Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(4): 264-280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38599847

RESUMEN

Self-incompatibility (SI) is a mechanism for preventing self-fertilization in flowering plants. SI is controlled by a single S-locus with multiple haplotypes (S-haplotypes). When the pistil and pollen share the same S-haplotype, the pollen is recognized as self and rejected by the pistil. This review introduces our research on Brassicaceae and Solanaceae SI systems to identify the S-determinants encoded at the S-locus and uncover the mechanisms of self/nonself-discrimination and pollen rejection. The recognition mechanisms of SI systems differ between these families. A self-recognition system is adopted by Brassicaceae, whereas a collaborative nonself-recognition system is used by Solanaceae. Work by our group and subsequent studies indicate that plants have evolved diverse SI systems.


Asunto(s)
Brassicaceae , Solanaceae , Humanos , Brassicaceae/genética , Solanaceae/genética , Plantas , Polen , Flores , Proteínas de Plantas
2.
Cell Rep ; 43(3): 113913, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38442016

RESUMEN

The self-incompatibility system evolves in angiosperms to promote cross-pollination by rejecting self-pollination. Here, we show the involvement of Exo84c in the SI response of both Brassica napus and Arabidopsis. The expression of Exo84c is specifically elevated in stigma during the SI response. Knocking out Exo84c in B. napus and SI Arabidopsis partially breaks down the SI response. The SI response inhibits both the protein secretion in papillae and the recruitment of the exocyst complex to the pollen-pistil contact sites. Interestingly, these processes can be partially restored in exo84c SI Arabidopsis. After incompatible pollination, the turnover of the exocyst-labeled compartment is enhanced in papillae. However, this process is perturbed in exo84c SI Arabidopsis. Taken together, our results suggest that Exo84c regulates the exocyst complex vacuolar degradation during the SI response. This process is likely independent of the known SI pathway in Brassicaceae to secure the SI response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Brassicaceae/genética , Brassicaceae/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Polen/metabolismo , Transporte de Proteínas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Physiol Biochem ; 208: 108470, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422576

RESUMEN

Camelinasativa has considerable promise as a dedicated industrial oilseed crop. Its oil-based blends have been tested and approved as liquid transportation fuels. Previously, we utilized metabolomic and transcriptomic profiling approaches and identified metabolic bottlenecks that control oil production and accumulation in seeds. Accordingly, we selected candidate genes for the metabolic engineering of Camelina. Here we targeted the overexpression of Camelina PDCT gene, which encodes the phosphatidylcholine: diacylglycerol cholinephosphotransferase enzyme. PDCT is proposed as a gatekeeper responsible for the interconversions of diacylglycerol (DAG) and phosphatidylcholine (PC) pools and has the potential to increase the levels of TAG in seeds. To confirm whether increased CsPDCT activity in developing Camelina seeds would enhance carbon flux toward increased levels of TAG and alter oil composition, we overexpressed the CsPDCT gene under the control of the seed-specific phaseolin promoter. Camelina transgenics exhibited significant increases in seed yield (19-56%), seed oil content (9-13%), oil yields per plant (32-76%), and altered polyunsaturated fatty acid (PUFA) content compared to their parental wild-type (WT) plants. Results from [14C] acetate labeling of Camelina developing embryos expressing CsPDCT in culture indicated increased rates of radiolabeled fatty acid incorporation into glycerolipids (up to 64%, 59%, and 43% higher in TAG, DAG, and PC, respectively), relative to WT embryos. We conclude that overexpression of PDCT appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, thereby further increasing oil yields in Camelina.


Asunto(s)
Brassicaceae , Fosfatidilcolinas , Fosfatidilcolinas/metabolismo , Triglicéridos/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Ácidos Grasos/metabolismo , Semillas/genética , Semillas/metabolismo , Ciclo del Carbono , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
4.
BMC Genomics ; 25(1): 29, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172664

RESUMEN

BACKGROUND: Orychophragmus violaceus is a potentially important industrial oilseed crop due to the two 24-carbon dihydroxy fatty acids (diOH-FA) that was newly identified from its seed oil via a 'discontinuous elongation' process. Although many research efforts have focused on the diOH-FA biosynthesis mechanism and identified the potential co-expressed diacylglycerol acyltranferase (DGAT) gene associated with triacylglycerol (TAG)-polyestolides biosynthesis, the dynamics of metabolic changes during seed development of O. violaceus as well as its associated regulatory network changes are poorly understood. RESULTS: In this study, by combining metabolome and transcriptome analysis, we identified that 1,003 metabolites and 22,479 genes were active across four stages of seed development, which were further divided into three main clusters based on the patterns of metabolite accumulation and/or gene expression. Among which, cluster2 was mostly related to diOH-FA biosynthesis pathway. We thus further constructed transcription factor (TF)-structural genes regulatory map for the genes associated with the flavonoids, fatty acids and diOH-FA biosynthesis pathway in this cluster. In particular, several TF families such as bHLH, B3, HD-ZIP, MYB were found to potentially regulate the metabolism associated with the diOH-FA pathway. Among which, multiple candidate TFs with promising potential for increasing the diOH-FA content were identified, and we further traced the evolutionary history of these key genes among species of Brassicaceae. CONCLUSION: Taken together, our study provides new insight into the gene resources and potential relevant regulatory mechanisms of diOH-FA biosynthesis uniquely in seeds of O. violaceus, which will help to promote the downstream breeding efforts of this potential oilseed crop and advance the bio-lubricant industry.


Asunto(s)
Brassicaceae , Fitomejoramiento , Humanos , Perfilación de la Expresión Génica , Brassicaceae/genética , Brassicaceae/metabolismo , Semillas/metabolismo , Ácidos Grasos/metabolismo , Aceites de Plantas/análisis , Regulación de la Expresión Génica de las Plantas
5.
Cell ; 186(22): 4773-4787.e12, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37806310

RESUMEN

Pollen-pistil interactions establish interspecific/intergeneric pre-zygotic hybridization barriers in plants. The rejection of undesired pollen at the stigma is crucial to avoid outcrossing but can be overcome with the support of mentor pollen. The mechanisms underlying this hybridization barrier are largely unknown. Here, in Arabidopsis, we demonstrate that receptor-like kinases FERONIA/CURVY1/ANJEA/HERCULES RECEPTOR KINASE 1 and cell wall proteins LRX3/4/5 interact on papilla cell surfaces with autocrine stigmatic RALF1/22/23/33 peptide ligands (sRALFs) to establish a lock that blocks the penetration of undesired pollen tubes. Compatible pollen-derived RALF10/11/12/13/25/26/30 peptides (pRALFs) act as a key, outcompeting sRALFs and enabling pollen tube penetration. By treating Arabidopsis stigmas with synthetic pRALFs, we unlock the barrier, facilitating pollen tube penetration from distantly related Brassicaceae species and resulting in interspecific/intergeneric hybrid embryo formation. Therefore, we uncover a "lock-and-key" system governing the hybridization breadth of interspecific/intergeneric crosses in Brassicaceae. Manipulating this system holds promise for facilitating broad hybridization in crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hormonas Peptídicas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Hormonas Peptídicas/metabolismo , Péptidos/metabolismo , Polen/metabolismo , Tubo Polínico/metabolismo , Aislamiento Reproductivo
7.
Plant Biotechnol J ; 21(9): 1887-1903, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37335591

RESUMEN

Pennycress (Thlaspi arvense L.), a member of the Brassicaceae family, produces seed oil high in erucic acid, suitable for biodiesel and aviation fuel. Although pennycress, a winter annual, could be grown as a dedicated bioenergy crop, an increase in its seed oil content is required to improve its economic competitiveness. The success of crop improvement relies upon finding the right combination of biomarkers and targets, and the best genetic engineering and/or breeding strategies. In this work, we combined biomass composition with metabolomic and transcriptomic studies of developing embryos from 22 pennycress natural variants to identify targets for oil improvement. The selected accession collection presented diverse levels of fatty acids at maturity ranging from 29% to 41%. Pearson correlation analyses, weighted gene co-expression network analysis and biomarker identifications were used as complementary approaches to detect associations between metabolite level or gene expression and oil content at maturity. The results indicated that improving seed oil content can lead to a concomitant increase in the proportion of erucic acid without affecting the weight of embryos. Processes, such as carbon partitioning towards the chloroplast, lipid metabolism, photosynthesis, and a tight control of nitrogen availability, were found to be key for oil improvement in pennycress. Besides identifying specific targets, our results also provide guidance regarding the best timing for their modification, early or middle maturation. Thus, this work lays out promising strategies, specific for pennycress, to accelerate the successful development of lines with increased seed oil content for biofuel applications.


Asunto(s)
Brassicaceae , Transcriptoma , Transcriptoma/genética , Ácidos Erucicos/metabolismo , Fitomejoramiento , Brassicaceae/genética , Brassicaceae/metabolismo , Aceites de Plantas/metabolismo , Semillas/genética
8.
Plant Cell ; 35(5): 1334-1359, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36691724

RESUMEN

Gynandropsis gynandra (Cleomaceae) is a cosmopolitan leafy vegetable and medicinal plant, which has also been used as a model to study C4 photosynthesis due to its evolutionary proximity to C3 Arabidopsis (Arabidopsis thaliana). Here, we present the genome sequence of G. gynandra, anchored onto 17 main pseudomolecules with a total length of 740 Mb, an N50 of 42 Mb and 30,933 well-supported gene models. The G. gynandra genome and previously released genomes of C3 relatives in the Cleomaceae and Brassicaceae make an excellent model for studying the role of genome evolution in the transition from C3 to C4 photosynthesis. Our analyses revealed that G. gynandra and its C3 relative Tarenaya hassleriana shared a whole-genome duplication event (Gg-α), then an addition of a third genome (Th-α, +1×) took place in T. hassleriana but not in G. gynandra. Analysis of syntenic copy number of C4 photosynthesis-related gene families indicates that G. gynandra generally retained more duplicated copies of these genes than C3T. hassleriana, and also that the G. gynandra C4 genes might have been under positive selection pressure. Both whole-genome and single-gene duplication were found to contribute to the expansion of the aforementioned gene families in G. gynandra. Collectively, this study enhances our understanding of the polyploidy history, gene duplication and retention, as well as their impact on the evolution of C4 photosynthesis in Cleomaceae.


Asunto(s)
Arabidopsis , Brassicaceae , Magnoliopsida , Duplicación de Gen , Magnoliopsida/genética , Brassicaceae/genética , Arabidopsis/genética , Fotosíntesis/genética , Evolución Molecular
9.
Nature ; 614(7947): 303-308, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697825

RESUMEN

Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.


Asunto(s)
Brassicaceae , Flores , Hibridación Genética , Proteínas de Plantas , Polinización , Brassicaceae/genética , Brassicaceae/metabolismo , Depresión Endogámica , Óxido Nítrico/metabolismo , Fosfotransferasas/metabolismo , Fitomejoramiento , Proteínas de Plantas/metabolismo , Polen/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Especificidad de la Especie , Flores/metabolismo , Autofecundación
10.
Plant Biotechnol J ; 21(3): 497-505, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36382992

RESUMEN

Reducing the saturate content of vegetable oils is key to increasing their utility and adoption as a feedstock for the production of biofuels. Expression of either the FAT5 16 : 0-CoA desaturase from Caenorhabditis elegans, or an engineered cyanobacterial 16 : 0/18 : 0-glycerolipid desaturase, DES9*, in seeds of Arabidopsis (Arabidopsis thaliana) substantially lowered oil saturates. However, because pathway fluxes and regulation of oil synthesis are known to differ across species, translating this transgene technology from the model plant to crop species requires additional investigation. In the work reported here, we found that high expression of FAT5 in seeds of camelina (Camelina sativa) provided only a moderate decrease in saturates, from 12.9% of total oil fatty acids in untransformed controls to 8.6%. Expression of DES9* reduced saturates to 4.6%, but compromised seed physiology and oil content. However, the coexpression of the two desaturases together cooperatively reduced saturates to only 4.0%, less than one-third of the level in the parental line, without compromising oil yield or seedling germination and establishment. Our successful lowering of oil saturates in camelina identifies strategies that can now be integrated with genetic engineering approaches that reduce polyunsaturates to provide optimized oil composition for biofuels in camelina and other oil seed crops.


Asunto(s)
Arabidopsis , Brassicaceae , Biocombustibles , Plantas Modificadas Genéticamente/genética , Brassicaceae/genética , Arabidopsis/genética , Ácidos Grasos/metabolismo , Ácido Graso Desaturasas/metabolismo , Semillas/genética , Aceites de Plantas/metabolismo
11.
Plant J ; 112(5): 1141-1158, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36209492

RESUMEN

Very long-chain fatty acids (VLCFAs) are important industrial raw materials and can be produced by genetically modified oil plants. For a long time, class A lysophosphatidic acid acyltransferase (LPAT) was considered unable to promote the accumulation of VLCFA in oil crops. The bottlenecks that the transgenic high VLCFA lines have an oil content penalty and the low amount of VLCFA in phosphatidylcholine remains intractable. In the present study, a class A LPAT2 from Camelina sativa (CsaLPAT2) promoting VLCFAs accumulation in phospholipid was found. Overexpression of CsaLPAT2 alone in Arabidopsis seeds significantly increased the VLCFA content in triacylglycerol, including C20:0, C20:2, C20:3, C22:0, and C22:1. The proportion of phosphatidic acid molecules containing VLCFAs in transgenic seeds reached up to 45%, which was 2.8-fold greater than that in wild type. The proportion of phosphatidylcholine and diacylglycerol molecules containing VLCFAs also increased significantly. Seed size in CsaLPAT2 transgenic lines showed a slight increase without an oil content penalty. The total phospholipid content in the seed of the CsaLPAT2 transgenic line was significantly increased. Furthermore, the function of class A LPAT in promoting the accumulation of VLCFAs is conserved in the representative oil crops of Brassicaceae, such as C. sativa, Arabidopsis thaliana, Brassica napus, Brassica rapa, and Brassica oleracea. The findings of this study provide a promising gene resource for the production of VLCFAs.


Asunto(s)
Arabidopsis , Brassicaceae , Triglicéridos , Fosfolípidos , Plantas Modificadas Genéticamente/genética , Aceites de Plantas , Ácidos Grasos/genética , Brassicaceae/genética , Semillas/genética , Arabidopsis/genética , Fosfatidilcolinas
12.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34599816

RESUMEN

The emerging field of invasion genetics examines the genetic causes and consequences of biological invasions, but few study systems are available that integrate deep ecological knowledge with genomic tools. Here, we report on the de novo assembly and annotation of a genome for the biennial herb Alliaria petiolata (M. Bieb.) Cavara and Grande (Brassicaceae), which is widespread in Eurasia and invasive across much of temperate North America. Our goal was to sequence and annotate a genome to complement resources available from hundreds of published ecological studies, a global field survey, and hundreds of genetic lines maintained in Germany and Canada. We sequenced a genotype (EFCC3-3-20) collected from the native range near Venice, Italy, and sequenced paired-end and mate pair libraries at ∼70 × coverage. A de novo assembly resulted in a highly continuous draft genome (N50 = 121 Mb; L50 = 2) with 99.7% of the 1.1 Gb genome mapping to scaffolds of at least 50 Kb in length. A total of 64,770 predicted genes in the annotated genome include 99% of plant BUSCO genes and 98% of transcriptome reads. Consistent with previous reports of (auto)hexaploidy in western Europe, we found that almost one-third of BUSCO genes (390/1440) mapped to two or more scaffolds despite <2% genome-wide average heterozygosity. The continuity and gene space quality of our draft assembly will enable molecular and functional genomic studies of A. petiolata to address questions relevant to invasion genetics and conservation strategies.


Asunto(s)
Brassicaceae , Ajo , Brassicaceae/genética , Genoma , Modelos Biológicos , Anotación de Secuencia Molecular , Transcriptoma
13.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639198

RESUMEN

Fatty acid desaturases add a second bond into a single bond of carbon atoms in fatty acid chains, resulting in an unsaturated bond between the two carbons. They are classified into soluble and membrane-bound desaturases, according to their structure, subcellular location, and function. The orthologous genes in Camelina sativa were identified and analyzed, and a total of 62 desaturase genes were identified. It was revealed that they had the common fatty acid desaturase domain, which has evolved separately, and the proteins of the same family also originated from the same ancestry. A mix of conserved, gained, or lost intron structure was obvious. Besides, conserved histidine motifs were found in each family, and transmembrane domains were exclusively revealed in the membrane-bound desaturases. The expression profile analysis of C. sativa desaturases revealed an increase in young leaves, seeds, and flowers. C. sativa ω3-fatty acid desaturases CsaFAD7 and CsaDAF8 were cloned and the subcellular localization analysis showed their location in the chloroplast. They were transferred into Arabidopsis thaliana to obtain transgenic lines. It was revealed that the ω3-fatty acid desaturase could increase the C18:3 level at the expense of C18:2, but decreases in oil content and seed weight, and wrinkled phenotypes were observed in transgenic CsaFAD7 lines, while no significant change was observed in transgenic CsaFAD8 lines in comparison to the wild-type. These findings gave insights into the characteristics of desaturase genes, which could provide an excellent basis for further investigation for C. sativa improvement, and overexpression of ω3-fatty acid desaturases in seeds could be useful in genetic engineering strategies, which are aimed at modifying the fatty acid composition of seed oil.


Asunto(s)
Brassicaceae/metabolismo , Evolución Molecular , Ácido Graso Desaturasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/crecimiento & desarrollo , Simulación por Computador , Ácido Graso Desaturasas/química , Ácido Graso Desaturasas/genética , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Fracciones Subcelulares
14.
Planta ; 254(2): 32, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34287699

RESUMEN

MAIN CONCLUSION: A ß-ketoacyl-ACP-synthase II (KAS2) like enzyme and a lysophosphatidic acid acyltransferase (LPAT2) from Consolida ajacis catalyze gondoic acid biosynthesis and incorporation into the sn-2 position of seed TAG in engineered Camelina sativa. Gondoic acid (cis-11 eicosenoic acid, 20:1∆11) is the predominant very-long-chain fatty acid (VLCFA) in camelina (Camelina sativa) seed oil accounting for 12-15% of total triacylglycerol fatty acids. To explore the feasibility of engineering increased levels of this fatty acid in camelina seed, oils from a range of plant species were analyzed to identify those producing 20-Carbon (C20) fatty acids as the only VLCFAs in their seed oil. Seeds of Consolida and Delphinium species (Ranunculaceae) were found to contain moderate levels (0.2% to 25.5%) of C20 fatty acids without accompanying longer chain fatty acids. The C20 fatty acids were abundant in both sn-2 and sn-1/3 positions of seed TAG in Consolida, but were largely absent from the sn-2 position in Delphinium seed TAG. Through generation of a developing seed transcriptome, sequences were identified and cDNAs amplified from Consolida ajacis encoding a ß-ketoacyl-ACP-synthase II like protein (CaKAS2B) that lacked a predicted chloroplast transit peptide, and two homologues of Arabidopsis thaliana lysophosphatidic acid acyltransferase 2 (CaLPAT2a and CaLPAT2b). Expression of CaKAS2B in conventional (WT) camelina and a line previously engineered for high seed oleic acid content (HO) resulted in increased seed VLCFA content. Total VLCFA levels were raised from 24 to 35% and from 7 to 23% in T3 seed from representative transformants in the WT and HO backgrounds, respectively. Gondoic acid was the predominant VLCFA in transformed HO lines with low endogenous cytoplasmic fatty acid elongation activity, suggesting limited capacity of CaKAS2B to elongate beyond C20. Expression in camelina of CaLPAT2b resulted in significantly increased C20-VLCFA esterification at the sn-2 position of seed TAG with VLCFA levels of 33.8% in this position in one transformed line compared to 0.3% at sn-2 in the corresponding control line. Only small changes in total seed VLCFA content were observed in transformed lines implying that increased VLCFA esterification capacity in camelina results in positional redistribution of VLCFAs but does not significantly enhance flux through the fatty acid elongation pathway. The full potential of CaKAS2B and CaLPAT2a for the engineering of high gondoic acid levels in camelina remains to be determined. Seed fatty acid composition of Consolida and Delphinium also provides information that may be of value in the systematics of the Ranunculaceae.


Asunto(s)
Brassicaceae , Delphinium , Brassicaceae/genética , ADN Complementario/genética , Expresión Génica Ectópica , Ácidos Grasos , Ácidos Grasos Monoinsaturados , Aceites de Plantas , Plantas Modificadas Genéticamente , Semillas/genética , Triglicéridos
15.
Genes Genet Syst ; 96(3): 129-139, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34148895

RESUMEN

In various coastal areas of Japan, naturalized radish populations are observed. Radish is a cruciferous plant and exhibits self-incompatibility, involving a system controlled by a single locus with multiple S alleles. Although the S allele diversity of radish cultivars and wild radishes has been characterized, the S allele distribution in naturalized populations has not yet been analyzed in relation to the positions of the plants in situ. Here, we show the S allele distribution in naturalized radish populations of Yakushima, a small island in the East China Sea, with positions of the plants. Radish plants were sampled in coastal areas in Yakushima, and their S alleles were detected and characterized. Most of the S alleles had been previously identified in radish cultivars. However, four novel S alleles, which may be unique to Yakushima, were also found. Moreover, seeds in siliques from plants growing in the study areas were sampled, and S allele determination in DNA extracted from these seeds suggested that the plants had exchanged their pollen among their close neighbors. There was also a problem in that the PCR amplification of some SRK alleles was difficult because of their sequence diversity in the naturalized populations, as occurs in cultivars. Our results suggest that the exchange of S alleles between cultivars and naturalized populations occurs and that S alleles in naturalized populations are highly diverse. The methodology established in our study should be applicable to other self-incompatible species to dissect the diversity of S allele distribution in naturalized populations.


Asunto(s)
Brassicaceae , Raphanus , Alelos , Brassicaceae/genética , Japón , Polen , Raphanus/genética
16.
PLoS One ; 16(3): e0248556, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33711072

RESUMEN

Eruca sativa Mill. (Brassicaceae) is an important edible vegetable and a potential medicinal plant due to the antibacterial activity of its seed oil. Here, the complete chloroplast (cp) genome of E. sativa was de novo assembled with a combination of long PacBio reads and short Illumina reads. The E. sativa cp genome had a quadripartite structure that was 153,522 bp in size, consisting of one large single-copy region of 83,320 bp and one small single-copy region of 17,786 bp which were separated by two inverted repeat (IRa and IRb) regions of 26,208 bp. This complete cp genome harbored 113 unique genes: 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Forty-nine long repetitive sequences and 69 simple sequence repeats were identified in the E. sativa cp genome. A codon usage analysis of the E. sativa cp genome showed a bias toward codons ending in A/T. The E. sativa cp genome was similar in size, gene composition, and linearity of the structural region when compared with other Brassicaceae cp genomes. Moreover, the analysis of the synonymous (Ks) and non-synonymous (Ka) substitution rates demonstrated that protein-coding genes generally underwent purifying selection pressure, expect ycf1, ycf2, and rps12. A phylogenetic analysis determined that E. sativa is evolutionarily close to important Brassica species, indicating that it may be possible to transfer favorable E. sativa alleles into other Brassica species. Our results will be helpful to advance genetic improvement and breeding of E. sativa, and will provide valuable information for utilizing E. sativa as an important resource to improve other Brassica species.


Asunto(s)
Brassicaceae/genética , Uso de Codones , Evolución Molecular , Genoma del Cloroplasto , Filogenia , Brassicaceae/clasificación , Proteínas de Cloroplastos/genética
17.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419225

RESUMEN

Hydroxy fatty acids (HFAs) have numerous industrial applications but are absent in most vegetable oils. Physaria lindheimeri accumulating 85% HFA in its seed oil makes it a valuable resource for engineering oilseed crops for HFA production. To discover lipid genes involved in HFA synthesis in P. lindheimeri, transcripts from developing seeds at various stages, as well as leaf and flower buds, were sequenced. Ninety-seven percent clean reads from 552,614,582 raw reads were assembled to 129,633 contigs (or transcripts) which represented 85,948 unique genes. Gene Ontology analysis indicated that 60% of the contigs matched proteins involved in biological process, cellular component or molecular function, while the remaining matched unknown proteins. We identified 42 P. lindheimeri genes involved in fatty acid and seed oil biosynthesis, and 39 of them shared 78-100% nucleotide identity with Arabidopsis orthologs. We manually annotated 16 key genes and 14 of them contained full-length protein sequences, indicating high coverage of clean reads to the assembled contigs. A detailed profiling of the 16 genes revealed various spatial and temporal expression patterns. The further comparison of their protein sequences uncovered amino acids conserved among HFA-producing species, but these varied among non-HFA-producing species. Our findings provide essential information for basic and applied research on HFA biosynthesis.


Asunto(s)
Brassicaceae/genética , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica/métodos , Metabolismo de los Lípidos/genética , Aceites de Plantas/metabolismo , Semillas/genética , Secuencia de Aminoácidos , Brassicaceae/metabolismo , Análisis por Conglomerados , Ácido Graso Desaturasas/clasificación , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/metabolismo , Homología de Secuencia de Aminoácido
18.
J Appl Genet ; 62(2): 199-205, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33409934

RESUMEN

Camelina sativa L. Crantz (Brassicaceae family), known as camelina, has gained new attention as a re-emerging oil seed crop. With a unique seed oil profile, with the majority of the fatty acids consisting of linolenic (C18:3), oleic (C18:1), linoleic (C18:2), and eicosenoic (C20:1), camelina oil is reported to be useful as a food oil and biofuel. However, there are still many unknown factors about the structure and genetic variability of this crop. Chromosomal localization of ribosomal DNA was performed using fluorescence in situ hybridization (FISH) with 5S rDNA and 25S rDNA sequences as molecular probes on mitotic chromosomes of enzymatically digested root-tip meristematic cells. Here, we present for the first time a comparative analysis of selected genotypes (cultivars, breeding lines and mutants) of C. sativa with the use of cytogenetic techniques. The main aim of the study was to determine the intraspecific and interspecific polymorphisms in the structure of chromosomes of selected accessions using conserved 5S and 25S rDNA repetitive sequences as molecular probes. The results were compared with C. microcarpa (closely related to C. sativa) rDNA gene loci distribution. The presence of minor rDNA sites was discussed and compared with other Brassicaceae species. In addition, demonstration karyograms of C. sativa and C. microcarpa mapped with rDNA probes were prepared based on the cv. "Przybrodzka" and GE2011-02 genotype, respectively. The use of 5S and 25S rDNA probes provided an insight on the genome structure of C. sativa at the cytogenetic level and can help to understand the genome organization of this crop. The putative role of cytogenetic markers in phylogenetic analyses of camelina was discussed, as well.


Asunto(s)
Brassicaceae , Fitomejoramiento , Brassicaceae/genética , Sondas de ADN , Genoma de Planta , Hibridación Fluorescente in Situ , Filogenia , Aceites de Plantas , ARN Ribosómico/genética , ARN Ribosómico 5S/genética
19.
Plant J ; 105(1): 182-196, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33107656

RESUMEN

Production of hydroxy fatty acids (HFAs) in transgenic crops represents a promising strategy to meet our demands for specialized plant oils with industrial applications. The expression of Ricinus communis (castor) OLEATE 12-HYDROXYLASE (RcFAH12) in Arabidopsis has resulted in only limited accumulation of HFAs in seeds, which probably results from inefficient transfer of HFAs from their site of synthesis (phosphatidylcholine; PC) to triacylglycerol (TAG), especially at the sn-1/3 positions of TAG. Phospholipase As (PLAs) may be directly involved in the liberation of HFAs from PC, but the functions of their over-expression in HFA accumulation and distribution at TAG in transgenic plants have not been well studied. In this work, the functions of lecithin:cholesterol acyltransferase-like PLAs (LCAT-PLAs) in HFA biosynthesis were characterized. The LCAT-PLAs were shown to exhibit homology to LCAT and mammalian lysosomal PLA2 , and to contain a conserved and functional Ser/His/Asp catalytic triad. In vitro assays revealed that LCAT-PLAs from the HFA-accumulating plant species Physaria fendleri (PfLCAT-PLA) and castor (RcLCAT-PLA) could cleave acyl chains at both the sn-1 and sn-2 positions of PC, and displayed substrate selectivity towards sn-2-ricinoleoyl-PC over sn-2-oleoyl-PC. Furthermore, co-expression of RcFAH12 with PfLCAT-PLA or RcLCAT-PLA, but not Arabidopsis AtLCAT-PLA, resulted in increased occupation of HFA at the sn-1/3 positions of TAG as well as small but insignificant increases in HFA levels in Arabidopsis seeds compared with RcFAH12 expression alone. Therefore, PfLCAT-PLA and RcLCAT-PLA may contribute to HFA turnover on PC, and represent potential candidates for engineering the production of unusual fatty acids in crops.


Asunto(s)
Brassicaceae/enzimología , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas de Plantas/metabolismo , Ricinus/enzimología , Arabidopsis/metabolismo , Brassicaceae/genética , Ácidos Grasos/metabolismo , Lisofosfolípidos , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Ricinus/genética , Semillas/metabolismo , Especificidad por Sustrato
20.
Database (Oxford) ; 20202020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33306801

RESUMEN

Camelina is an annual oilseed plant from the Brassicaceae family that is gaining momentum as a biofuel winter cover crop. However, a significant limitation in further enhancing its utility as a producer of oils that can be used as biofuels, jet fuels or bio-based products is the absence of a repository for all the gene expression and regulatory information that is being rapidly generated by the community. Here, we provide CamRegBase (https://camregbase.org/) as a one-stop resource to access Camelina information on gene expression and co-expression, transcription factors, lipid associated genes and genome-wide orthologs in the close-relative reference plant Arabidopsis. We envision this as a resource of curated information for users, as well as a repository of new gene regulation information.


Asunto(s)
Arabidopsis , Brassicaceae , Biocombustibles , Brassicaceae/genética , Aceites de Plantas , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA