Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Toxicology ; 461: 152898, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34403730

RESUMEN

Silver nanoparticles (AgNPs) are widely used in medical and commercial products for their unique antibacterial functions. However, the impact of AgNPs on human neural development is not well understood. To investigate the effect of AgNPs on human neural development, various doses of 20 nm citrate-coated AgNP (AgSC) were administered to human embryonic stem cell derived neural progenitors during the neuronal differentiation. Immunofluorescence staining with neuronal progenitor markers SOX2 (sex determining region Y-box 2) and Nestin (VI intermediate filament protein) showed that AgSC inhibited rosette formation, neuronal progenitor proliferation, and neurite outgrowth. Furthermore, AgSC promoted astrocyte activation and neuronal apoptosis. These adverse effects can be partially recovered with ascorbic acid. A genome-wide transcriptome analysis of both AgSC treated and untreated samples indicated that the most up-graduated genes were a group of Metallothionein (1F, 1E, 2A) proteins, a metal-binding protein that plays an essential role in metal homeostasis, heavy metal detoxification, and cellular anti-oxidative defence. The most significantly down-regulated genes were neuronal differentiation 6 (NEUROD6) and fork head box G1 (FOXG1). GO analyse indicated that the regulation of cholesterol biosynthetic process, neuron differentiation, synapse organization and pattern specification, oliogenesis, and neuronal apoptosis were the most impacted biological processes. KEGG pathway analyse showed that the most significantly impacted pathways were C5 isoprenoid, axon guidance, Notch, WNT, RAS-MAPK signalling pathways, lysosome, and apoptosis. Our data suggests that AgSCs interfered with metal homeostasis and cholesterol biosynthesis which induced oxidative stress, inhibited neurogenesis, axon guidance, and promoted apoptosis. Supplementation with ascorbic acid could act as an antioxidant to prevent AgSC-mediated neurotoxicity.


Asunto(s)
Ácido Cítrico/química , Células Madre Embrionarias Humanas/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata , Apoptosis/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Colesterol/biosíntesis , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/genética , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
2.
Commun Biol ; 4(1): 926, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326460

RESUMEN

Patients with cardiovascular comorbidities are more susceptible to severe infection with SARS-CoV-2, known to directly cause pathological damage to cardiovascular tissue. We outline a screening platform using human embryonic stem cell-derived cardiomyocytes, confirmed to express the protein machinery critical for SARS-CoV-2 infection, and a SARS-CoV-2 spike-pseudotyped virus system. The method has allowed us to identify benztropine and DX600 as novel inhibitors of SARS-CoV-2 infection in a clinically relevant stem cell-derived cardiomyocyte line. Discovery of new medicines will be critical for protecting the heart in patients with SARS-CoV-2, and for individuals where vaccination is contraindicated.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos/métodos , Células Madre Embrionarias Humanas/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/virología , SARS-CoV-2/fisiología , Benzotropina/farmacología , Humanos , Miocitos Cardíacos/citología , Péptidos/farmacología
3.
J Tradit Chin Med ; 41(2): 203-211, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33825399

RESUMEN

OBJECTIVE: To investigate whether Zichong granules (, ZCKL), a very effective herbal formula for treating infertility, have an impact on the differentiation of ovarian granulosa cells from human embryonic stem cells (hESCs) in vitro, and to explore the cellular mechanisms of its clinical effects. METHODS: Serum from ZCKL-medicated rats was prepared and used to treat mesoderm cells derived from hESCs for 6 d. Normal rat serum and a set of growth factors were used as negative and positive controls, respectively. RESULTS: ZCKL-medicated rat serum, but not normal rat serum, induced hESCs-derived mesoderm cells to differentiate into functional ovarian granulosa-like cells (OGLCs) in a similar manner to defined growth factors. The induced OGLCs resembled the morphology of native human granulosa cells, expressed granulosa cell-specific markers at both the mRNA and protein levels, produced high levels of estradiol and strongly responded to follicle-stimulating hormone stimulation. Furthermore, mRNA levels of follistatin, mothers against decapentaplegic homolog 8 and bone morphogenetic protein 6 were dynamically changed during the process. CONCLUSION: In the ZCKL treatment of infertility, one mechanism by which ZCKL may act is by influencing ovarian granulosa cell differentiation and development, possibly through the follistatin and BMP/SMAD signaling pathways.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Fármacos para la Fertilidad Femenina/farmacología , Células de la Granulosa/efectos de los fármacos , Células Madre Embrionarias Humanas/efectos de los fármacos , Infertilidad Femenina/fisiopatología , Animales , Células Cultivadas , Femenino , Células de la Granulosa/citología , Células Madre Embrionarias Humanas/citología , Humanos , Infertilidad Femenina/tratamiento farmacológico , Ovario/citología , Ovario/efectos de los fármacos , Ratas
4.
Stem Cells ; 39(5): 551-563, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33470497

RESUMEN

Protocols for specifying human primordial germ cell-like cells (hPGCLCs) from human embryonic stem cells (hESCs) remain hindered by differences between hESC lines, their derivation methods, and maintenance culture conditions. This poses significant challenges for establishing reproducible in vitro models of human gametogenesis. Here, we investigated the influence of activin A (ActA) during derivation and maintenance on the propensity of hESCs to differentiate into PGCLCs. We show that continuous ActA supplementation during hESC derivation (from blastocyst until the formation of the post-inner cell mass intermediate [PICMI]) and supplementation (from the first passage of the PICMI onwards) is beneficial to differentiate hESCs to PGCLCs subsequently. Moreover, comparing isogenic primed and naïve states prior to differentiation, we showed that conversion of hESCs to the 4i-state improves differentiation to (TNAP [tissue nonspecific alkaline phosphatase]+/PDPN [podoplanin]+) PGCLCs. Those PGCLCs expressed several germ cell markers, including TFAP2C (transcription factor AP-2 gamma), SOX17 (SRY-box transcription factor 17), and NANOS3 (nanos C2HC-type zinc finger 3), and markers associated with germ cell migration, CXCR4 (C-X-C motif chemokine receptor 4), LAMA4 (laminin subunit alpha 4), ITGA6 (integrin subunit alpha 6), and CDH4 (cadherin 4), suggesting that the large numbers of PGCLCs obtained may be suitable to differentiate further into more mature germ cells. Finally, hESCs derived in the presence of ActA showed higher competence to differentiate to hPGCLC, in particular if transiently converted to the 4i-state. Our work provides insights into the differences in differentiation propensity of hESCs and delivers an optimized protocol to support efficient human germ cell derivation.


Asunto(s)
Activinas/genética , Diferenciación Celular/genética , Células Germinativas/citología , Células Madre Embrionarias Humanas/citología , Blastocisto/citología , Cadherinas/genética , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/genética , Células Germinativas/crecimiento & desarrollo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Integrina alfa6/genética , Laminina/genética , Proteínas de Unión al ARN/genética , Receptores CXCR4/genética , Factores de Transcripción SOXF/genética , Transducción de Señal/genética , Factor de Transcripción AP-2/genética
5.
Aging (Albany NY) ; 12(8): 7411-7430, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32343674

RESUMEN

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great potential in biomedical applications. However, the immature state of cardiomyocytes obtained using existing protocols limits the application of hPSC-CMs. Unlike adult cardiac myocytes, hPSC-CMs generate ATP through an immature metabolic pathway-aerobic glycolysis, instead of mitochondrial oxidative phosphorylation (OXPHOS). Hence, metabolic switching is critical for functional maturation in hPSC-CMs. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is a key regulator of mitochondrial biogenesis and metabolism, which may help promote cardiac maturation during development. In this study, we investigated the effects of PGC-1α and its activator ZLN005 on the maturation of human embryonic stem cell-derived cardiomyocyte (hESC-CM). hESC-CMs were generated using a chemically defined differentiation protocol and supplemented with either ZLN005 or DMSO (control) on differentiating days 10 to 12. Biological assays were then performed around day 30. ZLN005 treatment upregulated the expressions of PGC-1α and mitochondrial function-related genes in hESC-CMs and induced more mature energy metabolism compared with the control group. In addition, ZLN005 treatment increased cell sarcomere length, improved cell calcium handling, and enhanced intercellular connectivity. These findings support an effective approach to promote hESC-CM maturation, which is critical for the application of hESC-CM in disease modeling, drug screening, and engineering cardiac tissue.


Asunto(s)
Bencimidazoles/farmacología , Metabolismo Energético/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Miocitos Cardíacos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Diferenciación Celular , Células Cultivadas , Proteínas de Choque Térmico , Células Madre Embrionarias Humanas/metabolismo , Humanos , Hipoglucemiantes , Miocitos Cardíacos/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/biosíntesis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/efectos de los fármacos , Ingeniería de Tejidos
6.
J Ocul Pharmacol Ther ; 36(1): 65-69, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31596637

RESUMEN

Purpose: Age-related macular degeneration (AMD) is a common disease trending towards epidemic proportions and is a leading cause of irreversible vision loss in people over the age of 65. A pathomechanism of AMD is death and/or dysfunction of retinal pigment epithelial (RPE) cells; RPE loss invariably results in photoreceptor atrophy. Treatment options for AMD are very limited, and include vitamin supplements and lifestyle changes. An exciting potential therapy currently being tested in clinical trials is transplantation of stem cell-derived RPE. Methods: We developed a NIH-registered embryonic stem line (CR-4), and in this study set out to determine if CR4-RPE are tolerated in normal mice and in murine models of retinal degeneration by injecting a bolus of CR4-RPE cells in the subretinal space of immunosuppressed wild-type, Mer mutant (Merkd), and Elovl4 deficient mice. Results: Mice with CR-RPE grafts were monitored daily, were examined routinely using OCT, and histology was prepared and examined at terminal end-points. Based on the parameters of the study, none of the animals with CR-RPE grafts (n=36) experienced any obvious adverse reactions. Conclusions: We conclude that transplanted CR-4 hES-derived RPE cells are well tolerated in immunosuppressed healthy and dystrophic murine retinas.


Asunto(s)
Células Madre Embrionarias Humanas/citología , Degeneración Macular/terapia , Epitelio Pigmentado de la Retina/citología , Animales , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Humanos , Degeneración Macular/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados
7.
Stem Cell Reports ; 13(6): 980-991, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31680058

RESUMEN

A major limitation in anti-tuberculosis drug screening is the lack of reliable and scalable models for homogeneous human primary macrophage cells of non-cancer origin. Here we report a modified protocol for generating homogeneous populations of macrophage-like cells from human embryonic stem cells. The induced macrophages, referred to as iMACs, presented similar transcriptomic profiles and characteristic immunological features of classical macrophages and were permissive to viral and bacterial infection, in particular Mycobacterium tuberculosis (Mtb). More importantly, iMAC production was amenable to scale up. To evaluate iMAC efficiency in high-throughput anti-tuberculosis drug screening, we performed a phenotypic screening against intracellular Mtb, involving a library of 3,716 compounds that included FDA-approved drugs and other bioactive compounds. Our primary screen identified 120 hits, which were validated in a secondary screen by dose-intracellular and -extracellular Mtb assays. Our confirmatory studies identified a novel anti-Mtb compound, 10-DEBC, also showing activity against drug-resistant strains.


Asunto(s)
Antituberculosos/farmacología , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Células Madre Embrionarias Humanas/citología , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Mycobacterium tuberculosis/efectos de los fármacos , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Macrófagos/citología , Macrófagos/inmunología , Fagocitosis/inmunología , Bibliotecas de Moléculas Pequeñas
8.
Stem Cell Res Ther ; 10(1): 324, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730021

RESUMEN

BACKGROUND: As the precursors of sperm and eggs, human primordial germ cells (hPGCs) emerge as early as weeks 2 to 3 of post-implantation development. Recently, robust hPGC induction models have been established in vitro with different protocols, but global 5mC/5hmC epigenetic reprogramming is not initiated in vitro. Previous studies found that vitamin C can enhance Tet (ten-eleven translocation) enzyme expression and improve 5hmC level in cells. But the effect of vitamin C supplementation on hPGC in vitro induction is still unknown. METHODS: We generated a gene-edited human embryonic stem cell (hESC) line carrying a BLIMP1-mkate2 reporter by CRISPR/Cas9 technology and used flow cytometry to optimize the PGC differentiation protocol; meanwhile, the expression of PGC genes (BLIMP1, TFAP2C, SOX17, OCT4) was evaluated by qRT-PCR. When different concentrations of vitamin C were added to the induction medium, the percentage of hPGCLCs (hPGC-like cells) was analyzed by flow cytometry; dot blot and ELISA were used to detect the levels of 5hmC and 5mC. The expression of TET enzymes was also evaluated by qRT-PCR. RESULTS: We optimized the PGC differentiation protocol with the BLIMP1-mkate reporter hESCs, and the efficiency of PGC induction in vitro can be improved to 30~40%. When 50 µg/mL vitamin C was added, the derived hPGCLCs not only upregulated the expression of key genes involved in human early germ cell development such as NANOS3, TFAP2C, BLIMP1, and SOX17, but also increased the levels of 5hmC and TET enzymes. CONCLUSIONS: Taken together, supplementation of vitamin C can promote the in vitro induction of hPGCLCs from hESCs, which might be related to vitamin C-mediated epigenetic regulations during the differentiation process.


Asunto(s)
Ácido Ascórbico/farmacología , Células Germinativas/citología , Células Madre Embrionarias Humanas/citología , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Línea Celular , Epigénesis Genética/efectos de los fármacos , Genes Reporteros , Células Germinativas/efectos de los fármacos , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo
9.
Methods Mol Biol ; 2005: 125-151, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31175650

RESUMEN

Human pluripotent stem (PS) cells can be isolated from preimplantation embryos or by reprogramming of somatic cells or germline progenitors. Human PS cells are considered the "holy grail" of regenerative medicine because they have the potential to form all cell types of the adult body. Because of their similarity to humans, nonhuman primate (NHP) PS cells are also important models for studying human biology and disease, as well as for developing therapeutic strategies and test bed for cell replacement therapy. This chapter describes adjusted methods for cultivation of PS cells from different primate species, including African green monkey, rhesus monkey, chimpanzee, and human. Supplementation of E8 medium and inhibitors of the Tankyrase and GSK3 kinases to various primate PS cell media reduce line-dependent predisposition for spontaneous differentiation in conventional PS cell cultures. We provide methods for basic characterization of primate PS cell lines, which include immunostaining for pluripotency markers such as OCT4 and TRA-1-60, as well as in vivo teratoma formation assay. We provide methods for generating alternative PS cells including region-selective primed PS cells, two different versions of naïve-like cells, and recently reported extended pluripotent stem (EPS) cells. These derivations are achieved by acclimation of conventional PS cells to target media, episomal reprogramming of somatic cells, or resetting conventional PS cells to a naïve-like state by overexpression of KLF2 and NANOG. We also provide methods for isolation of PS cells from human blastocysts. We describe how to generate interspecies primate-mouse chimeras at the blastocyst and postimplantation embryo stages. Systematic evaluation of the chimeric competency of human and primate PS cells will aid in efforts to overcome species barriers and achieve higher grade chimerism in postimplantation conceptuses that could enable organ-specific enrichment of human xenogeneic PS cell derivatives in large animals such as pigs and sheep.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Blastocisto/metabolismo , Quimera/embriología , Células Madre Embrionarias Humanas/metabolismo , Animales , Blastocisto/citología , Chlorocebus aethiops , Células Madre Embrionarias Humanas/citología , Humanos , Factor 4 Similar a Kruppel , Ratones , Ovinos , Porcinos
10.
Cell Stem Cell ; 24(3): 487-497.e7, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30799279

RESUMEN

Human brain organoid techniques have rapidly advanced to facilitate investigating human brain development and diseases. These efforts have largely focused on generating telencephalon due to its direct relevance in a variety of forebrain disorders. Despite its importance as a relay hub between cortex and peripheral tissues, the investigation of three-dimensional (3D) organoid models for the human thalamus has not been explored. Here, we describe a method to differentiate human embryonic stem cells (hESCs) to thalamic organoids (hThOs) that specifically recapitulate the development of thalamus. Single-cell RNA sequencing revealed a formation of distinct thalamic lineages, which diverge from telencephalic fate. Importantly, we developed a 3D system to create the reciprocal projections between thalamus and cortex by fusing the two distinct region-specific organoids representing the developing thalamus or cortex. Our study provides a platform for understanding human thalamic development and modeling circuit organizations and related disorders in the brain.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Células Madre Embrionarias Humanas/citología , Organoides/citología , Organoides/metabolismo , Tálamo/citología , Humanos , Modelos Biológicos
11.
Cell Stem Cell ; 24(2): 318-327.e8, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30554961

RESUMEN

Human protein-coding genes are often accompanied by divergently transcribed non-coding RNAs whose functions, especially in cell fate decisions, are poorly understood. Using an hESC-based cardiac differentiation model, we define a class of divergent lncRNAs, termed yin yang lncRNAs (yylncRNAs), that mirror the cell-type-specific expression pattern of their protein-coding counterparts. yylncRNAs are preferentially encoded from the genomic loci of key developmental cell fate regulators. Most yylncRNAs are spliced polyadenylated transcripts showing comparable expression patterns in vivo in mouse and in human embryos. Signifying their developmental function, the key mesoderm specifier BRACHYURY (T) is accompanied by yylncT, which localizes to the active T locus during mesoderm commitment. yylncT binds the de novo DNA methyltransferase DNMT3B, and its transcript is required for activation of the T locus, with yylncT depletion specifically abolishing mesodermal commitment. Collectively, we report a lncRNA-mediated regulatory layer safeguarding embryonic cell fate transitions.


Asunto(s)
Linaje de la Célula/genética , Proteínas Fetales/metabolismo , Mesodermo/metabolismo , Células Madre Pluripotentes/metabolismo , ARN Largo no Codificante/genética , Proteínas de Dominio T Box/metabolismo , Transcripción Genética , Animales , Diferenciación Celular , Línea Celular , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Sitios Genéticos , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ADN Metiltransferasa 3B
13.
Sci Rep ; 8(1): 14536, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30266924

RESUMEN

We examined a simultaneous combined spatiotemporal field potential duration (FPD) and cell-to-cell conduction time (CT) in lined-up shaped human embryonic stem cell-derived cardiomyocytes (hESC-CMs) using an on-chip multielectrode array (MEA) system to evaluate two origins of lethal arrhythmia, repolarization and depolarization. The repolarization index, FPD, was prolonged by E-4031 and astemizole, and shortened by verapamil, flecainide and terfenadine at 10 times higher than therapeutic plasma concentrations of each drug, but it did not change after lidocaine treatment up to 100 µM. CT was increased by astemizol, flecainide, terfenadine, and lidocaine at equivalent concentrations of Nav1.5 IC50, suggesting that CT may be an index of cardiac depolarization because the increase in CT (i.e., decrease in cell-to-cell conduction speed) was relevant to Nav1.5 inhibition. Fluctuations (short-term variability; STV) of FPD and CT, STVFPD and STVCT also discriminated between torsadogenic and non-torsadogenic compounds with significant increases in their fluctuation values, enabling precise prediction of arrhythmogenic risk as potential new indices.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Evaluación Preclínica de Medicamentos/instrumentación , Dispositivos Laboratorio en un Chip , Miocitos Cardíacos/efectos de los fármacos , Línea Celular , Desarrollo de Medicamentos/instrumentación , Diseño de Equipo , Células Madre Embrionarias Humanas/citología , Humanos , Miocitos Cardíacos/citología
14.
Int J Pharm ; 548(1): 62-72, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-29802900

RESUMEN

Oxidative stress has been implicated in the progression of age-related macular degeneration (AMD). Treatment with antioxidants seems to delay progression of AMD. In this study, we suggested an antioxidant delivery system based on redox-sensitive liposome composed of phospholipids and a diselenide centered alkyl chain. Dynamic light scattering assessment indicated that the liposomes had an average size of 140 nm with a polydispersity index below 0.2. The percentage of encapsulation efficiency of the liposomes was calculated by high-performance liquid chromatography. The carriers were loaded with N-acetyl cysteine as a model antioxidant drug. We demonstrated responsiveness of the nanocarrier and its efficiency in drug delivery in an oxidative stress model of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells. The modeled cells treated with diselenide containing liposomes loaded with 10 mM NAC, showed a better therapeutic effect with a cell metabolic activity of 90%, which was significantly higher compared to insensitive liposomes or NAC treated groups (P < 0.05). In addition, the expression of oxidative-sensitive gene markers in diselenide containing liposomes groups were improved. Our results demonstrated fabricated smart liposomes opens new opportunity for targeted treatment of retinal degeneration.


Asunto(s)
Acetilcisteína/administración & dosificación , Antioxidantes/administración & dosificación , Células Epiteliales/efectos de los fármacos , Selenio/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Liberación de Fármacos , Células Epiteliales/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos , Liposomas , Estrés Oxidativo , Fosfolípidos/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/citología
15.
Sci Rep ; 8(1): 3615, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29483626

RESUMEN

Arginine-vasopressin (AVP) neurons exist in the hypothalamus, a major region of the diencephalon, and play an essential role in water balance. Here, we established the differentiation method for AVP-secreting neurons from human embryonic stem cells (hESCs) by recapitulating in vitro the in vivo embryonic developmental processes of AVP neurons. At first, the differentiation efficiency was improved. That was achieved through the optimization of the culture condition for obtaining dorsal hypothalamic progenitors. Secondly, the induced AVP neurons were identified by immunohistochemistry and these neurons secreted AVP after potassium chloride stimulation. Additionally, other hypothalamic neuropeptides were also detected, such as oxytocin, corticotropin-releasing hormone, thyrotropin-releasing hormone, pro-opiomelanocortin, agouti-related peptide, orexin, and melanin-concentrating hormone. This is the first report describing the generation of secretory AVP neurons derived from hESCs. This method will be applicable to research using disease models and, potentially, for regenerative medicine of the hypothalamus.


Asunto(s)
Arginina Vasopresina/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteína Relacionada con Agouti/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Humanos , Hormonas Hipotalámicas/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Inmunohistoquímica , Melaninas/metabolismo , Neurofisinas/metabolismo , Orexinas/metabolismo , Oxitocina/metabolismo , Hormonas Hipofisarias/metabolismo , Precursores de Proteínas/metabolismo , Células Madre/citología , Células Madre/metabolismo , Vasopresinas/metabolismo
16.
Tissue Eng Part A ; 24(5-6): 361-368, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28548630

RESUMEN

Tendon healing is complex to manage because of the limited regeneration capacity of tendon tissue; stem cell-based tissue engineering approaches may provide alternative healing strategies. We sought to determine whether human embryonic stem cells (hESC) could be induced to differentiate into tendon-like cells by the addition of exogenous bone morphogenetic protein (BMP)12 (growth differentiation factor[GDF]7) and BMP13 (GDF6). hESC (SHEF-1) were maintained with or without BMP12/13 supplementation, or supplemented with BMP12/13 and the Smad signaling cascade blocking agent, dorsomorphin. Primary rat tenocytes were included as a positive control in immunocytochemistry analysis. A tenocyte-like elongated morphology was observed in hESC after 40-days continuous supplementation with BMP12/13 and ascorbic acid (AA). These cells displayed a tenomodulin expression pattern and morphology consistent with that of the primary tenocyte control. Analysis of tendon-linked gene transcription in BMP12/13 supplemented hESC demonstrated consistent expression of COL1A2, COL3A1, DCN, TNC, THBS4, and TNMD levels. Conversely, when hESCs were cultured in the presence of BMP12/13 and dorsomorphin COL3A1, DCN, and TNC gene expression and tendon matrix formation were inhibited. Taken together, we have demonstrated that hESCs are responsive to tenogenic induction via BMP12/13 in the presence of AA. The directed in vitro generation of tenocytes from pluripotent stem cells may facilitate the development of novel repair approaches for this difficult to heal tissue.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Diferenciación Celular , Matriz Extracelular/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Tendones/metabolismo , Animales , Línea Celular , Células Madre Embrionarias Humanas/citología , Humanos , Ratas , Ratas Sprague-Dawley , Tendones/citología
17.
J Tissue Eng Regen Med ; 12(2): 370-381, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28486747

RESUMEN

Biodegradable electrospun polycaprolactone scaffolds can be used to support bone-forming cells and could fill a thin bony defect, such as in cleft palate. Oscillatory fluid flow has been shown to stimulate bone production in human progenitor cells in monolayer culture. The aim of this study was to examine whether bone matrix production by primary human mesenchymal stem cells from bone marrow or jaw periosteal tissue could be stimulated using oscillatory fluid flow supplied by a standard see-saw rocker. This was investigated for cells in two-dimensional culture and within electrospun polycaprolactone scaffolds. From day 4 of culture onwards, samples were rocked at 45 cycles/min for 1 h/day, 5 days/week (rocking group). Cell viability, calcium deposition, collagen production, alkaline phosphatase activity and vascular endothelial growth factor secretion were evaluated to assess the ability of the cells to undergo bone differentiation and induce vascularisation. Both cell types produced more mineralized tissue when subjected to rocking and supplemented with dexamethasone. Mesenchymal progenitors and primary human mesenchymal stem cells from bone marrow in three-dimensional scaffolds upregulated mineral deposition after rocking culture as assessed by micro-computed tomography and alizarin red staining. Interestingly, vascular endothelial growth factor secretion, which has previously been shown to be mechanically sensitive, was not altered by rocking in this system and was inhibited by dexamethasone. Rocker culture may be a cost effective, simple pretreatment for bone tissue engineering for small defects such as cleft palate.


Asunto(s)
Calcificación Fisiológica , Células Madre/citología , Estrés Mecánico , Regulación hacia Arriba , Células Madre Adultas/citología , Células Madre Adultas/efectos de los fármacos , Células Madre Adultas/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Células Cultivadas , Dexametasona/farmacología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Maxilares/citología , Células Madre Mesenquimatosas/citología , Minerales/metabolismo , Periostio/citología , Poliésteres/química , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Andamios del Tejido/química , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Sci Rep ; 7(1): 16734, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196668

RESUMEN

Current induction methods of hepatocytes from human induced pluripotent stem cells (hiPSCs) are neither low cost nor stable. By screening a chemical library of 1,120 bioactive compounds and known drugs, we identified the α1-adrenergic receptor agonist methoxamine hydrochloride as a small molecule that promotes the differentiation of hiPSC-derived hepatoblasts into ALBUMIN+ hepatocyte-like cells. Other α1-adrenergic receptor agonists also induced the differentiation of hepatocyte-like cells, and an α1-receptor antagonist blocked the hepatic-inducing activity of methoxamine hydrochloride and that of the combination of hepatocyte growth factor (HGF) and Oncostatin M (OsM), two growth factors often used for the induction of hepatoblasts into hepatocyte-like cells. We also confirmed that treatment with methoxamine hydrochloride activates the signal transducer and activator of transcription 3 (STAT3) pathway downstream of IL-6 family cytokines including OsM. These findings allowed us to establish hepatic differentiation protocols for both mouse embryonic stem cells (mESCs) and hiPSCs using small molecules at the step from hepatoblasts into hepatocyte-like cells. The results of the present study suggest that α1-adrenergic agonists induce hepatocyte-like cells by working downstream of HGF and OsM to activate STAT3.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Hepatocitos/citología , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes Inducidas/citología , Metoxamina/farmacología , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Evaluación Preclínica de Medicamentos , Factor de Crecimiento de Hepatocito/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Oncostatina M/farmacología , Factor de Transcripción STAT3/metabolismo , Albúmina Sérica Humana/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Genome Res ; 27(7): 1139-1152, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28536180

RESUMEN

CTCF is an architectural protein with a critical role in connecting higher-order chromatin folding in pluripotent stem cells. Recent reports have suggested that CTCF binding is more dynamic during development than previously appreciated. Here, we set out to understand the extent to which shifts in genome-wide CTCF occupancy contribute to the 3D reconfiguration of fine-scale chromatin folding during early neural lineage commitment. Unexpectedly, we observe a sharp decrease in CTCF occupancy during the transition from naïve/primed pluripotency to multipotent primary neural progenitor cells (NPCs). Many pluripotency gene-enhancer interactions are anchored by CTCF, and its occupancy is lost in parallel with loop decommissioning during differentiation. Conversely, CTCF binding sites in NPCs are largely preexisting in pluripotent stem cells. Only a small number of CTCF sites arise de novo in NPCs. We identify another zinc finger protein, Yin Yang 1 (YY1), at the base of looping interactions between NPC-specific genes and enhancers. Putative NPC-specific enhancers exhibit strong YY1 signal when engaged in 3D contacts and negligible YY1 signal when not in loops. Moreover, siRNA knockdown of Yy1 specifically disrupts interactions between key NPC enhancers and their target genes. YY1-mediated interactions between NPC regulatory elements are often nested within constitutive loops anchored by CTCF. Together, our results support a model in which YY1 acts as an architectural protein to connect developmentally regulated looping interactions; the location of YY1-mediated interactions may be demarcated in development by a preexisting topological framework created by constitutive CTCF-mediated interactions.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Diferenciación Celular , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células-Madre Neurales/metabolismo , Factor de Transcripción YY1/metabolismo , Línea Celular , Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo , Células Madre Embrionarias Humanas/citología , Humanos , Células-Madre Neurales/citología
20.
Stem Cells Transl Med ; 6(3): 851-863, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28297582

RESUMEN

Atherosclerosis underlies many cardiovascular and cerebrovascular diseases. Nutraceuticals are emerging as a therapeutic moiety for restoring vascular health. Unlike small-molecule drugs, the complexity of ingredients in nutraceuticals often confounds evaluation of their efficacy in preclinical evaluation. It is recognized that the liver is a vital organ in processing complex compounds into bioactive metabolites. In this work, we developed a coculture system of human pluripotent stem cell-derived endothelial cells (hPSC-ECs) and human pluripotent stem cell-derived hepatocytes (hPSC-HEPs) for predicting vascular-protective effects of nutraceuticals. To validate our model, two compounds (quercetin and genistein), known to have anti-inflammatory effects on vasculatures, were selected. We found that both quercetin and genistein were ineffective at suppressing inflammatory activation by interleukin-1ß owing to limited metabolic activity of hPSC-ECs. Conversely, hPSC-HEPs demonstrated metabolic capacity to break down both nutraceuticals into primary and secondary metabolites. When hPSC-HEPs were cocultured with hPSC-ECs to permit paracrine interactions, the continuous turnover of metabolites mitigated interleukin-1ß stimulation on hPSC-ECs. We observed significant reductions in inflammatory gene expressions, nuclear translocation of nuclear factor κB, and interleukin-8 production. Thus, integration of hPSC-HEPs could accurately reproduce systemic effects involved in drug metabolism in vivo to unravel beneficial constituents in nutraceuticals. This physiologically relevant endothelial-hepatic platform would be a great resource in predicting the efficacy of complex nutraceuticals and mechanistic interrogation of vascular-targeting candidate compounds. Stem Cells Translational Medicine 2017;6:851-863.


Asunto(s)
Suplementos Dietéticos , Células Progenitoras Endoteliales/citología , Hígado/citología , Metaboloma , Células Madre Pluripotentes/citología , Sustancias Protectoras/farmacología , Medios de Cultivo Condicionados/farmacología , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Genisteína/farmacología , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Inflamación/patología , Interleucina-1beta/metabolismo , Metaboloma/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Quercetina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA