias de la Vesícula Biliar/diagnóstico , Humanos , Nanopartículas del Metal/química , Espectrometría Raman , Agua/análisis
16.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3908-3914, 2022 Jul.
Artículo en Chino | MEDLINE | ID: mdl-35850849

RESUMEN

Magnoflorine is an important aporphine alkaloid in Coptidis Rhizoma. As reported previously, coexisting components in Coptidis Rhizoma can change the pharmacokinetic characteristics of magnoflorine. To illustrate the interactional links of magnoflorine with its coexisting components in Coptidis Rhizoma, the present study investigated the influence of coexisting components in Coptidis Rhizoma on the excretion of magnoflorine in rat bile, urine, and feces. The rats were dosed with magnoflorine(30 mg·kg~(-1)) and water decoction of Coptidis Rhizoma(equivalent to 30 mg·kg~(-1) magnoflorine) via intragastric administration, and magnoflorine(10 mg·kg~(-1)) by intravenous administration, respectively, and the excretion of magnoflorine in rat bile, urine, and feces in 24 h was observed. The excretion rates of magnoflorine in bile and urine in 24 h were 0.90% and 37.11% respectively after intravenous administration of magnoflorine, which suggested that urination was the main excretive way of magnoflorine. The excretion rates of magnoflorine in feces were 8.77% and 6.18% respectively after intragastric administration of magnoflorine and water decoction of Coptidis Rhizoma, which indicated that defecation was the main excretion route of magnoflorine. The cumulative excretion rates of magnoflorine in the bile, urine, and feces in the Coptidis Rhizoma water decoction group were 77.78%, 79.44%, and 70.47% of those in the magnoflorine group. The results showed that the cumulative excretion rates of magnoflorine in rat bile, urine, and feces were not high, suggesting that magnoflorine was metabolized significantly in rats. The coexisting components of Coptidis Rhizoma could inhibit the excretion of magnoflorine in rat bile, urine, and feces, which was consistent with the decrease in the elimination rate of magnoflorine in the pharmacokinetics of Coptidis Rhizoma water decoction. It indicated interactions between drugs. This study is expected to provide references for the development of magnoflorine-containing new drugs and rational clinical medication of Coptidis Rhizoma.


Asunto(s)
Aporfinas , Medicamentos Herbarios Chinos , Animales , Bilis , Coptis chinensis , Medicamentos Herbarios Chinos/farmacología , Heces , Ratas , Agua
17.
Rapid Commun Mass Spectrom ; 36(15): e9326, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35582902

RESUMEN

RATIONALE: Bear bile powder (BBP) is a widely used traditional Chinese medicine (TCM), and bile acids (BAs) are the main active components in BBP. Due to the scarcity of BBP resources, adulterations often occur in the market. Conventional methods to distinguish them are usually complicated and time-consuming. To enhance effectiveness and accuracy, a rapid and rough analytical method is desperately needed. METHODS: In this study, a rapid strategy using chip-based nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) was established to distinguish BBP from other sources of bile powder (BP). In addition, the results were further verified by ultra-high-performance liquid chromatography combined with high-resolution mass spectrometry (UPLC/MS). RESULTS: The precision of the chip-based nano-ESI-MS/MS method was validated to be acceptable with relative standard deviation (RSD) <15%. The distinction between BBP and other sources of BP, including common adulterants of pig bile powder (PBP), cattle bile powder (CBP), sheep bile powder (SBP), and chicken bile powder (CkBP), can be observed in the spectra. By using orthogonal partial least-squares discriminant analysis (OPLS-DA), more potential m/z markers were investigated. A BAs-related m/z marker of 498.3 was discovered as a typical differential molecular ion peak and was identified as tauroursodeoxycholic acid (TUDCA) and taurochenodeoxycholic acid (TCDCA) in BBP. CONCLUSIONS: The proposed strategy has simple sample pretreatment steps and significantly shortened analysis time. As an emerging technology, chip-based nano-ESI-MS not only provides a reference for the rapid distinction of adulterated Chinese medicines, but also provides some insights into the identification of other chemicals and foods.


Asunto(s)
Bilis , Ursidae , Animales , Bilis/química , Ácidos y Sales Biliares/análisis , Bovinos , Cromatografía Líquida de Alta Presión/métodos , Polvos/análisis , Ovinos , Espectrometría de Masa por Ionización de Electrospray/métodos , Porcinos , Espectrometría de Masas en Tándem/métodos
18.
Nutrients ; 14(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35565795

RESUMEN

Curcumin is a polyphenol that has been shown to have prebiotic and cholesterol-lowering properties. This study aimed to investigate the impact of curcumin on bile cholesterol supersaturation and the potential mechanistic role of intestinal microbiota and cholesterol absorption. Male hamsters (n = 8) were fed a high-fat diet (HFD) supplemented with or without curcumin for 12 weeks. Results showed that curcumin significantly decreased cholesterol levels in the serum (from 5.10 to 4.10 mmol/L) and liver (from 64.60 to 47.72 nmol/mg protein) in HFD-fed hamsters and reduced the bile cholesterol saturation index (CSI) from 1.64 to 1.08 due to the beneficial modifications in the concentration of total bile acids (BAs), phospholipids and cholesterol (p < 0.05). Gut microbiota analysis via 16S rRNA sequencing revealed that curcumin modulated gut microbiota, predominantly increasing microbiota associated with BA metabolism and short-chain fatty acid production, which subsequently up-regulated the expression of hepatic cholesterol 7-alpha hydroxylase and increased the synthesis of bile acids (p < 0.05). Furthermore, curcumin significantly down-regulated the expression of intestinal Niemann−Pick C1-like protein 1(NPC1L1) in hamsters and reduced cholesterol absorption in Caco-2 cells (p < 0.05). Our results demonstrate that dietary curcumin has the potential to prevent bile cholesterol supersaturation through modulating the gut microbiota and inhibiting intestinal cholesterol absorption.


Asunto(s)
Curcumina , Microbioma Gastrointestinal , Animales , Bilis/metabolismo , Ácidos y Sales Biliares/metabolismo , Células CACO-2 , Colesterol , Colesterol 7-alfa-Hidroxilasa/metabolismo , Cricetinae , Curcumina/metabolismo , Curcumina/farmacología , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Humanos , Hígado/metabolismo , Masculino , ARN Ribosómico 16S/metabolismo
19.
Curr Microbiol ; 79(5): 147, 2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397017

RESUMEN

Enterococcus faecalis (E. faecalis) belongs to lactic acid bacteria which can be used as a probiotic additive and feed, bringing practical value to the health of humans and animals. The prebiotic function of tea polyphenols lays a foundation for green tea polyphenols (GTP) to repair the adverse changes of E. faecalis under stress conditions. In this study, RNA-sequence analysis was used to explore the protective effect of GTP on E. faecalis under bile salt stress. A total of 50 genes were found to respond to GTP under bile salts stress, containing 18 up-regulated and 32 down-regulated genes. The results showed that multiple genes associated with cell wall and membrane, transmembrane transport, nucleotide transport and metabolism were significantly differentially expressed (P < 0.05), while GTP intervention can partly alleviate the detrimental effects of bile salt on amino acid metabolism and transport. The present study provides the whole genome transcriptomics of E. faecalis under bile salt stress and GTP intervention which help us understand the growth and mechanism of continuous adaptation of E. faecalis under stress conditions.


Asunto(s)
Enterococcus faecalis , Polifenoles , Animales , Antioxidantes/farmacología , Bilis , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/farmacología , Enterococcus faecalis/genética , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacología , Polifenoles/farmacología , RNA-Seq , Estrés Salino , Té/química , Transcriptoma
20.
Chin J Nat Med ; 20(4): 270-281, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35487597

RESUMEN

Hepatic sinusoidal obstruction syndrome (HSOS) via exposure to pyrrolizidine alkaloids (PAs) is with high mortality and there is no effective treatment in clinics. Bear bile powder (BBP) is a famous traditional animal drug for curing a variety of hepatobiliary diseases such as cholestasis, inflammation, and fibrosis. Here, we aim to evaluate the protective effect of BBP against HSOS induced by senecionine, a highly hepatotoxic PA compound. Our results showed that BBP treatment protected mice from senecionine-induced HSOS dose-dependently, which was evident by improved liver histology including reduced infiltration of inflammatory cells and collagen positive cells, alleviated intrahepatic hemorrhage and hepatic sinusoidal endothelial cells, as well as decreased conventional serum liver function indicators. In addition, BBP treatment lowered matrix metalloproteinase 9 and pyrrole-protein adducts, two well-known markers positively associated with the severity of PA-induced HSOS. Further investigation showed that BBP treatment prevents the development of liver fibrosis by decreasing transforming growth factor beta and downstream fibrotic molecules. BBP treatment also alleviated senecionine-induced liver inflammation and lowered the pro-inflammatory cytokines, in which tauroursodeoxycholic acid played an important role. What's more, BBP treatment also decreased the accumulation of hydrophobic bile acids, such as cholic acid, taurocholic acid, glycocholic acid, as well. We concluded that BBP attenuates senecionine-induced HSOS in mice by repairing the bile acids homeostasis, preventing liver fibrosis, and alleviating liver inflammation. Our present study helps to pave the way to therapeutic approaches of the treatment of PA-induced liver injury in clinics.


Asunto(s)
Enfermedad Veno-Oclusiva Hepática , Alcaloides de Pirrolicidina , Ursidae , Animales , Bilis , Ácidos y Sales Biliares , Células Endoteliales/metabolismo , Enfermedad Veno-Oclusiva Hepática/inducido químicamente , Enfermedad Veno-Oclusiva Hepática/tratamiento farmacológico , Enfermedad Veno-Oclusiva Hepática/patología , Inflamación/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Ratones , Polvos , Alcaloides de Pirrolicidina/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA