Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 139(18): 2157-2169, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30764634

RESUMEN

BACKGROUND: Bradyarrhythmia is a common clinical manifestation. Although the majority of cases are acquired, genetic analysis of families with bradyarrhythmia has identified a growing number of causative gene mutations. Because the only ultimate treatment for symptomatic bradyarrhythmia has been invasive surgical implantation of a pacemaker, the discovery of novel therapeutic molecular targets is necessary to improve prognosis and quality of life. METHODS: We investigated a family containing 7 individuals with autosomal dominant bradyarrhythmias of sinus node dysfunction, atrial fibrillation with slow ventricular response, and atrioventricular block. To identify the causative mutation, we conducted the family-based whole exome sequencing and genome-wide linkage analysis. We characterized the mutation-related mechanisms based on the pathophysiology in vitro. After generating a transgenic animal model to confirm the human phenotypes of bradyarrhythmia, we also evaluated the efficacy of a newly identified molecular-targeted compound to upregulate heart rate in bradyarrhythmias by using the animal model. RESULTS: We identified one heterozygous mutation, KCNJ3 c.247A>C, p.N83H, as a novel cause of hereditary bradyarrhythmias in this family. KCNJ3 encodes the inwardly rectifying potassium channel Kir3.1, which combines with Kir3.4 (encoded by KCNJ5) to form the acetylcholine-activated potassium channel ( IKACh channel) with specific expression in the atrium. An additional study using a genome cohort of 2185 patients with sporadic atrial fibrillation revealed another 5 rare mutations in KCNJ3 and KCNJ5, suggesting the relevance of both genes to these arrhythmias. Cellular electrophysiological studies revealed that the KCNJ3 p.N83H mutation caused a gain of IKACh channel function by increasing the basal current, even in the absence of m2 muscarinic receptor stimulation. We generated transgenic zebrafish expressing mutant human KCNJ3 in the atrium specifically. It is interesting to note that the selective IKACh channel blocker NIP-151 repressed the increased current and improved bradyarrhythmia phenotypes in the mutant zebrafish. CONCLUSIONS: The IKACh channel is associated with the pathophysiology of bradyarrhythmia and atrial fibrillation, and the mutant IKACh channel ( KCNJ3 p.N83H) can be effectively inhibited by NIP-151, a selective IKACh channel blocker. Thus, the IKACh channel might be considered to be a suitable pharmacological target for patients who have bradyarrhythmia with a gain-of-function mutation in the IKACh channel.


Asunto(s)
Fibrilación Atrial , Bloqueo Atrioventricular , Bradicardia , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Enfermedades Genéticas Congénitas , Mutación Missense , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Bloqueo Atrioventricular/genética , Bloqueo Atrioventricular/metabolismo , Bloqueo Atrioventricular/patología , Bloqueo Atrioventricular/fisiopatología , Benzopiranos/farmacología , Bradicardia/genética , Bradicardia/metabolismo , Bradicardia/patología , Bradicardia/fisiopatología , Técnicas Electrofisiológicas Cardíacas , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Enfermedades Genéticas Congénitas/fisiopatología , Humanos , Masculino , Xenopus laevis , Pez Cebra
2.
Circ Arrhythm Electrophysiol ; 10(5): e004508, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28500172

RESUMEN

BACKGROUND: Although multiple approaches have been used to create biological pacemakers in animal models, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have not been investigated for this purpose. We now report pacemaker function of iPSC-CMs in a canine model. METHODS AND RESULTS: Embryoid bodies were derived from human keratinocytes, their action potential characteristics determined, and their gene expression profiles and markers of differentiation identified. Atrioventricular blocked dogs were immunosuppressed, instrumented with VVI pacemakers, and injected subepicardially into the anterobasal left ventricle with 40 to 75 rhythmically contracting embryoid bodies (totaling 1.3-2×106 cells). ECG and 24-hour Holter monitoring were performed biweekly. After 4 to 13 weeks, epinephrine (1 µg kg-1 min-1) was infused, and the heart removed for histological or electrophysiological study. iPSC-CMs largely lost the markers of pluripotency, became positive for cardiac-specific markers. and manifested If-dependent automaticity. Epicardial pacing of the injection site identified matching beats arising from that site by week 1 after implantation. By week 4, 20% of beats were electronically paced, 60% to 80% of beats were matching, and mean and maximal biological pacemaker rates were 45 and 75 beats per minute. Maximum night and day rates of matching beats were 53±6.9 and 69±10.4 beats per minute, respectively, at 4 weeks. Epinephrine increased rate of matching beats from 35±4.3 to 65±4.0 beats per minute. Incubation of embryoid bodies with the vital dye, Dil, revealed the persistence of injected cells at the site of administration. CONCLUSIONS: iPSC-CMs can integrate into host myocardium and create a biological pacemaker. Although this is a promising development, rate and rhythm of the iPSC-CMs pacemakers remain to be optimized.


Asunto(s)
Bloqueo Atrioventricular/cirugía , Relojes Biológicos , Diferenciación Celular , Frecuencia Cardíaca , Células Madre Pluripotentes Inducidas/trasplante , Miocitos Cardíacos/trasplante , Trasplante de Células Madre , Potenciales de Acción , Animales , Bloqueo Atrioventricular/metabolismo , Bloqueo Atrioventricular/fisiopatología , Estimulación Cardíaca Artificial , Línea Celular , Modelos Animales de Enfermedad , Perros , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Perfilación de la Expresión Génica/métodos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Miocitos Cardíacos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Recuperación de la Función , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Tiempo , Transcriptoma , Transfección
3.
Circ Arrhythm Electrophysiol ; 6(4): 799-808, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23884198

RESUMEN

BACKGROUND: When complete atrioventricular block (AVB) occurs, infranodal escape rhythms are essential to prevent bradycardic death. The role of T-type Ca(2+) channels in pacemaking outside the sinus node is unknown. We investigated the role of T-type Ca(2+) channels in escape rhythms and bradycardia-related ventricular tachyarrhythmias after AVB in mice. METHODS AND RESULTS: Adult male mice lacking the main T-type Ca(2+) channel subunit Cav3.1 (Cav3.1(-/-)) and wild-type (WT) controls implanted with ECG telemetry devices underwent radiofrequency atrioventricular node ablation to produce AVB. Before ablation, Cav3.1(-/-) mice showed sinus bradycardia (mean±SEM; RR intervals, 148±3 versus 128±2 ms WT; P<0.001). Immediately after AVB, Cav3.1(-/-) mice had slower escape rhythms (RR intervals, 650±75 versus 402±26 ms in WT; P<0.01) but a preserved heart-rate response to isoproterenol. Over the next 24 hours, mortality was markedly greater in Cav3.1(-/-) mice (19/31; 61%) versus WT (8/26; 31%; P<0.05), and Torsades de Pointes occurred more frequently (73% Cav3.1(-/-) versus 35% WT; P<0.05). Escape rhythms improved in both groups during the next 4 weeks but remained significantly slower in Cav3.1(-/-). At 4 weeks after AVB, ventricular tachycardia was more frequent in Cav3.1(-/-) than in WT mice (746±116 versus 214±78 episodes/24 hours; P<0.01). Ventricular function remodeling was similar in Cav3.1(-/-) and WT, except for smaller post-AVB fractional-shortening increase in Cav3.1(-/-). Expression changes were seen post-AVB for a variety of genes; these tended to be greater in Cav3.1(-/-) mice, and overexpression of fetal and profibrotic genes occurred only in Cav3.1(-/-). CONCLUSIONS: This study suggests that T-type Ca(2+) channels play an important role in infranodal escape automaticity. Loss of T-type Ca(2+) channels worsens bradycardia-related mortality, increases bradycardia-associated adverse remodeling, and enhances the risk of malignant ventricular tachyarrhythmias complicating AVB.


Asunto(s)
Bloqueo Atrioventricular/metabolismo , Bradicardia/metabolismo , Canales de Calcio Tipo T/metabolismo , Señalización del Calcio , Sistema de Conducción Cardíaco/metabolismo , Frecuencia Cardíaca , Periodicidad , Torsades de Pointes/metabolismo , Potenciales de Acción , Animales , Bloqueo Atrioventricular/diagnóstico , Bloqueo Atrioventricular/genética , Bloqueo Atrioventricular/fisiopatología , Bradicardia/diagnóstico , Bradicardia/genética , Bradicardia/fisiopatología , Bradicardia/prevención & control , Canales de Calcio Tipo T/deficiencia , Canales de Calcio Tipo T/genética , Modelos Animales de Enfermedad , Electrocardiografía Ambulatoria , Técnicas Electrofisiológicas Cardíacas , Regulación de la Expresión Génica , Sistema de Conducción Cardíaco/fisiopatología , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo , Telemetría , Factores de Tiempo , Torsades de Pointes/diagnóstico , Torsades de Pointes/genética , Torsades de Pointes/fisiopatología , Torsades de Pointes/prevención & control , Remodelación Ventricular
4.
Artículo en Inglés | MEDLINE | ID: mdl-23010241

RESUMEN

Pharmacological ion-channel blockers were used to investigate the spontaneous heart rates in Pacific hagfish, Eptatretus stoutii. Zatebradine, a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, vastly reduced atrial and ventricular contraction rates in a similar concentration-dependent manner, indicating a major role for HCN in setting intrinsic heart rate. When voltage-gated Na(+) channels were blocked with tetrodotoxin (TTX), atrial contraction rate declined in a dose-dependent manner, but remained faster than ventricular rate even at very high TTX concentrations. This TTX resistance compared with other fish suggests an important role for a TTX-sensitive inactivation-resistant Na(+) current in atrioventricular conduction and chamber synchrony, and a lesser role in setting intrinsic heart rate. T and L-type calcium channel blockers, nickel and nifedipine respectively, also reduced atrial and ventricular contraction rates, nickel having a larger effect on the atrium. These novel results for hagfish are consistent with intrinsic atrial and ventricular rates being set mostly by HCN, with lesser contributions from other ion channels. We suggest that future electrophysiological studies will reveal that hagfishes, with their ancestral position in the evolution of the vertebrate-type chambered heart, share some but not all features of vertebrate intrinsic heart rate control.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Anguila Babosa/fisiología , Atrios Cardíacos/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Contracción Miocárdica/efectos de los fármacos , Animales , Bloqueo Atrioventricular/metabolismo , Bloqueo Atrioventricular/patología , Benzazepinas/farmacología , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo T/metabolismo , Relación Dosis-Respuesta a Droga , Técnicas Electrofisiológicas Cardíacas/métodos , Anguila Babosa/metabolismo , Atrios Cardíacos/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Técnicas In Vitro , Níquel/farmacología , Nifedipino/farmacología , Tetrodotoxina/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/metabolismo
5.
Cardiovasc Res ; 92(2): 226-36, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21672930

RESUMEN

AIMS: It is well established that dysfunction of voltage-dependent ion channels results in arrhythmias and conduction disturbances in the foetal and adult heart. However, the involvement of voltage-insensitive cationic TRPC (transient receptor potential canonical) channels remains unclear. We assessed the hypothesis that TRPC channels play a crucial role in the spontaneous activity of the developing heart. METHODS AND RESULTS: TRPC isoforms were investigated in isolated hearts obtained from 4-day-old chick embryos. Using RT-PCR, western blotting and co-immunoprecipitation, we report for the first time that TRPC1, 3, 4, 5, 6, and 7 isoforms are expressed at the mRNA and protein levels and that they can form a macromolecular complex with the α1C subunit of the L-type voltage-gated calcium channel (Cav1.2) in atria and ventricle. Using ex vivo electrocardiograms, electrograms of isolated atria and ventricle and ventricular mechanograms, we found that inhibition of TRPC channels by SKF-96365 leads to negative chrono-, dromo-, and inotropic effects, prolongs the QT interval, and provokes first- and second-degree atrioventricular blocks. Pyr3, a specific antagonist of TRPC3, affected essentially atrioventricular conduction. On the other hand, specific blockade of the L-type calcium channel with nifedipine rapidly stopped ventricular contractile activity without affecting rhythmic electrical activity. CONCLUSIONS: These results give new insights into the key role that TRPC channels, via interaction with the Cav1.2 channel, play in regulation of cardiac pacemaking, conduction, ventricular activity, and contractility during cardiogenesis.


Asunto(s)
Sistema de Conducción Cardíaco/metabolismo , Corazón/embriología , Canales Catiónicos TRPC/metabolismo , Aminoquinolinas/farmacología , Aminoquinolinas/toxicidad , Animales , Bloqueo Atrioventricular/inducido químicamente , Bloqueo Atrioventricular/metabolismo , Western Blotting , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Regulación del Desarrollo de la Expresión Génica , Corazón/efectos de los fármacos , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/embriología , Frecuencia Cardíaca , Contracción Miocárdica , Nifedipino/farmacología , Reacción en Cadena de la Polimerasa , Pirazoles/farmacología , Pirazoles/toxicidad , ARN Mensajero/metabolismo , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética , Factores de Tiempo , Función Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA