Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0299198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635661

RESUMEN

Herpesviruses have two distinct life cycle stages, latency and lytic replication. Epstein-Barr virus (EBV), a gamma-herpesvirus, establishes latency in vivo and in cultured cells. Cell lines harboring latent EBV can be induced into the lytic cycle by treatment with chemical inducing agents. In the Burkitt lymphoma cell line HH514-16 the viral lytic cycle is triggered by butyrate, a histone deacetylase (HDAC) inhibitor. Butyrate also alters expression of thousands of cellular genes. However, valproic acid (VPA), another HDAC inhibitor with global effects on cellular gene expression blocks EBV lytic gene expression in Burkitt lymphoma cell lines. Valpromide (VPM), an amide derivative of VPA, is not an HDAC inhibitor, but like VPA blocks induction of the EBV lytic cycle. VPA and VPM are the first examples of inhibitors of initial stages of lytic reactivation. We compared the effects of VPA and VPM, alone and in combination with butyrate, on host cellular gene expression using whole transcriptome analysis (RNA-seq). Gene expression was analyzed 6 h after addition of the compounds, a time before the first EBV lytic transcripts are detected. The results address two alternative, yet possibly complementary, mechanisms for regulation of EBV lytic reactivation. First, cellular genes that were up- or down-regulated by butyrate, but no longer altered in the presence of VPA or VPM, represent genes that correlated with EBV lytic reactivation. Second, genes regulated similarly by VPA and VPM in the absence and presence of butyrate are candidates for suppressors of EBV reactivation. Two genes upregulated by the lytic cycle inhibitors, CHAC1 and SLC7A11, are related to redox status and the iron-dependent cell death pathway ferroptosis. This study generates new hypotheses for control of the latency to lytic cycle switch of EBV and provides the first description of effects of the anti-convulsant drug VPM on global human cellular gene expression.


Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Ácido Valproico/análogos & derivados , Humanos , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/genética , Herpesvirus Humano 4/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/metabolismo , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Activación Viral , Perfilación de la Expresión Génica , Butiratos/farmacología
2.
Phytomedicine ; 128: 155536, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513379

RESUMEN

BACKGROUND: Lung cancer, a chronic and heterogeneous disease, is the leading cause of cancer-related death on a global scale. Presently, despite a variety of available treatments, their effectiveness is limited, often resulting in considerable toxicity and adverse effects. Additionally, the development of chemoresistance in cancer cells poses a challenge. Trilobolide-6-O-isobutyrate (TBB), a natural sesquiterpene lactone extracted from Sphagneticola trilobata, has exhibited antitumor effects. Its pharmacological properties in NSCLC lung cancer, however, have not been explored. PURPOSE: This study evaluated the impact of TBB on the A549 and NCI-H460 tumor cell lines in vitro, examining its antiproliferative properties and initial mechanisms of cell death. METHODS: TBB, obtained at 98 % purity from S. trilobata leaves, was characterized using chromatographic techniques. Subsequently, its impact on inhibiting tumor cell proliferation in vitro, TBB-induced cytotoxicity in LLC-MK2, THP-1, AMJ2-C11 cells, as well as its effects on sheep erythrocytes, and the underlying mechanisms of cell death, were assessed. RESULTS: In silico predictions have shown promising drug-likeness potential for TBB, indicating high oral bioavailability and intestinal absorption. Treatment of A549 and NCI-H460 human tumor cells with TBB demonstrated a direct impact, inducing significant morphological and structural alterations. TBB also reduced migratory capacity without causing toxicity at lower concentrations to LLC-MK2, THP-1 and AMJ2-C11 cell lines. This antiproliferative effect correlated with elevated oxidative stress, characterized by increased levels of ROS, superoxide anion radicals and NO, accompanied by a decrease in antioxidant markers: SOD and GSH. TBB-stress-induced led to changes in cell metabolism, fostering the accumulation of lipid droplets and autophagic vacuoles. Stress also resulted in compromised mitochondrial integrity, a crucial aspect of cellular function. Additionally, TBB prompted apoptosis-like cell death through activation of caspase 3/7 stressors. CONCLUSION: These findings underscore the potential of TBB as a promising candidate for future studies and suggest its viability as an additional component in the development of novel anticancer drugs prototypes.


Asunto(s)
Butiratos , Neoplasias Pulmonares , Sesquiterpenos , Sesquiterpenos/farmacología , Butiratos/farmacología , Tracheophyta/química , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Humanos , Células A549 , Células THP-1 , Pruebas de Toxicidad , Movimiento Celular/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Animales
3.
J Nutr Biochem ; 127: 109590, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311045

RESUMEN

The role of the muscle circadian clock in regulating oxidative metabolism exerts a significant influence on whole-body energy metabolism; however, research on the connection between the muscle circadian clock and obesity is limited. Moreover, there is a lack of studies demonstrating the regulatory effects of dietary butyrate on muscle circadian clock and the resulting antiobesity effects. This study aimed to investigate the impacts of dietary butyrate on metabolic and microbiome alterations and muscle circadian clock in a diet-induced obesity model. Male Sprague-Dawley rats were fed a high-fat diet with or without butyrate. Gut microbiota and serum metabolome were analyzed, and molecular changes were examined using tissues and a cell line. Further correlation analysis was performed on butyrate-induced results. Butyrate supplementation reduced weight gain, even with increased food intake. Gut microbiome analysis revealed an increased abundance of Firmicutes in butyrate group. Serum metabolite profile in butyrate group exhibited reduced amino acid and increased fatty acid content. Muscle circadian clock genes were upregulated, resulting in increased transcription of fatty acid oxidation-related genes. In myoblast cells, butyrate also enhanced pan-histone acetylation via histone deacetylase inhibition, particularly modulating acetylation at the promoter of circadian clock genes. Correlation analysis revealed potential links between Firmicutes phylum, including certain genera within it, and butyrate-induced molecular changes in muscle as well as phenotypic alterations. The butyrate-driven effects on diet-induced obesity were associated with alterations in gut microbiota and a muscle-specific increase in histone acetylation, leading to the transcriptional activation of circadian clock genes and their controlled genes.


Asunto(s)
Relojes Circadianos , Microbioma Gastrointestinal , Animales , Ratas , Masculino , Relojes Circadianos/genética , Butiratos/farmacología , Butiratos/metabolismo , Histonas/metabolismo , Epigénesis Genética , Ratas Sprague-Dawley , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo
4.
Gut Microbes ; 16(1): 2297872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165200

RESUMEN

Hyperbaric oxygen (HBO) therapy is a well-established method for improving tissue oxygenation and is typically used for the treatment of various inflammatory conditions, including infectious diseases. However, its effect on the intestinal mucosa, a microenvironment known to be physiologically hypoxic, remains unclear. Here, we demonstrated that daily treatment with hyperbaric oxygen affects gut microbiome composition, worsening antibiotic-induced dysbiosis. Accordingly, HBO-treated mice were more susceptible to Clostridioides difficile infection (CDI), an enteric pathogen highly associated with antibiotic-induced colitis. These observations were closely linked with a decline in the level of microbiota-derived short-chain fatty acids (SCFAs). Butyrate, a SCFA produced primarily by anaerobic microbial species, mitigated HBO-induced susceptibility to CDI and increased epithelial barrier integrity by improving group 3 innate lymphoid cell (ILC3) responses. Mice displaying tissue-specific deletion of HIF-1 in RORγt-positive cells exhibited no protective effect of butyrate during CDI. In contrast, the reinforcement of HIF-1 signaling in RORγt-positive cells through the conditional deletion of VHL mitigated disease outcome, even after HBO therapy. Taken together, we conclude that HBO induces intestinal dysbiosis and impairs the production of SCFAs affecting the HIF-1α-IL-22 axis in ILC3 and worsening the response of mice to subsequent C. difficile infection.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Oxigenoterapia Hiperbárica , Ratones , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Inmunidad Innata , Oxigenoterapia Hiperbárica/efectos adversos , Interleucina-22 , Disbiosis/terapia , Linfocitos , Butiratos/farmacología , Ácidos Grasos Volátiles/farmacología , Antibacterianos/farmacología
5.
Adv Sci (Weinh) ; 11(12): e2306571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38235606

RESUMEN

Most patients with inflammatory bowel disease (IBD) develop anemia, which is attributed to the dysregulation of iron metabolism. Reciprocally, impaired iron homeostasis also aggravates inflammation. How this iron-mediated, pathogenic anemia-inflammation crosstalk is regulated in the gut remains elusive. Herein, it is for the first time revealed that anemic IBD patients exhibit impaired production of short-chain fatty acids (SCFAs), particularly butyrate. Butyrate supplementation restores iron metabolism in multiple anemia models. Mechanistically, butyrate upregulates ferroportin (FPN) expression in macrophages by reducing the enrichment of histone deacetylase (HDAC) at the Slc40a1 promoter, thereby facilitating iron export. By preventing iron sequestration, butyrate not only mitigates colitis-induced anemia but also reduces TNF-α production in macrophages. Consistently, macrophage-conditional FPN knockout mice exhibit more severe anemia and inflammation. Finally, it is revealed that macrophage iron overload impairs the therapeutic effectiveness of anti-TNF-α antibodies in colitis, which can be reversed by butyrate supplementation. Hence, this study uncovers the pivotal role of butyrate in preventing the pathogenic circuit between anemia and inflammation.


Asunto(s)
Anemia , Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Hierro/metabolismo , Butiratos/metabolismo , Butiratos/farmacología , Inhibidores del Factor de Necrosis Tumoral/metabolismo , Inflamación/metabolismo , Anemia/metabolismo , Macrófagos/metabolismo , Ratones Noqueados
6.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044688

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) causes post-weaning diarrhea in piglets, significantly impacting animal welfare and production efficiency. The two primary ETEC pathotypes associated with post-weaning diarrhea are ETEC F4 and ETEC F18. During the post-weaning period, piglets may be exposed to both ETEC F4 and ETEC F18. However, the effects of coinfection by both strains have not been studied. Short chain fatty acid feed additives, such as butyrate and valerate, are being investigated for their potential to improve animal performance and disease resistance. Therefore, this pilot experiment aimed to test the effects of butyrate glycerides or valerate glycerides on growth performance, diarrhea incidence, and immune responses of piglets under ETEC F4-ETEC F18 coinfection conditions. Twenty piglets were individually housed and assigned to one of the three dietary treatments immediately at weaning (21 to 24 d of age). The dietary treatments included control (basal diet formulation), control supplemented with 0.1% butyrate glycerides or 0.1% valerate glycerides. After a 7-d adaptation, all pigs were inoculated with ETEC F4 and ETEC F18 (0.5 × 109 CFU/1.5 mL dose for each strain) on three consecutive days. Pigs and feeders were weighed throughout the trial to measure growth performance. Fecal cultures were monitored for hemolytic coliforms, and blood samples were collected for whole blood and serum analysis. Pigs fed valerate glycerides tended (P = 0.095) to have higher final body weight compared with control. The overall severity of diarrhea was significantly (P < 0.05) lower in both treatment groups than control. Pigs fed valerate glycerides tended (P = 0.061) to have lower neutrophils and had significantly (P < 0.05) lower serum TNF-α on day 4 post-inoculation. This pilot experiment established an appropriate experimental dose for an ETEC F4-ETEC F18 coinfection disease model in weaned piglets. Results also suggest that butyrate glycerides and valerate glycerides alleviated diarrhea and regulated immune responses in piglets coinfected with ETEC F4 and ETEC F18.


Piglets suffer from post-weaning diarrhea associated with Enterotoxigenic Escherichia coli (ETEC) F4 and F18, two prevalent strains on swine farms globally. Short chain fatty acids (SCFAs), such as butyrate and valerate, are natural, organic compounds that could potentially promote intestinal health when used as dietary supplements. During the post-weaning period, piglets are vulnerable to simultaneous infection by ETEC F4 and F18. Therefore, this experiment aimed to develop an experimental disease model for coinfection with ETEC F4 and F18, employing a dose of 0.5 × 109 CFU/1.5 mL of each strain, administered over three consecutive days. In addition, the experiment evaluated treatment diets supplemented with 0.1% butyrate or valerate glycerides compared with the control diet. Results from this experiment revealed that the inoculation dose incited infection and diarrhea in piglets, implying its suitability for use in a disease challenge model. Moreover, the results indicated that the inclusion of butyrate and valerate glycerides to pig's diet reduced the severity of diarrhea. Furthermore, pigs fed SCFA glycerides exhibited lowered levels of inflammatory blood markers. In conclusion, the experimental dose induced diarrhea in piglets, and dietary supplementation of butyrate and valerate glycerides alleviated the severity of diarrhea while augmenting inflammatory status.


Asunto(s)
Coinfección , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Enfermedades de los Porcinos , Porcinos , Animales , Escherichia coli Enterotoxigénica/fisiología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/veterinaria , Butiratos/farmacología , Valeratos/farmacología , Valeratos/uso terapéutico , Coinfección/veterinaria , Diarrea/veterinaria , Dieta/veterinaria , Inmunidad , Enfermedades de los Porcinos/tratamiento farmacológico , Alimentación Animal/análisis
7.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2792-2802, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282939

RESUMEN

Genkwa Fols, Kansui Radix, and Euphorbiae Pekinensis Radix in Shizao Decoction(SZD) are toxic to intestinal tract. Jujubae Fructus in this prescription can alleviate the toxicity, but the mechanism is still unclear. Therefore, this study aims to explore the mechanism. To be specific, 40 normal Sprague-Dawley(SD) rats were classified into the normal group, high-dose and low-dose SZD groups, and high-dose and low-dose SZD without Jujubae Fructus(SZD-JF) groups. The SZD groups were given(ig) SZD, while SZD-JF groups received the decoction without Jujubae Fructus. The variation of body weight and spleen index were recorded. The patho-logical changes of intestinal tissue were observed based on hematoxylin and eosin(HE) staining. The content of malondialdehyde(MDA) and glutathione(GSH) and activity of superoxide dismutase(SOD) in intestinal tissue were measured to evaluate the intestinal injury. Fresh feces of rats were collected to detect intestinal flora structure by 16S ribosomal RNA gene(16S rDNA) sequencing technology. The content of fecal short chain fatty acids and fecal metabolites was determined by gas chromatography-mass spectrometer(GC-MS) and liquid chromatography-mass spectrometer ultra-fast liquid chromatography-quadrupole-time-of-flight mass spectrometer(UFLC-Q-TOF-MS), separately. Spearman's correlation analysis was employed to analyze the differential bacteria genera and differential metabolites. RESULTS:: showed that high-dose and low-dose SZD-JF groups had high content of MDA in intestinal tissue, low GSH content and SOD activity, short intestinal villi(P<0.05), low diversity and abundance of intestinal flora, variation in the intestinal flora structure, and low content of short chain fatty acids(P<0.05) compared with the normal group. Compared with high-dose and low-dose SZD-JF groups, high-dose and low-dose SZD groups displayed low content of MDA in intestinal tissue, high GSH content and SOD activity, recovery of the length of intestinal villi, increased abundance and diversity of intestinal flora, alleviation of dysbacteria, and recovery of the content of short chain fatty acids(P<0.05). According to the variation of intestinal flora and fecal metabolites after the addition of Jujubae Fructus, 6 differential bacterial genera(Lactobacillus, Butyricimonas, Clostridia_UCG-014, Prevotella, Escherichia-Shigella, Alistipes),4 differential short chain fatty acids(such as acetic acid, propionic acid, butyric acid, valeric acid) and 18 differential metabolites(such as urolithin A, lithocholic acid, and creatinine) were screened out. Beneficial bacteria such as Lactobacillus were in positive correlation with butyric acid and urolithin A(P<0.05). The pathogenic bacteria such as Escherichia-Shigella were in negative correlation with propionic acid and urolithin A(P<0.05). In summary, SZD-JF caused obvious intestinal injury to normal rats, which could lead to intestinal flora disorder. The addition of Jujubae Fructus can alleviate the disorder and relieve the injury by regulating intestinal flora and the metabolites. This study discusses the effect of Jujubae Fructus in relieving the intestinal injury caused by SZD and the mechanism from the perspective of intestinal flora-host metabolism, which is expected to serve as a reference for clinical application of this prescription.


Asunto(s)
Microbioma Gastrointestinal , Propionatos , Ratas , Animales , Ratas Sprague-Dawley , Propionatos/farmacología , Ácidos Grasos Volátiles/farmacología , Butiratos/farmacología
8.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(1): 33-45, 2023 Feb 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37283116

RESUMEN

OBJECTIVES: To explore the effect and mechanism of Chinese medicine Bushen Huatan formula in treatment of polycystic ovary syndrome (PCOS). METHODS: Twenty-four SPF female C57BL/6J mice were randomly divided into 3 groups with 8 animals in each group. Control group was given drinking water ad libitum; PCOS was induced by giving letrozole gavage and high-fat diet in model group and treatment group; treatment group received Bushen Huatan formula suspension for 35 d. The sex hormone levels of mice were detected by enzyme-linked immunosorbent assay. Ovary morphology was observed under light microscope after hematoxylin and eosin staining. The feces in the colon of mice were collected, and the gut microbiota was detected by 16S rRNA sequencing. The short chain fatty acids were detected by gas chromatography-mas spectrometry. The expression of peroxisome proliferator activated receptor (PPARγ) was detected by immunohistochemistry. The mRNA expression of mucin-2, occludin-1, tight junction protein zonula occludens 1 (ZO-1) and PPARγ in intestinal epithelium were detected by realtime RT-PCR. The expression of inducible nitric oxide synthase (iNOS) and PPARγ was detected by Western blotting. RESULTS: Compared with the control group, the body weight, serum levels of follicle stimulating hormone, luteinizing hormone and testosterone in the model group were increased, and serum levels of estradiol were decreased (all P<0.01); the ovarian structure under light microscope was consistent with the characteristics of PCOS. Compared with the model group, the serum levels of sex hormone and ovarian structure in treatment group were improved. The overall structure of gut microbiota in PCOS model mice changed. Compared with control group, there were significantly reduced abundance of Firmicutes, and increased abundance of Verrucomicrobia, Proteobacteria and Actinobacteria inthe model group at phylum level (all P<0.05); there were significantly reduced abundance of Lactobacillus, and increased abundance of Akkermansia, Lachnoclostridium, Lactococcus and Eubacterium_coprostanoligenes at genus level (all P<0.05). The disordered condition of gut microbiota was significantly improved in treatment group. Compared with control group, the contents of acetic acid, propionic acid and butyric acid in feces of model group were significantly decreased (all P<0.05); while the contents of propionic acid and butyric acid in treatment group were significantly increased compared with model control group (both P<0.05). Compared with control group, the mRNA expression of ZO-1 and protein expression of iNOS in model group were significantly increased, and the protein expression of PPARγ and the mRNA expressions of mucin-2 and occludin-1 were significantly decreased (all P<0.05). Compared with model group, the mRNA expression of ZO-1 and protein expression of iNOS in treatment group were decreased, and the protein expression of PPARγ and the mRNA expressions of mucin-2 and occludin-1 were increased. CONCLUSIONS: PCOS induced by letrozole high-fat diet induces microflora imbalance in mice. Chinese medicine Bushen Huatan formula may increase the level of short chain fatty acid by regulating gut microbiota, thereby activating the intestinal PPARγ pathway and improving intestinal barrier function to act as a cure for PCOS.


Asunto(s)
Microbioma Gastrointestinal , Síndrome del Ovario Poliquístico , Humanos , Ratones , Femenino , Animales , Síndrome del Ovario Poliquístico/tratamiento farmacológico , PPAR gamma/farmacología , Propionatos/farmacología , Mucina 2 , Letrozol , ARN Ribosómico 16S , Medicina Tradicional China , Ocludina/farmacología , Ratones Endogámicos C57BL , Hormonas Esteroides Gonadales/farmacología , Butiratos/farmacología , ARN Mensajero
9.
Biomed Pharmacother ; 163: 114862, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37167729

RESUMEN

Chronic fatigue syndrome (CFS) is a debilitating disease with no symptomatic treatment. Astragalus polysaccharide (APS), a component derived from the traditional Chinese medicine A. membranaceus, has significant anti-fatigue activity. However, the mechanisms underlying the potential beneficial effects of APS on CFS remain poorly understood. A CFS model of 6-week-old C57BL/6 male mice was established using the multiple-factor method. These mice underwent examinations for behavior, oxidative stress and inflammatory indicators in brain and intestinal tissues, and ileum histomorphology. 16 S rDNA sequencing analysis indicated that APS regulated the abundance of gut microbiota and increased production of short chain fatty acids (SCFAs) and anti-inflammatory bacteria. In addition, APS reversed the abnormal expression of Nrf2, NF-κB, and their downstream factors in the brain-gut axis and alleviated the reduction in SCFAs in the cecal content caused by CFS. Further, APS modulated the changes in serum metabolic pathways induced by CFS. Finally, it was verified that butyrate exerted antioxidant and anti-inflammatory effects in neuronal cells. In conclusion, APS could increase the SCFAs content by regulating the gut microbiota, and SCFAs (especially butyrate) can further regulate the oxidative stress and inflammation in the brain, thus alleviating CFS. This study explored the efficacy and mechanism of APS for CFS from the perspective of gut-brain axis and provides a reference to further explore the efficacy of APS and the role of SCFAs in the central nervous system.


Asunto(s)
Síndrome de Fatiga Crónica , Microbioma Gastrointestinal , Masculino , Animales , Ratones , Síndrome de Fatiga Crónica/tratamiento farmacológico , Ratones Endogámicos C57BL , Antiinflamatorios/farmacología , Ácidos Grasos Volátiles/metabolismo , Butiratos/farmacología , Polisacáridos/farmacología , Polisacáridos/uso terapéutico
10.
Small ; 19(36): e2301149, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37165608

RESUMEN

Sorafenib is an oral-administered first-line drug for hepatocellular carcinoma (HCC) treatment. However, the therapeutic efficacy of sorafenib is relatively low. Here, an oral delivery platform that increases sorafenib uptake by HCC and induces potent ferroptosis is designed. This platform is butyrate-modified nanoparticles separately encapsulated with sorafenib and salinomycin. The multifunctional ligand butyrate interacts with monocarboxylate transporter 1 (MCT-1) to facilitate transcytosis. Specifically, MCT-1 is differentially expressed on the apical and basolateral sides of the intestine, highly expressed on the surface of HCC cells but lowly expressed on normal hepatocytes. After oral administration, this platform is revealed to boost transepithelial transport effectively and continuously in the intestine, drug accumulation in the liver, and HCC cell uptake. Following drug release in cancer cells, sorafenib depletes glutathione peroxidase 4 and glutathione, consequently initiating ferroptosis. Meanwhile, salinomycin enhances intracellular iron and lipid peroxidation, thereby accelerating ferroptosis. In vivo experiments performed on the orthotopic HCC model demonstrate that this combination strategy induces pronounced ferroptosis damage and ignites a robust systemic immune response, leading to the effective elimination of tumors and establishment of systemic immune memory. This work provides a proof-of-concept demonstration that an oral delivery strategy for ferroptosis inducers may be beneficial for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/patología , Butiratos/farmacología , Butiratos/uso terapéutico , Línea Celular Tumoral , Absorción Intestinal
11.
Hepatology ; 78(1): 88-102, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36947402

RESUMEN

BACKGROUND AND AIMS: Gut microbiota are recognized to be important for anticancer therapy, yet the underlying mechanism is not clear. Here, through the analysis of clinical samples, we identify the mechanism by which the gut microbial metabolite butyrate inhibits HCC and then explore new strategies for HCC treatment. APPROACH AND RESULTS: In our study, we demonstrate that gut microbial metabolite butyrate improves anticancer therapy efficacy by regulating intracellular calcium homeostasis. Using liquid chromatography-mass spectrometry analysis, we found that butyrate metabolism is activated in HCC patients compared with healthy individuals. Butyrate levels are lower in the plasma of HCC patients by gas chromatography-mass spectrometry (GC-MS) analysis. Butyrate supplementation or depletion of short-chain Acyl-CoA dehydrogenase (SCAD) gene (ACADS), encoding a key enzyme for butyrate metabolism, significantly inhibits HCC proliferation and metastasis. The profiling analysis of genes upregulated by butyrate supplementation or ACADS knockdown reveals that calcium signaling pathway is activated, leading to dysregulation of intracellular calcium homeostasis and production of reactive oxygen species. Butyrate supplementation improves the therapy efficacy of a tyrosine kinase inhibitor sorafenib. On the basis of these findings, we developed butyrate and sorafenib coencapsulated mPEG-PLGA-PLL nanoparticles coated with anti-GPC3 antibody (BS@PEAL-GPC3) to prolong the retention time of drugs and enhance drug targeting, leading to high anticancer efficacy. BS@PEAL-GPC3 nanoparticles significantly reduce HCC progression. In addition, BS@PEAL-GPC3 nanoparticles display excellent HCC targeting with excellent safety. CONCLUSIONS: In conclusion, our findings provide new insight into the mechanism by which the gut microbial metabolites inhibit HCC progression, suggesting a translatable therapeutics approach to enhance the clinical targeted therapeutic efficacy.


Asunto(s)
Antineoplásicos , Butiratos , Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Sorafenib , Butiratos/farmacología , Calcio/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Homeostasis , Neoplasias Hepáticas/tratamiento farmacológico , Sorafenib/uso terapéutico , Antineoplásicos/uso terapéutico
12.
Int Immunopharmacol ; 117: 109742, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36822096

RESUMEN

Attapulgite is a kind of natural clay mineral. Its unique pore structure makes it an ideal adsorption material and carrier material. However, the beneficial effect of modified attapulgites (SLK) in livestock is still unknown. The study was aimed to investigate the beneficial effect of modified attapulgites on diarrhea. 135 piglets were randomly divided into 5 groups and fed with control diet, traditional antibiotic substitute (TAS) supplementation diet, 0.5 mg/kg SLK supplementation diet, 1 mg/kg SLK supplementation diet, and 1.5 mg/kg SLK supplementation diet. This experiment lased two weeks. According to our result, 1.5 mg/kg SLK supplementation diet significantly decreased diarrhea score and diarrhea frequency, and effectively increased survival rate (P < 0.05). Dietary supplementation with 1.5 mg/kg SLK significantly increased high density lipoprotein cholesterol (HDLC), and choline esterase (CHE) concentration in serum (P < 0.05). AS compared with TAS group, 1.5 mg/kg SLK supplementation diet significantly decreased villus height and increased goblet number in jejunum, and increased villus height and decreased goblet number in ileum (P < 0.05). 1.5 mg/kg SLK supplementation diet also significantly changed cecal microbial community composition, including increased Limosilactobacillus abundance (P < 0.05). 1.5 mg/kg SLK supplementation diet significantly increased colonic microbial community composition, including decreased Escherichia-shigella abundance and increased Limosilactobacillus abundance (P < 0.05). Moreover, 1.5 mg/kg SLK supplementation diet significantly increased valerate, propionate, butyrate, and total short chain fatty acid contents in colon (P < 0.05). Valerate, propionate, butyrate, and total short chain fatty acid significantly associated with Lactobacillus. Fourerenilla and Fourerenilla.unclassfied significantly associated with acetate contents in colon (P < 0.05). In conclusion, dietary supplementation with modified apptapulgites significantly regulate intestinal microbial community composition and alleviate intestinal epithelial barrier to prevent diarrhea in piglets.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal , Animales , Butiratos/farmacología , Diarrea/prevención & control , Suplementos Dietéticos/análisis , Propionatos/farmacología , Porcinos , Valeratos/farmacología , Destete
13.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36799118

RESUMEN

The objective of this study was to compare the effects of post-ruminal provision of Ca-butyrate (CaB) when delivered via abomasal dosing, and Ca-gluconate (CaG) when provided ruminally using a rumen protected form or using an unprotected form via abomasal dosing on short-chain fatty acid (SCFA) concentration throughout the GIT, nutrient digestibility, GIT barrier function, ruminal SCFA absorption, ruminal morphometrics, intestinal brush border enzyme activity, and blood parameters for beef heifers. Thirty-two beef heifers fitted with ruminal cannulas were used in a randomized complete block design and assigned to one of four treatments: 1) negative control (ruminal infusion of double-distilled water; CON); 2) abomasal infusion of CaB (AB; 0.0029% of BW); 3) abomasal infusion of CaG (AG; 0.0077% of BW); and 4) ruminal infusion of a hydrogenated fat-embedded CaG (RG; 0.0192% of BW) to provide ruminal protection. Excluding CON, treatments were designed to deliver the same amount of butyrate in the small intestine. Heifers were housed in individual pens and DMI was limited to 95% of voluntary intake to minimize a potential confounding effect of DMI on treatment responses. Total GIT barrier function was assessed on day 17 and SCFA disappearance was evaluated on day 21 using the temporarily isolated and washed reticulo-rumen technique. On day 28, heifers were slaughtered, and ruminal and colonic digesta were collected to assess SCFA concentration. Additionally, ruminal, jejunal, and colonic tissues were collected to assess SCFA fluxes and regional barrier function ex vivo using the Ussing chamber technique. For colonic digesta, both AB and CaG treatments reduced the proportion of acetate (P < 0.05) and increased the proportion on propionate (P < 0.05) compared to CON. Relative to CON, AB but not CaG treatments increased in vivo ruminal disappearance of total SCFA (P = 0.01), acetate (P = 0.03), propionate (P = 0.01), and butyrate (P > 0.01). Treatments did not affect (P ≥ 0.10) acetate and butyrate fluxes in the ruminal and colonic tissues when measured ex vivo; however, when compared with CON, AB tended to decrease (P = 0.09) mannitol flux across ruminal tissue. In addition, mannitol flux was affected (P < 0.01) by region, with greater mannitol flux across the jejunum than rumen and colon. We conclude that while both abomasal infusion of CaB and CaG affect the molar proportion of acetate and propionate in the colon, only abomasal CaB stimulated ruminal SCFA absorption for growing beef heifers.


Butyrate, a short-chain fatty acid (SCFA), has received attention due to its ability to promote gastrointestinal (GIT) health and development. However, butyrate in its free form presents a strong odor, limiting its use in diet formulation. Supplementation of butyrate precursors, such as gluconate, have been studied to enhance butyrate production in the GIT. This study evaluated the effects of post-ruminal infusion of Ca-butyrate (AB; 0.0029% of BW) and Ca-gluconate (AG; 0.0077% of BW) and ruminal infusion of a hydrogenated fat-embedded Ca-gluconate (RG; 0.0192% of BW) relative to control (CON; ruminal infusion of double-distilled water). Thirty-two beef heifers fitted with ruminal cannulas were fed for 28 d and GIT barrier function and ruminal SCFA absorption were assessed. At slaughter, the rumen, jejunum, and colon tissues were collected and barrier function and SCFA fluxes were assessed ex vivo. Relative to CON, AB but not AG and RG increased in vivo ruminal SCFA absorption and tended to increase ex vivo barrier function. Thus, the data presented in this study shows that butyrate and gluconate do not function through the same mode of action in the GIT of beef heifers.


Asunto(s)
Butiratos , Dieta , Bovinos , Animales , Femenino , Butiratos/farmacología , Butiratos/metabolismo , Dieta/veterinaria , Propionatos/metabolismo , Microvellosidades , Ácidos Grasos Volátiles/metabolismo , Gluconatos/metabolismo , Absorción Intestinal , Rumen/metabolismo , Alimentación Animal/análisis , Fermentación , Digestión/fisiología
14.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638279

RESUMEN

An experiment was conducted to determine how feeding calcium (Ca)-deficient diet would affect gastrointestinal pH and volatile fatty acids (VFAs), Ca digestibility, bone mineral density (BMD), and performance in nursery pigs; and if supplementation of nondigestible oligosaccharides would affect these same parameters. In total, 240 weaned pigs (BW = 7.1 kg) were placed into 80 pens with 3 pigs/pen. The eight dietary treatments consisted of: 1) positive control (PC, 0.83% total Ca), 2) negative control (NC, 0.50% total Ca), 3 and 4) NC + 5% or 7.5% soluble corn fiber (SCF), 5 and 6) NC + 5% or 7.5% resistant corn starch (rCS), 7 and 8) NC + 0.25% or 0.50% fat-protected butyrate (pBRT). Pigs were ad libitum fed the dietary treatments for 21 d to determine average daily gain (ADG), average daily feed intake (ADFI) and gain:feed ratio (GF) with a fecal sample collected from each pen to determine Ca digestibility using acid insoluble ash as the dietary marker, with 1 pig/pen euthanized on d 21 for collection of ileal and colon contents and the left humerus. Pigs fed the NC diet had a lower colonic pH compared with pigs fed the PC (P = 0.06) but no effect on total VFA was observed (P > 0.10). Pigs fed diets containing SCF and rCS had lower colonic pH and total VFA compared to pigs fed the NC diet (P ≤ 0.05). Pigs fed diets containing pBRT had greater colonic total VFA compared to pigs fed the NC diet (P ≤ 0.07), but no difference in colonic pH was observed (P > 0.10). Pigs fed the NC diet had a greater Ca digestibility compared to pigs fed the PC (P ≤ 0.01), with no treatment to the NC having any effect on Ca digestibility compared to pigs fed the NC (P > 0.10). There was no effect of dietary Ca level on BMD and no overall addition of feeding SCF, rCS, or pBRT on BMD compared to pigs fed the NC (P > 0.10). There was no impact on pig ADG, ADFI, or GF by reducing dietary Ca by 40% (i.e., pigs fed the NC) compared to pigs fed the PC (P > 0.10). Relative to pigs fed the NC, there was no overall effect of SCF, rCS, or pBRT on ADG, ADFI, or GF (P > 0.10). In conclusion, feeding young pigs a Ca-deficient diet reduced colonic pH, increased digestibility of Ca, but had no impact on bone mineralization or overall pig performance. Supplementation of nondigestible oligosaccharides pr protected butyrate had either no effect or an inconsistent effect on colonic pH, Ca, or PHOS digestibility, bone mineralization, or overall pig performance.


Calcium (Ca) is a major component of the skeleton in addition to being essential for growth and is imperative for bone mass development. Improvement in Ca absorption in Ca-deficient diets has been shown in human and rodent studies when nondigestible oligosaccharides have been consumed due to a modification of gastrointestinal conditions which increase mineral solubility. Because swine have been shown to be an excellent model for human nutrition research, an experiment was conducted to determine how a moderately Ca-deficient diet would affect gastrointestinal fermentation conditions, Ca and phosphorus (PHOS) digestibility, bone mineralization, and growth performance in nursery pigs; and if supplementation of nondigestible oligosaccharides would affect these same parameters. Results indicate that feeding young pigs a diet below recommended levels of Ca reduced colonic pH, increased apparent total-tract digestibility of Ca and PHOS, but had no impact on bone mineralization or overall pig performance. Supplementation of nondigestible oligosaccharides had inconsistent effects on colonic pH, and did not affect Ca or PHOS digestibility, bone mineralization, or overall pig performance.


Asunto(s)
Calcio , Fósforo , Porcinos , Animales , Calcio/farmacología , Zea mays , Almidón Resistente/farmacología , Butiratos/farmacología , Digestión , Calcio de la Dieta/farmacología , Dieta/veterinaria , Ácidos Grasos Volátiles/farmacología , Alimentación Animal/análisis
15.
Mol Nutr Food Res ; 67(1): e2200597, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382553

RESUMEN

SCOPE: Hepatic steatosis is a major health issue that can be attenuated by a healthy diet. This study investigates the effects and molecular mechanisms of butyrate, a dietary fiber metabolite of gut microbiota, on lipid metabolism in hepatocytes. METHODS AND RESULTS: This study examines the effects of butyrate (0-8 mM) on lipid metabolism in primary hepatocytes. The results show that butyrate (2 mM) consistently inhibits lipogenic genes and activates lipid oxidation-related gene expression in hepatocytes. Furthermore, butyrate modulates lipid metabolism genes, reduces fat droplet accumulation, and activates the calcium/calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 1 (HDAC1)-cyclic adenosine monophosphate response element binding protein (CREB) signaling pathway in the primary hepatocytes and liver of wild-type (WT) mice, but not in G-protein-coupled receptor 41 (GPR41) knockout and 43 (GPR43) knockout mice. This suggests that butyrate regulated hepatic lipid metabolism requires GPR41 and GPR43. Finally, the study finds that dietary butyrate supplementation (5%) ameliorates hepatic steatosis and abnormal lipid metabolism in the liver of mice fed a high-fat and fiber-deficient diet for 15 weeks. CONCLUSION: This work reveals that butyrate improves hepatic lipid metabolism through the GPR41/43-CaMKII/HDAC1-CREB pathway, providing support for consideration of butyrate as a dietary supplement to prevent the progression of NAFLD induced by the Western-style diet.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Butiratos/farmacología , Butiratos/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/farmacología , Dieta , Dieta Alta en Grasa/efectos adversos , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo
16.
Antioxid Redox Signal ; 38(4-6): 282-297, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35943883

RESUMEN

Aims: We performed a randomized, placebo-controlled trial, RIBOGUT, to study the effect of 2 weeks supplementation with either 50 or 100 mg/d of riboflavin on (i) Faecalibacterium prausnitzii abundance, (ii) gut microbiota composition, (iii) short-chain fatty acid (SCFA) profiles, and (iv) the satiety and gut hormones. Results: Neither dose of riboflavin, analyzed separately, impacted the abundance of F. prausnitzii, and only minor differences in SCFA concentrations were observed. However, combining the results of the 50 and 100 mg/d groups showed a significant increase in butyrate production. While the gut bacterial diversity was not affected by riboflavin supplementation, the complexity and stability of the bacterial network were enhanced. Oral glucose tolerance tests showed a trend of increased plasma insulin concentration and GLP-1 after 100 mg/d supplementation. Innovation: Dietary supplements, such as vitamins, promote health by either directly targeting host physiology or indirectly via gut microbiota modulation. Here, we show for the first time that riboflavin intervention changes the activity of the microbiota. The butyrate production increased after intervention and although the composition did not change significantly, the network of microbial interactions was enforced. Conclusion: This RIBOGUT study suggests that oral riboflavin supplementation promotes butyrate production in the absence of major shifts in gut microbiota composition. ClinicalTrials.gov Identifier: NCT02929459.


Asunto(s)
Butiratos , Microbioma Gastrointestinal , Butiratos/farmacología , Promoción de la Salud , Ácidos Grasos Volátiles/farmacología , Suplementos Dietéticos , Riboflavina/farmacología
17.
Atherosclerosis ; 362: 47-55, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36347649

RESUMEN

BACKGROUND AND AIMS: Choline has been shown to exert atherogenic effects in Apoe-/- and Ldlr-/- mice, related to its conversion by gut bacteria into trimethylamine (TMA) that is converted by the liver into the proinflammatory metabolite trimethylamine-N-oxide (TMAO). Since butyrate beneficially modulates the gut microbiota and has anti-inflammatory and antiatherogenic properties, the aim of the present study was to investigate whether butyrate can alleviate choline-induced atherosclerosis. To this end, we used APOE*3-Leiden.CETP mice, a well-established atherosclerosis-prone model with human-like lipoprotein metabolism. METHODS: Female APOE*3-Leiden.CETP mice were fed an atherogenic diet alone or supplemented with choline, butyrate or their combination for 16 weeks. RESULTS: Interestingly, choline protected against fat mass gain, increased the abundance of anti-inflammatory gut microbes, and increased the expression of gut microbial genes involved in TMA and TMAO degradation. Butyrate similarly attenuated fat mass gain and beneficially modulated the gut microbiome, as shown by increased abundance of anti-inflammatory and short chain fatty acid-producing microbes, and inhibited expression of gut microbial genes involved in lipopolysaccharide synthesis. Both choline and butyrate upregulated hepatic expression of flavin-containing monooxygenases, and their combination resulted in highest circulating TMAO levels. Nonetheless, choline, butyrate and their combination did not influence atherosclerosis development, and TMAO levels were not associated with atherosclerotic lesion size. CONCLUSIONS: While choline and butyrate have been reported to oppositely modulate atherosclerosis development in Apoe-/- and Ldlr-/- mice as related to changes in the gut microbiota, both dietary constituents did not affect atherosclerosis development while beneficially modulating the gut microbiome in APOE*3-Leiden.CETP mice.


Asunto(s)
Aterosclerosis , Butiratos , Colina , Microbioma Gastrointestinal , Animales , Femenino , Ratones , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Butiratos/farmacología , Proteínas de Transferencia de Ésteres de Colesterol/genética , Colina/farmacología , Metilaminas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE
18.
Bioprocess Biosyst Eng ; 45(12): 1979-1991, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36282328

RESUMEN

Interleukin-24 (IL-24) has specific inhibitory effects on the proliferation of various tumor cells with almost no toxicity to normal cells. The antitumor activity of recombinant human IL-24 protein produced in mammalian cells is much higher than that of bacteria, but its expression level is extremely low. Sodium butyrate (NaBu) was utilized as a media additive to increase protein expression in Chinese hamster ovary cells. The site-specific integrated engineered cells FCHO/IL-24 were treated with NaBu under different culture conditions (10% and 0.5% serum adherent culture, 0.5% serum suspension culture). First, 3 days of 1 mmol/L NaBu treatment significantly increased rhIL-24 expression level in FCHO/IL-24 cells by 119.94 ± 1.5% (**p < 0.01), 57.49 ± 2.4% (**p < 0.01), and 20.17 ± 3.03% (*p < 0.05) under the above culture conditions. Second, NaBu has a time- and dose-dependent inhibitory effect on FCHO/IL-24 proliferation and induces G0/G1 phase arrest. Under 10% and 0.5% serum adherent culture, G0/G1 phase cells were increased by 11.3 ± 0.5% (**p < 0.01) and 15.0 ± 2.6% (**p < 0.01), respectively. No induction of apoptosis was observed under a high dosage of NaBu treatment. These results suggest that NaBu increases rhIL-24 secretion via inhibiting cell cycle progression, thereby trapping cells in the highly productive G0/G1 phase. Finally, with increasing NaBu dose, glucose concentration increased (**p < 0.01) while lactic acid and ammonia concentrations reduced significantly (**p < 0.01) in 10% and 0.5% serum adherent culture supernatant. RNA-seq showed that NaBu treatment affected multiple tumor and immune-related pathways. In conclusion, NaBu treatment dramatically promoted rhIL-24 production in engineered FCHO/IL-24 cells by altering downstream pathways and inducing G0/G1 cell arrest with little effect on apoptosis.


Asunto(s)
Butiratos , Interleucinas , Cricetinae , Animales , Humanos , Células CHO , Cricetulus , Ácido Butírico/farmacología , Interleucinas/genética , Interleucinas/farmacología , Butiratos/farmacología
19.
J Anim Sci ; 100(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36130296

RESUMEN

Three experiments (EXP) were conducted to determine the effect of feed additives on performance, intestinal integrity, gastrointestinal volatile fatty acids (VFA), and energy and nutrient digestion in nonchallenged nursery pigs. In EXP 1, 480 pigs (6.36-kg body weight, BW) were placed into 96 pens with 5 pigs/pen, and allotted to 1 of 10 dietary treatments: 1) negative control containing no feed additive (NC), 2) NC + 44 mg chlortetracycline and 38.5 mg tiamulin/kg diet (CTsb), 3) NC + 5% resistant potato starch (RSpo), 4) NC + 5% soluble corn fiber (SCF), 5) NC + 5% sugar beet pulp (SBP), 6) NC + 0.30% fatty acid mix (FAM), 7) NC + 0.10% phytogenic blend of essential oils and flavoring compounds (PHY), 8) NC + 50 mg Cu and 1,600 mg zinc oxide/kg diet (CuZn), 9) NC + 5% resistant corn starch (RScn), and 10) NC + 0.05% ß-glucan (BG) for 28 d. There was no impact of dietary treatment on BW gain or feed intake (P ≥ 0.22). Pigs fed diets containing SCF, CTsb, and RSpo resulted in microbial community differences compared to pigs fed the NC (P < 0.05). In EXP 2, 48 barrows (12.8 kg BW) were selected at the end of EXP 1 and fed the same dietary treatments they had previously received: 1) NC, 2) NC + 5% RScn, 3) NC + 5% SCF, and 4) NC + FAM for 8 d. There was no effect of feeding diets containing RScn, SCF, or FAM on in vivo intestinal permeability (P ≤ 0.21). Ileal or colon pH, concentrations of VFA did not differ due to dietary treatment (P ≥ 0.36), but pigs fed diets containing FAM resulted in a greater butyric acid concentration in the cecum compared to pigs fed the NC (P ≤ 0.05). In EXP 3, 156 pigs (6.11 kg BW) were placed into 52 pens with 3 pigs/pen and allotted to 1 of 4 dietary treatments arranged in a factorial manner: 1) NC, 2) NC + 5% RSpo, 3) NC + 0.30% FAM, and 4) NC + 5% RSpo + 0.30% FAM for 24 d. Feeding pigs diets containing RSpo did not affect BW gain (P = 0.91) while pigs fed diets containing FAM grew improved BW gain (P = 0.09). Colonic butyric acid concentrations were greater in pigs fed diets containing RSpo (P = 0.03), while pigs fed diets containing FAM exhibited reduced total VFA concentrations (P = 0.11). The results indicate that supplementing diets with digestively resistant but fermentable fibers, short- and medium-chain fatty acids, or antibiotics do not have a consistent effect, positive or negative, on markers of intestinal integrity or barrier function, intestinal VFA patterns, ATTD of energy and nutrients, or on pig performance.


In-feed antimicrobials have been an important technology in swine production for protecting health and supporting growth. However, with legislative restrictions on the use of most antibiotics for growth promotion, research is needed to evaluate in-feed additives in replacing this growth promoting technology. Thus, strategies to enhance energy and nutrient digestibility, intestinal function and integrity, gastrointestinal volatile fatty acid concentrations, and microbial ecology in nursery pigs are desirable targets. The results of the three experiments conducted herein do not indicate that supplementing diets with digestively resistant but fermentable fibers, short-medium-chain fatty acids, or antibiotics have a consistent positive or negative effect on markers of intestinal integrity or barrier function, VFA patterns (ileal, cecal, or colon), ATTD of energy and nutrients, or pig performance.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Oligoelementos , Porcinos , Animales , Alimentación Animal/análisis , Digestión , Oligoelementos/farmacología , Antibacterianos/farmacología , Dieta/veterinaria , Zea mays , Ácidos Grasos Volátiles/farmacología , Almidón/farmacología , Butiratos/farmacología
20.
Vascul Pharmacol ; 146: 107096, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35952961

RESUMEN

Recent studies have shown that short-chain fatty acids (SCFAs), primarily acetate, propionate and butyrate, play a crucial role in the pathogenesis of cardiovascular disease. Whether SCFAs regulate vascular calcification, a common pathological change in cardiovascular tissues, remains unclear. This study aimed to investigate the potential role of SCFAs in vascular calcification. Using cellular and animal models of vascular calcification, we showed that butyrate significantly enhanced high phosphate (Pi)-induced calcification and osteogenic transition of vascular smooth muscle cells (VSMC) in vitro, whereas acetate and propionate had no effects. Subsequent studies confirmed that butyrate significantly promoted high Pi-induced aortic ring calcification ex vivo and high dose vitamin D3 (vD3)-induced mouse vascular calcification in vivo. Mechanistically, butyrate significantly inhibited histone deacetylase (HDAC) expression in VSMCs, and a pan HDAC inhibitor Trichostatin A showed similar inductive effects on calcification and osteogenic transition of VSMCs to butyrate. In addition, the SCFA sensing receptors Gpr41 and Gpr109a were primarily expressed by VSMCs, and butyrate induced the rapid activation of NF-κB, Wnt and Akt signaling in VSMCs. Intriguingly, the NF-κB inhibitor SC75741 significantly attenuated butyrate-induced calcification and the osteogenic gene Msx2 expression in VSMCs. We showed that knockdown of Gpr41 but not Gpr109a attenuated butyrate-induced VSMC calcification. This study reveals that butyrate accelerates vascular calcification via its dual effects on HDAC inhibition and NF-κB activation. Our data provide novel insights into the role of microbe-host interaction in vascular calcification, and may have implications for the development of potential therapy for vascular calcification.


Asunto(s)
FN-kappa B , Calcificación Vascular , Animales , Butiratos/metabolismo , Butiratos/farmacología , Células Cultivadas , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , FN-kappa B/metabolismo , Fosfatos , Propionatos/metabolismo , Propionatos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Calcificación Vascular/patología , Vitamina D
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA