Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 2603, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173221

RESUMEN

Insect monitoring is critical to improve our understanding and ability to preserve and restore biodiversity, sustainably produce crops, and reduce vectors of human and livestock disease. Conventional monitoring methods of trapping and identification are time consuming and thus expensive. Automation would significantly improve the state of the art. Here, we present a network of distributed wireless sensors that moves the field towards automation by recording backscattered near-infrared modulation signatures from insects. The instrument is a compact sensor based on dual-wavelength infrared light emitting diodes and is capable of unsupervised, autonomous long-term insect monitoring over weather and seasons. The sensor records the backscattered light at kHz pace from each insect transiting the measurement volume. Insect observations are automatically extracted and transmitted with environmental metadata over cellular connection to a cloud-based database. The recorded features include wing beat harmonics, melanisation and flight direction. To validate the sensor's capabilities, we tested the correlation between daily insect counts from an oil seed rape field measured with six yellow water traps and six sensors during a 4-week period. A comparison of the methods found a Spearman's rank correlation coefficient of 0.61 and a p-value = 0.0065, with the sensors recording approximately 19 times more insect observations and demonstrating a larger temporal dynamic than conventional yellow water trap monitoring.


Asunto(s)
Automatización/métodos , Biodiversidad , Monitoreo Biológico/métodos , Rayos Infrarrojos , Insectos Vectores/fisiología , Tecnología Inalámbrica/instrumentación , Animales , Brassica napus/parasitología , Bases de Datos como Asunto , Aceite de Brassica napus , Estaciones del Año , Tiempo (Meteorología)
2.
Plant Cell Environ ; 44(2): 519-534, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33190271

RESUMEN

Divergence of chemical plant defence mechanisms within the Brassicaceae can be utilized to identify means against specialized pest insects. Using a bioassay-driven approach, we (a) screened 24 different Brassica napus cultivars, B. napus resyntheses and related brassicaceous species for natural plant resistance against feeding adults of the pollen beetle (Brassicogethes aeneus), (b) tested for gender-specific feeding resistance, (c) analysed the flower bud metabolomes by a non-targeted approach and (d) tested single candidate compounds for their antifeedant activity. (a) In no-choice assays, beetles were allowed to feed on intact plants. Reduced feeding activity was mainly observed on Sinapis alba and Barbarea vulgaris but not on B. napus cultivars. (b) Males fed less and discriminated more in feeding than females. (c) Correlation of the metabolite abundances with the beetles' feeding activity revealed several glucosinolates, phenylpropanoids, flavonoids and saponins as potential antifeedants. (d) These were tested in dual-bud-choice assays developed for medium-throughput compound screening. Application of standard compounds on single oilseed rape flower buds revealed highly deterrent effects of glucobarbarin, oleanolic acid and hederagenin. These results help to understand chemical plant defence in the Brassicaceae and are of key importance for further breeding strategies for insect-resistant oilseed rape cultivars.


Asunto(s)
Brassica napus/química , Escarabajos/fisiología , Metabolómica , Animales , Brassica napus/metabolismo , Brassica napus/parasitología , Femenino , Flavonoides/metabolismo , Glucosinolatos/metabolismo , Masculino , Polen/fisiología , Propanoles/metabolismo
3.
Int J Mol Sci ; 20(7)2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965683

RESUMEN

Beet cyst nematode (Heterodera schachtii Schm.) is one of the most damaging pests in sugar beet growing areas around the world. The Hs1pro-1 and cZR3 genes confer resistance to the beet cyst nematode, and both were cloned from sugar beet translocation line (A906001). The translocation line carried the locus from B. procumbens chromosome 1 including Hs1pro-1 gene and resistance gene analogs (RGA), which confer resistance to Heterodera schachtii. In this research, BvHs1pro-1 and BvcZR3 genes were transferred into oilseed rape to obtain different transgenic lines by A. tumefaciens mediated transformation method. The cZR3Hs1pro-1 gene was pyramided into the same plants by crossing homozygous cZR3 and Hs1pro-1 plants to identify the function and interaction of cZR3 and Hs1pro-1 genes. In vitro and in vivo cyst nematode resistance tests showed that cZR3 and Hs1pro-1 plants could be infested by beet cyst nematode (BCN) juveniles, however a large fraction of penetrated nematode juveniles was not able to develop normally and stagnated in roots of transgenic plants, consequently resulting in a significant reduction in the number of developed nematode females. A higher efficiency in inhibition of nematode females was observed in plants expressing pyramiding genes than in those only expressing a single gene. Molecular analysis demonstrated that BvHs1pro-1 and BvcZR3 gene expressions in oilseed rape constitutively activated transcription of plant-defense related genes such as NPR1 (non-expresser of PR1), SGT1b (enhanced disease resistance 1) and RAR1 (suppressor of the G2 allele of skp1). Transcript of NPR1 gene in transgenic cZR3 and Hs1pro-1 plants were slightly up-regulated, while its expression was considerably enhanced in cZR3Hs1pro-1 gene pyramiding plants. The expression of EDS1 gene did not change significantly among transgenic cZR3, Hs1pro-1 and cZR3Hs1pro-1 gene pyramiding plants and wild type. The expression of SGT1b gene was slightly up-regulated in transgenic cZR3 and Hs1pro-1 plants compared with the wild type, however, its expression was not changed in cZR3Hs1pro-1 gene pyramiding plant and had no interaction effect. RAR1 gene expression was significantly up-regulated in transgenic cZR3 and cZR3Hs1pro-1 genes pyramiding plants, but almost no expression was found in Hs1pro-1 transgenic plants. These results show that nematode resistance genes from sugar beet were functional in oilseed rape and conferred BCN resistance by activation of a CC-NBS-LRR R gene mediated resistance response. The gene pyramiding had enhanced resistance, thus offering a novel approach for the BCN control by preventing the propagation of BCN in oilseed rape. The transgenic oilseed rape could be used as a trap crop to offer an alternative method for beet cyst nematode control.


Asunto(s)
Beta vulgaris/metabolismo , Beta vulgaris/parasitología , Brassica napus/metabolismo , Brassica napus/parasitología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/parasitología , Tylenchoidea/patogenicidad , Animales , Beta vulgaris/genética , Brassica napus/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética
4.
Insect Mol Biol ; 23(1): 98-112, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24252113

RESUMEN

The pollen beetle (Meligethes aeneus) is a major pest of oilseed rape (Brassica napus) and other cruciferous crops in Europe. Pesticide-resistant pollen beetle populations are emerging, increasing the economic impact of this species. We isolated total RNA from the larval and adult stages, the latter either naïve or immunized by injection with bacteria and yeast. High-throughput RNA sequencing (RNA-Seq) was carried out to establish a comprehensive transcriptome catalogue and to screen for developmental stage-specific and immunity-related transcripts. We assembled the transcriptome de novo by combining sequence tags from all developmental stages and treatments. Gene expression data based on normalized read counts revealed several functional gene categories that were differentially expressed between larvae and adults, particularly genes associated with digestion and detoxification that were induced in larvae, and genes associated with reproduction and environmental signalling that were induced in adults. We also identified many genes associated with microbe recognition, immunity-related signalling and defence effectors, such as antimicrobial peptides (AMPs) and lysozymes. Digital gene expression analysis revealed significant differences in the profile of AMPs expressed in larvae, naïve adults and immune-challenged adults, providing insight into the steady-state differences between developmental stages and the complex transcriptional remodelling that occurs following the induction of immunity. Our data provide insight into the adaptive mechanisms used by phytophagous insects and could lead to the development of more effective control strategies for insect pests.


Asunto(s)
Escarabajos/genética , ARN/genética , Análisis de Secuencia de ARN , Transcriptoma/genética , Alérgenos/genética , Animales , Brassica napus/parasitología , Escarabajos/metabolismo , Larva , Polen/genética , Polen/parasitología
5.
Pest Manag Sci ; 69(11): 1253-60, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23519894

RESUMEN

BACKGROUND: Pollen beetle is a pest that attacks oilseed rape as well as many other brassicaceous crops, garden vegetables and ornamental flowers. The present study was primarily carried out to investigate whether insecticide application in brassicaceous field crops might influence the abundance of pollen beetles in nearby private garden flowers and vegetables. RESULTS: At peak emergence of the new generation of pollen beetles, a significantly higher number of beetles were found in flowers, and in window traps, alongside untreated as opposed to alongside treated sections of the winter oilseed rape (WOSR) field. However, the type of flower played a role in the number of pollen beetles found in the flowers. The presence of pollen beetles in both ornamental and wild flowers was also significantly influenced by the direction of placement of the flowers. No pollen beetle, neither overwintering nor newly emerged, was observed in any of the brassicaceous vegetables placed along the field. CONCLUSION: The number of pollen beetles in the WOSR field strongly influenced the number of pollen beetles in nearby flowers of preference to the beetles, and insecticide treatment with Biscaya (thiacloprid) against pollen beetle in oilseed rape may thus help, indirectly, to protect nearby garden flowers from damage.


Asunto(s)
Brassica napus/parasitología , Escarabajos/efectos de los fármacos , Flores/parasitología , Insecticidas/farmacología , Enfermedades de las Plantas/prevención & control , Verduras/parasitología , Animales , Escarabajos/fisiología , Neonicotinoides , Control de Plagas , Enfermedades de las Plantas/parasitología , Piridinas/farmacología , Estaciones del Año , Tiazinas/farmacología
6.
Commun Agric Appl Biol Sci ; 77(4): 779-87, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23885445

RESUMEN

Sugar beet cyst nematode Heterodera schachtii Schmidt is an economically important plant parasite of sugar beet in Ukraine. The pest control options are limited. Sugar beet cyst nematode resistant varieties are not available on the market. Carbamate and organophosphate pesticides have been banned due to the high toxicity. The problem is aggravated by continuously increasing of oilseed rape (which is suitable host for H. schachtii) growing area due to biofuel demands. Several studies' results indicate that PGRs have role in management of plant parasitic nematodes but for sugar beet it is not studied well. We had an objective- studying of the role of four compositional PGRs created based of avermectin in suppression of sugar beet cyst nematode population on sugar beet and oilseed rape caused by enhancing of endogenous si/miRNA complementary to H. schachtii mRNA. Laboratory study was conducted in 2011 with using method DOT-blot hybridization si/miRNA with mRNA and by testing inhibitory activity in cell free system protein biosynthesis. That was shown that application of the PGRs enhances sugar beet and oilseeds rape plant immune-protective properties and resistance against plant-parasitic nematode Heterodera schochtii through enhancement of synthesis of small regulatory si/miRNA related (complementary) to an mRNA structure of the parasitic organisms. As a result, translation of mRNA of the nematode is blocked and causes the mortality of plant parasite juveniles.


Asunto(s)
Beta vulgaris/inmunología , Brassica napus/inmunología , MicroARNs/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Tylenchoidea/efectos de los fármacos , Animales , Beta vulgaris/parasitología , Brassica napus/parasitología , Control de Plagas , ARN de Helminto/metabolismo , ARN Mensajero/metabolismo , Tylenchoidea/fisiología , Ucrania
7.
Commun Agric Appl Biol Sci ; 74(2): 573-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20222620

RESUMEN

The study was carried out in 1989-1991 and repeated in 2003-2006 to compare life cycle and dynamics of Heterodera schachtii Schm. on sugar beet, oilseed rape, fodder radish and to work out recommendations on how to decrease the risk of yield reduction while it grows in sugar-beet rotations. Research was carried out in plot experiment in natural conditions. Nematode community on rape, fodder radish and sugar beet was analyzed. Data of nematode community showed that composition of nematode species was very similar. Heterodera shachtii were dominated species with rape and sugar beet. All tested Brassica crops are susceptible to H. schachtii. However there is significant difference in population dynamics. The highest total number of brown cysts, eggs and juveniles of all ages was observed in winter rape. H.schachtii developed two generations on sugar beet and one generation on mustard. The voluntary seed germination after harvest contributes to increasing H. schachtii population. Therefore it is necessary to destroy oilseed rape voluntary chemically or physically. This operation should be done in about 2-4 weeks. The exact time can be calculated using the temperature- based model. Growing regular fodder radish and mustard as the trap crops can significantly reduce population of H. schachtii. The time of sowing is not earlier than August 20th. While estimating the time of destruction of trap crops it should be taken into consideration that H. schachtii can complete life cycle without foliage.


Asunto(s)
Agricultura/métodos , Beta vulgaris/crecimiento & desarrollo , Brassica napus/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Nematodos/crecimiento & desarrollo , Nematodos/patogenicidad , Enfermedades de las Plantas/parasitología , Animales , Beta vulgaris/parasitología , Brassica napus/parasitología , Estadios del Ciclo de Vida , Nematodos/clasificación , Nematodos/aislamiento & purificación , Raphanus/crecimiento & desarrollo , Raphanus/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA