Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Transpl Immunol ; 76: 101766, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36464219

RESUMEN

Melanocyte damage, innate immune response, adaptive immune response, and immune inflammatory microenvironment disorders are involved in the development of the immunological pathogenic mechanism of vitiligo. Mesenchymal stem cells are considered an ideal type of cells for the treatment of vitiligo owing to their low immunogenicity, lower rates of transplant rejection, and ability to secrete numerous growth factors, exosomes, and cytokines in vivo. The regulation of signaling pathways related to oxidative stress and immune imbalance in the immunological pathogenesis of vitiligo can improve the immune microenvironment of tissue injury sites. In addition, co-transplantation with melanocytes can reverse the progression of vitiligo. Therefore, continuous in-depth research on the immunopathogenic mechanism involved in this disease and mesenchymal stem cell-based therapy is warranted for the treatment of vitiligo in the future.


Asunto(s)
Enfermedades del Sistema Inmune , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Vitíligo , Humanos , Vitíligo/terapia , Vitíligo/metabolismo , Melanocitos/metabolismo , Melanocitos/patología , Estrés Oxidativo , Enfermedades del Sistema Inmune/metabolismo , Células Madre Mesenquimatosas/patología
2.
J Ethnopharmacol ; 280: 114397, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34245831

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Spleen-invigorating pills (SIP) are composed of Codonopsis, fried Atractylodes, tangerine peel, Fructus aurantii immaturus (fried), fried hawthorn, and colored malt. SIP strengthens the spleen and increases appetite and is often used as a chemotherapy adjuvant. AIM OF THE STUDY: We aimed to explore the protective effects and mechanism of action for SIP on mouse bone marrow stromal cells (OP9) injured by 5-fluorouracil (5-FU). MATERIALS AND METHODS: The effects of SIP on OP9 cells injured by 5-FU were evaluated, and high-performance liquid chromatography (HPLC) was used as a quality control method. The experiments were divided into a control group, a model group, an epidermal growth factor (EGF) treatment group, and an SIP treatment group. The cell survival rate, apoptotic cell morphology, cell apoptosis rate, and the contents of caspase 3 were evaluated to determine the protective effects of SIP in OP9 cells injured by 5-FU. Network pharmacology was used to predict the mechanism through which SIP mediates anti-chemotherapy damage. The nitric oxide (NO) and nitric oxide synthase (iNOS) levels and the expression of nuclear factor erythroid-2 related factor 2 (Nrf2) and p62 protein were detected to explore the mechanism through which SIP mediates anti-chemotherapy damage through the regulation of oxidative stress. RESULTS: Cell counting kit-8 (CCK8) detection showed that 5-FU reduced OP9 cell survival, and SIP blocked the inhibition of OP9 cell growth induced by 5-FU. When OP9 cells were treated with both SIP (10 g L-1) and 5-FU (2.5 × 10-2 g L-1) for 24 h, compared with the model group, the early apoptosis rates significantly decreased, and the activity of caspase 3 was significantly reduced. The results of network pharmacology and Western blot showed that compared with the model group, in the SIP group, the NO levels decreased, iNOS release decreased, and the expression of Nrf2 and p62 proteins increased. CONCLUSION: The protective effects of SIP on OP9 cells injured by 5-FU were significant. SIP may play a cytoprotective role by mediating changes in oxidative stress-related proteins. The specific mechanism of action through which SIP mediates these effects remains to be further studied.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Fluorouracilo/toxicidad , Células Madre Mesenquimatosas/efectos de los fármacos , Bazo/efectos de los fármacos , Animales , Antimetabolitos Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Madre Mesenquimatosas/patología , Ratones , Farmacología en Red , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Bazo/citología , Bazo/patología
3.
Photochem Photobiol Sci ; 20(5): 699-714, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33945145

RESUMEN

Mesenchymal stem cells (MSCs) and photobiomodulation (PBM) both offer significant therapeutic potential in regenerative medicine. MSCs have the ability to self-renew and differentiate; giving rise to multiple cellular and tissue lineages that are utilised in repair and regeneration of damaged tissues. PBM utilises light energy delivered at a range of wavelengths to promote wound healing. The positive effects of light on MSC proliferation are well documented; and recently, several studies have determined the outcomes of PBM on mineralised tissue differentiation in MSC populations. As PBM effects are biphasic, it is important to understand the underlying cellular regulatory mechanisms, as well as, provide accurate details of the irradiation conditions, to optimise and standardise outcomes. This review article focuses on the use of red, near-infra-red (R/NIR) and blue wavelengths to promote the mineralisation potential of MSCs; and also reports on the possible molecular mechanisms which underpin transduction of these effects. A variety of potential photon absorbers have been identified which are reported to mediate the signalling mechanisms, including respiratory chain enzymes, flavins, and cryptochromes. Studies report that R/NIR and blue light stimulate MSC differentiation by enhancing respiratory chain activity and increasing reactive oxygen species levels; however, currently, there are considerable variations between irradiation parameters reported. We conclude that due to its non-invasive properties, PBM may, following optimisation, provide an efficient therapeutic approach to clinically support MSC-mediated hard tissue repair. However, to optimise application, further studies are required to identify appropriate light delivery parameters, as well as elucidate the photo-signalling mechanisms involved.


Asunto(s)
Terapia por Luz de Baja Intensidad , Células Madre Mesenquimatosas/metabolismo , Humanos , Rayos Infrarrojos , Células Madre Mesenquimatosas/patología
4.
J Cell Biochem ; 122(1): 29-42, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32951264

RESUMEN

Saffron (Crocus sativus L) is a well-known spice with active pharmacologic components including crocin, crocetin, safranal, and picrocrocin. Similar to crocin/crocetin, mesenchymal stem cells (MSCs) have been shown to display immunomodulatory and antioxidant properties, which could be beneficial in treatment of various diseases. In the current study, we have evaluated the effects of crocin and crocetin on the functions of MSCs. We used the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay to evaluate MSCs proliferation, and flow cytometry assay to measure the percentage of apoptotic MSCs and Tregs populations. Furthermore, we used the real-time polymerase chain reaction method to quantify messenger RNA (mRNA) expression of inflammatory and anti-inflammatory cytokines. Antioxidant assay was employed to quantify antioxidant parameters including nitric oxide and malondialdehyde levels besides superoxide dismutase activity. Our findings indicated that both crocin and crocetin at low concentrations (2.5 and 5 µM) exhibited significant effects on increasing MSCs viability and on protecting them against apoptosis-induced death. Furthermore, crocin and crocetin at low concentrations (2.5 and 5 µM) displayed a better antioxidant function. Moreover, increased Treg population was observed at lower doses. In addition, crocin/crocetin at low concentrations caused an elevation in mRNA expression of anti-inflammatory cytokines (transforming growth factor-ß, interleukin-10 [IL-10], and IL-4), while at higher doses (25 and 50 µM) they led to lowering inflammatory cytokines (IL-1ß, IL-6, IL-17, and interferon gamma). Altogether, both crocin and crocetin at lower concentrations exhibited more efficacies on MSCs with a better effect toward crocin. It seems that crocin and crocetin may be considered as complementary treatments for the patients who undergo MSCs transplantation.


Asunto(s)
Antioxidantes/farmacología , Carotenoides/farmacología , Células Madre Mesenquimatosas/patología , Esclerosis Múltiple/patología , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Vitamina A/análogos & derivados , Apoptosis , Proliferación Celular , Células Cultivadas , Crocus/química , Humanos , Inmunomodulación , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Vitamina A/farmacología
5.
Circ Arrhythm Electrophysiol ; 13(10): e008740, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32755466

RESUMEN

BACKGROUND: The mesenchymal stem cell (MSC), known to remodel in disease and have an extensive secretome, has recently been isolated from the human heart. However, the effects of normal and diseased cardiac MSCs on myocyte electrophysiology remain unclear. We hypothesize that in disease the inflammatory secretome of cardiac human MSCs (hMSCs) remodels and can regulate arrhythmia substrates. METHODS: hMSCs were isolated from patients with or without heart failure from tissue attached to extracted device leads and from samples taken from explanted/donor hearts. Failing hMSCs or nonfailing hMSCs were cocultured with normal human cardiac myocytes derived from induced pluripotent stem cells. Using fluorescent indicators, action potential duration, Ca2+ alternans, and spontaneous calcium release (SCR) incidence were determined. RESULTS: Failing and nonfailing hMSCs from both sources exhibited similar trilineage differentiation potential and cell surface marker expression as bone marrow hMSCs. Compared with nonfailing hMSCs, failing hMSCs prolonged action potential duration by 24% (P<0.001, n=15), increased Ca2+ alternans by 300% (P<0.001, n=18), and promoted spontaneous calcium release activity (n=14, P<0.013) in human cardiac myocytes derived from induced pluripotent stem cells. Failing hMSCs exhibited increased secretion of inflammatory cytokines IL (interleukin)-1ß (98%, P<0.0001) and IL-6 (460%, P<0.02) compared with nonfailing hMSCs. IL-1ß or IL-6 in the absence of hMSCs prolonged action potential duration but only IL-6 increased Ca2+ alternans and promoted spontaneous calcium release activity in human cardiac myocytes derived from induced pluripotent stem cells, replicating the effects of failing hMSCs. In contrast, nonfailing hMSCs prevented Ca2+ alternans in human cardiac myocytes derived from induced pluripotent stem cells during oxidative stress. Finally, nonfailing hMSCs exhibited >25× higher secretion of IGF (insulin-like growth factor)-1 compared with failing hMSCs. Importantly, IGF-1 supplementation or anti-IL-6 treatment rescued the arrhythmia substrates induced by failing hMSCs. CONCLUSIONS: We identified device leads as a novel source of cardiac hMSCs. Our findings show that cardiac hMSCs can regulate arrhythmia substrates by remodeling their secretome in disease. Importantly, therapy inhibiting (anti-IL-6) or mimicking (IGF-1) the cardiac hMSC secretome can rescue arrhythmia substrates.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/metabolismo , Señalización del Calcio , Insuficiencia Cardíaca/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mediadores de Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Comunicación Paracrina , Adulto , Anciano , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Estudios de Casos y Controles , Linaje de la Célula , Células Cultivadas , Técnicas de Cocultivo , Femenino , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/patología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Cinética , Masculino , Células Madre Mesenquimatosas/patología , Persona de Mediana Edad , Miocitos Cardíacos/patología , Fenotipo
6.
Hum Cell ; 33(3): 652-662, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32350750

RESUMEN

The tumor microenvironment (TM) is an essential factor of tumor progression. Mesenchymal stem cells (MSCs) are important components of the TM and play critical roles in cancer metastasis. Resveratrol (RES) is a potential antitumor drug that has attracted extensive attention. However, it remains unclear whether RES can exert its antitumor activity by targeting MSCs located in the TM. In this study, we demonstrated that the conditioned medium of gastric-cancer-derived MSCs (GC-MSCs) promoted gastric cancer (GC) metastasis and facilitated the progression of epithelialmesenchymal transition (EMT) of GC cells. However, after pretreatment with RES, the prometastatic effect of GC-MSCs on GC cells was reversed. Furthermore, RES reduced GC-MSC (IL-6, IL-8, MCP-1, VEGF) gene expression and protein secretion, and counteracted the activation of the GC-MSC-induced Wnt/ß-catenin signaling of GC cells, with less ß-catenin nuclear transport and declined expression of ß-catenin, CD44, and CyclinD3 in GC cells. Re-expression of ß-catenin impaired the inhibitory effect of RES on GC cells. In conclusion, RES restricted the mobility increase of GC cells and reversed the progress of EMT induced by GC-MSCs by inactivating the Wnt/ß-catenin signaling. GC-MSCs are promising target for RES in the inhibition of GC metastasis.


Asunto(s)
Células Madre Mesenquimatosas/fisiología , Metástasis de la Neoplasia/tratamiento farmacológico , Resveratrol/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Antineoplásicos Fitogénicos , Línea Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Células Madre Mesenquimatosas/patología , Terapia Molecular Dirigida , Fitoterapia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Microambiente Tumoral , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093391

RESUMEN

Hyperbaric oxygen (HBO) therapy has been reported to be beneficial for treating many conditions of inflammation-associated bone loss. The aim of this work was to in vitro investigate the effect of HBO in the course of osteogenesis of human Mesenchymal Stem Cells (MSCs) grown in a simulated pro-inflammatory environment. Cells were cultured with osteogenic differentiation factors in the presence or not of the pro-inflammatory cytokine Tumor Necrosis Factor-α (TNF-α), and simultaneously exposed daily for 60 min, and up to 21 days, at 2,4 atmosphere absolute (ATA) and 100% O2. To elucidate osteogenic differentiation-dependent effects, cells were additionally pre-committed prior to treatments. Cell metabolic activity was evaluated by means of the MTT assay and DNA content quantification, whereas osteogenic and vasculogenic differentiation was assessed by quantification of extracellular calcium deposition and gene expression analysis. Metabolic activity and osteogenic properties of cells did not differ between HBO, high pressure (HB) alone, or high oxygen (HO) alone and control if cells were pre-differentiated to the osteogenic lineage. In contrast, when treatments started contextually to the osteogenic differentiation of the cells, a significant reduction in cell metabolic activity first, and in mineral deposition at later time points, were observed in the HBO-treated group. Interestingly, TNF-α supplementation determined a significant improvement in the osteogenic capacity of cells subjected to HBO, which was not observed in TNF-α-treated cells exposed to HB or HO alone. This study suggests that exposure of osteogenic-differentiating MSCs to HBO under in vitro simulated inflammatory conditions enhances differentiation towards the osteogenic phenotype, providing evidence of the potential application of HBO in all those processes requiring bone regeneration.


Asunto(s)
Tejido Adiposo/metabolismo , Oxigenoterapia Hiperbárica , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica , Osteogénesis , Tejido Adiposo/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Inflamación/terapia , Células Madre Mesenquimatosas/patología
8.
Cell Rep ; 30(2): 555-570.e7, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31940496

RESUMEN

PDGFRα+ mesenchymal progenitor cells are associated with pathological fibro-adipogenic processes. Conversely, a beneficial role for these cells during homeostasis or in response to revascularization and regeneration stimuli is suggested, but remains to be defined. We studied the molecular profile and function of PDGFRα+ cells in order to understand the mechanisms underlying their role in fibrosis versus regeneration. We show that PDGFRα+ cells are essential for tissue revascularization and restructuring through injury-stimulated remodeling of stromal and vascular components, context-dependent clonal expansion, and ultimate removal of pro-fibrotic PDGFRα+-derived cells. Tissue ischemia modulates the PDGFRα+ phenotype toward cells capable of remodeling the extracellular matrix and inducing cell-cell and cell-matrix adhesion, likely favoring tissue repair. Conversely, pathological healing occurs if PDGFRα+-derived cells persist as terminally differentiated mesenchymal cells. These studies support a context-dependent "yin-yang" biology of tissue-resident mesenchymal progenitor cells, which possess an innate ability to limit injury expansion while also promoting fibrosis in an unfavorable environment.


Asunto(s)
Fibrosis/metabolismo , Células Madre Mesenquimatosas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Fibrosis/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Ratones Desnudos , Ratones Transgénicos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo
9.
Biomed Pharmacother ; 121: 109676, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31810119

RESUMEN

OBJECTIVE: Oxidative stress is increasingly recognized as a risk factor associated with the development and progression of osteoporosis. Fufang Lurong Jiangu Capsule (FLJC) has a known anti-osteoporotic effect, but its pharmacological effect on osteoblasts is not clearly understood. This study was designed to investigate FLJC effects/mechanisms on in vitro hydrogen peroxide (H2O2)-induced oxidative damage of osteoblasts and on in vivo lipopolysaccharide (LPS)-induced mice bone loss. FLJC alleviates osteoporosis via unknown pharmacological mechanisms. METHODS: Chemical compositions of FLJC preparations were analyzed using high-performance liquid chromatographic fingerprinting. After rat bone marrow mesenchymal stem cell differentiation induction, resulting osteoblasts received various 48 h FLJC pretreatments before H2O2-based (200 µM) oxidative stress exposure. FLJC effects were measured on osteoblast cell viability, morphological changes, levels of intracellular reactive oxygen species (ROS), localization of mitochondria, activity of antioxidant enzymes, alkaline phosphatase (ALP) and mineralization, the secretion of Col I and expression of osteogenic markers. The percentages of apoptosis were determined by flow cytometric analysis; apoptosis-related protein levels, including nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) with or without Nrf2 inhibitor were analyzed via western blot. Hematoxylin and eosin (H&E) and ALP staining revealed in vivo FLJC effect on mice LPS-induced bone loss. RESULTS: Five chemical components in FLJC were identified, and fingerprint analysis showed good reproducibility. FLJC pretreatment significantly reduced H2O2-induced ROS levels in osteoblasts and increased antioxidant enzyme activities to reduce oxidative damage. With regard to osteoblast differentiation, FLJC pretreatment increased ALP expression, as well as levels of mineralization and osteoblast markers. Additionally, FLJC protected against H2O2-induced apoptosis by inhibiting changes in expression of major Bcl-2 family effector proteins of the mitochondrial apoptosis pathway. Furthermore, FLJC protected cells from H2O2-induced oxidative damage by up-regulating Nrf2 and HO-1 protein levels. Finally, we confirmed that FLJC administration could reverse the bone loss in LPS-induced mice. CONCLUSION: These results indicate that FLJC may significantly attenuate oxidative damage of osteoblasts induced by H2O2 via the Nrf2/HO-1 signaling pathway, providing new insights to guide development of treatments for osteoporosis induced by oxidative injury.


Asunto(s)
Citoprotección/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Hemo-Oxigenasa 1/metabolismo , Peróxido de Hidrógeno/toxicidad , Células Madre Mesenquimatosas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Osteoblastos/patología , Estrés Oxidativo/efectos de los fármacos , Fosfatasa Alcalina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Resorción Ósea/patología , Calcificación Fisiológica/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Lipopolisacáridos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Sustancias Protectoras/farmacología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
10.
Lasers Med Sci ; 35(3): 547-556, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31338628

RESUMEN

Pathophysiologic conditions associated with diabetes mellitus affect mesenchymal stem cells (MSCs), and this phenomenon may lead to some diabetic secondary complications. The present study was conducted to evaluate the impact of photobiomodulation (PBM) on rat diabetic MSC (DMSC) behavior in vitro. For the purpose of PBM, we used helium-neon laser with a wavelength of 632.8 nm at three different energy densities (0.5, 1, 2 J/cm2) and radiation periodicity of once, twice, and thrice. The survival, proliferation, and apoptosis in the normal MSCs (NMSCs), DMSCs, and diabetic MSCs, which were laser irradiated (DMSCs+L), were assessed using MTT assay, Ki67 immunofluorescence staining, and TUNEL assay, respectively. Our results demonstrated that DMSCs have significantly lower survival (P < 0.05) and proliferation rates (P < 0.001), and dramatically higher population doubling time (PDT, P < 0.001) and apoptosis rates (P < 0.001) as compared to NMSCs. Moreover, PBM with energy density of 1 J/cm2 and the periodicity of 1 or 2 times could improve diabetic MSC capabilities in the term of survival, proliferation, and apoptosis. Considering these findings, it is suggested that PBM could improve the ability of diabetic MSCs in vitro prior to transplantation or may rise their capabilities in their native niche in vivo.


Asunto(s)
Diabetes Mellitus/patología , Diabetes Mellitus/radioterapia , Terapia por Luz de Baja Intensidad , Células Madre Mesenquimatosas/patología , Células Madre Mesenquimatosas/efectos de la radiación , Animales , Apoptosis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Masculino , Ratas
11.
Exp Clin Transplant ; 18(4): 505-511, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-29957164

RESUMEN

OBJECTIVES: Wharton jelly mesenchymal stem cells are good candidates for application in different aspects of regenerative medicine, and their long-time banking is important. In this study, the effects of trehalose, ascorbic acid, and Y-27632 on proliferation and survival rate of these cells after cryopreservation were investigated. MATERIALS AND METHODS: Mesenchymal stem cells were isolated from human umbilical cord Wharton jelly and frozen using a slow-rate cooling process. Different concentrations of trehalose (35, 75, and 125 mM), ascorbic acid (0.06, 0.125, 0.25, and 0.5 mM), and Y-27632 (10 µM) were used to treat culture medium and/or to supplement freezing medium. Assessment of cell viability after thawing was performed using Trypan blue staining, and MTT assay was performed to measure the cell proliferation rate. RESULTS: We observed significantly increased postthaw viability, increased cell proliferation, and decreased doubling time of cells when 75 mM trehalose, 0.25 and 0.5 mM ascorbic acid, and 10 mM Y-27632 were used. In addition, increased viability, proliferation, and attachment were observed after 24 hours of pretreatment with these cryoprotective agents and when they were added to conventional freezing medium. CONCLUSIONS: The use of different cryoprotective agents in culture and freezing media could be useful for long-term storage of Wharton jelly mesenchymal stem cells.


Asunto(s)
Amidas/farmacología , Ácido Ascórbico/farmacología , Criopreservación , Crioprotectores/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Trehalosa/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Separación Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/enzimología , Células Madre Mesenquimatosas/patología , Fenotipo , Gelatina de Wharton/citología , Quinasas Asociadas a rho/metabolismo
12.
J Biomed Mater Res B Appl Biomater ; 108(1): 174-182, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30950569

RESUMEN

The application of strontium is one option for the clinical treatment of osteoporosis-a disease characterized by reduced bone density and quality-in order to reduce the risk of vertebral and nonvertebral fractures. Unlike other drugs used in osteoporosis therapy, strontium shows a dual effect on bone metabolism by attenuating cellular resorption and simultaneously enhancing new bone tissue formation. Current concerns regarding the systemic application of highly dosed strontium ranelate led to the development of strontium-modified scaffolds based on mineralized collagen (MCM) capable to release biologically active Sr2+ ions directly at the fracture site. In this study, we investigated the regenerative potential of these scaffolds. For in vitro investigations, human mesenchymal stromal cells were cultivated on the scaffolds for 21 days (w/ and w/o osteogenic supplements). Biochemical analysis revealed a significant promoting effect on proliferation rate and osteogenic differentiation on strontium-modified scaffolds. In vivo, scaffolds were implanted in a murine segmental bone defect model-partly additionally functionalized with the osteogenic growth factor bone morphogenetic protein 2 (BMP-2). After 6 weeks, bridging calluses were obtained in BMP-2 functionalized scaffolds; the quality of the newly formed bone tissue by means of morphological scores was clearly enhanced in strontium-modified scaffolds. Histological analysis revealed increased numbers of osteoblasts and blood vessels, decreased numbers of osteoclasts, and significantly enhanced mechanical properties. These results indicate that the combined release of Sr2+ ions and BMP-2 from the biomimetic scaffolds is a promising strategy to enhance bone regeneration, especially in patients suffering from osteoporosis. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:174-182, 2020.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Regeneración Ósea , Fracturas del Fémur/terapia , Fémur/metabolismo , Células Madre Mesenquimatosas/metabolismo , Estroncio/farmacología , Andamios del Tejido , Animales , Callo Óseo/metabolismo , Callo Óseo/patología , Fracturas del Fémur/metabolismo , Fracturas del Fémur/patología , Fémur/patología , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Ratones Desnudos
13.
J Cell Biochem ; 121(2): 1541-1551, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31535402

RESUMEN

Mesenchymal stem cells (MSCs) have been proved to exert anti-inflammatory effects and regulate immune reactions. Traditional Chinese medicine (TCM), qi-fang-bi-min-tang, is effective for some patients with allergic diseases. However, it remains unclear whether MSCs combined with TCM could benefit the treatment of allergic rhinitis (AR). In this study, we reported an additional effect of TCM (qi-fang-bi-min-tang) on the therapy of AR under MSCs treatment. Intriguingly, we observed that TCM-treated MSCs significantly inhibited the symptoms of AR and reduced the pathological changes of nasal mucosa in ovalbumin (OVA)-induced rats. The expression levels of interferon Î³ (IFN-γ), interleukin-17 (IL-17), and IL-4 were significantly decreased in the plasma of AR rats after injection of TCM-treated MSCs. TCM-treated MSCs reduced the levels of histamine secreted by mast cells and immunoglobulin E (IgE) secreted by plasma cells. In addition, we found that MSCs combined with TCM had a better therapeutic effect than TCM alone on AR in an OVA-induced mouse model. After OVA induction, MSCs combined with TCM significantly reduced the ratio of T helper type 1 (Th1), Th2, and Th17, but increased the proportion of Treg in the spleen of mice. Consistently, the expression levels of IFN-γ, IL-4, and IL-17 were significantly decreased, but transforming growth factor-ß1 was significantly increased in the plasma of AR mice after treated with TCM and MSCs. Our results from both rats and mice indicated that the effects of TCM combined with MSCs on the AR might be through regulating the secretion of Th1, Th2, and Th17 cytokines. This study suggested that TCM (qi-fang-bi-min-tang)-treated MSCs could be used in the clinical therapy of AR.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Rinitis Alérgica/terapia , Aloinjertos , Animales , Citocinas/inmunología , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Sprague-Dawley , Rinitis Alérgica/inmunología , Rinitis Alérgica/patología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/patología
14.
Lasers Med Sci ; 35(3): 557-566, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31399862

RESUMEN

The probable positive effects of photobiomodulation therapy (PBMT) and oxytocin (OT) treatments together or alone were evaluated on cell viability along with the changes in the gene expression of Osteocalcin (OC), Osteoprotegerin (OPG), and Runt-related transcription factor 2 (Runx2) levels of sham (healthy)-Bone marrow mesenchymal stem cell(BMMSC) and ovariectomy-induced osteoporosis (OVX)-BMMSC. BMMSC was harvested from healthy and OVX rats and was cultured in osteogenic induction medium (OIM). There were five groups of BMMSCs: (1) sham -BMMSCs; (2) control -OVX-BMMSCs; (3) OT-treated-OVX-BMMSCs; (4) PBMT-treated-OVX-BMMSCs, and (5) OT + PBMT-OVX-BMMSCs. In all 5 groups, BMMSC viability and proliferation as well as gene expression of OC, OPG, and RUNX2 were evaluated. PBMT and PBMT + OT treatments showed a promising effect on the increased viability of OVX-BMMSC (ANOVA test; LSD test, p = 0.01, p = 0.002). The results of gene expression analysis revealed that the sham- BMMSCs responded optimally to OT treatment. It was also found that OVX-BMMSCs responded optimally to PBMT + OT and PBMT treatments at early and middle stages of osteogenic induction process. Nevertheless, they responded optimally to PBMT + OT and OT especially at the late stage of osteogenic induction process. PBMT and PBMT + OT treatments significantly increased viability of OVX-BMMSC in OIM in vitro. Both PBMT and PBMT + OT treatments could promote mineralization of OVX-BMMSC in the culture medium at early and middle stages of osteogenic induction process. Both OT and PBMT + OT treatments could promote mineralization of OVX-BMMSC in vitro at late stages of osteogenic induction process.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Calcificación Fisiológica/efectos de la radiación , Terapia por Luz de Baja Intensidad , Células Madre Mesenquimatosas/citología , Osteoporosis/patología , Osteoporosis/fisiopatología , Oxitocina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Terapia Combinada , Femenino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Células Madre Mesenquimatosas/efectos de la radiación , Osteoporosis/tratamiento farmacológico , Osteoporosis/radioterapia , Oxitocina/uso terapéutico , Ratas
15.
Chin J Nat Med ; 17(7): 506-516, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31514982

RESUMEN

MSC transplantation has been explored as a new clinical approach to stem cell-based therapies for bone diseases in regenerative medicine due to their osteogenic capability. However, only a small population of implanted MSC could successfully reach the injured areas. Therefore, enhancing MSC migration could be a beneficial strategy to improve the therapeutic potential of cell transplantation. Catharmus tinctorius volatile oil (CTVO) was found to facilitate MSC migration. Further exploration of the underlying molecular mechanism participating in the pro-migratory ability may provide a novel strategy to improve MSC transplantation efficacy. This study indicated that CTVO promotes MSC migration through enhancing ROCK2 mRNA and protein expressions. MSC migration induced by CTVO was blunted by ROCK2 inhibitor, which also decreased myosin light chain (MLC) phosphorylation. Meanwhile, the siRNA for ROCK2 inhibited the effect of CTVO on MSC migration ability and attenuated MLC phosphorylation, suggesting that CTVO may promote BMSC migration via the ROCK2/MLC signaling. Taken together, this study indicates that C. tinctorius volatile oil could enhance MSC migration via ROCK2/MLC signaling in vitro. C. tinctorius volatile oil-targeted therapy could be a beneficial strategy to improve the therapeutic potential of cell transplantation for bone diseases in regenerative medicine.


Asunto(s)
Carthamus tinctorius/química , Movimiento Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Cadenas Ligeras de Miosina/metabolismo , Aceites Volátiles/farmacología , Quinasas Asociadas a rho/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Cadenas Ligeras de Miosina/genética , Aceites Volátiles/química , Fosforilación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética
16.
Toxicon ; 169: 25-33, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31421160

RESUMEN

The hypothesis of this experiment is that mesenchymal stem cells (MSCs) are involved in the genesis of the bone metaplasia caused by Solanum glaucophyllum intoxication. We determined using liquid chromatography that 1 mL of plant extract contained 3.8 µl of 1,25(OH)2D3. The ability of 100 µL, 1 mL and 5 mL of extract/L, containing 1 nM (0.4 µg/L), 10 nM (4 µg/L) and 50 nM (20 µg/L) of 1,25(OH)2D3, respectively, in inducing the osteogenic differentiation in bone marrow MSCs from rats was tested. At the concentrations of 1 and 5 mL of extract/L of culture medium without osteogenesis-inducing factors, the plant extract induced the osteogenic differentiation of the MSCs, as was evidenced by the greater synthesis of mineralized matrix. At the higher concentration (5 mL of extract/L), an increase in the relative expression of BMP-2 gene was observed. It was concluded that rat bone marrow MSC culture is a good model for studying the effects of the S. glaucophyllum extract on the osteogenic differentiation of undifferentiated cells. Also, S. glaucophyllum extracts containing 10 nM (4 µg/L) and 50 nM (20 µg/L) of 1,25(OH)2D3 induce the osteogenic differentiation of MSCs, suggesting that this is one of the mechanisms by which S. glaucophyllum causes bone metaplasia.


Asunto(s)
Células Madre Mesenquimatosas/efectos de los fármacos , Metaplasia/inducido químicamente , Extractos Vegetales/toxicidad , Solanum glaucophyllum/química , Animales , Proteína Morfogenética Ósea 2/metabolismo , Huesos/patología , Cromatografía Liquida , Sialoproteína de Unión a Integrina/metabolismo , Células Madre Mesenquimatosas/patología , Osteopontina/metabolismo , Ratas , Pruebas de Toxicidad
17.
J Cell Physiol ; 234(10): 18053-18064, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30843215

RESUMEN

The matrix remodeling associated 7 (MXRA7) gene had been ill-studied and its biology remained to be discovered. Inspired by our previous findings and public datasets concerning MXRA7, we hypothesized that the MXRA7 gene might be involved in bone marrow mesenchymal stem cells (BMSCs) functions related to bone formation, which was checked by utilizing in vivo or in vitro methodologies. Micro-computed tomography of MXRA7-deficient mice demonstrated retarded osteogenesis, which was reflected by shorter femurs, lower bone mass in both trabecular and cortical bones compared with wild-type (WT) mice. Histology confirmed the osteopenia-like feature including thinner growth plates in MXRA7-deficient femurs. Immunofluorescence revealed less osteoblasts in MXRA7-deficient femurs. Polymerase chain reaction or western blot analysis showed that when WT BMSCs were induced to differentiate toward osteoblasts or adipocytes in culture, MXRA7 messenger RNA or protein levels were significantly increased alongside osteoblasts induction, but decreased upon adipocytes induction. Cultured MXRA7-deficient BMSCs showed decreased osteogenesis upon osteogenic differentiation induction as reflected by decreased calcium deposition or lower expression of genes responsible for osteogenesis. When recombinant MXRA7 proteins were supplemented in a culture of MXRA7-deficient BMSCs, osteogenesis or gene expression was fully restored. Upon osteoblast induction, the level of active ß-catenin or phospho-extracellular signal-regulated kinase in MXRA7-deficient BMSCs was decreased compared with that in WT BMSCs, and these impairments could be rescued by recombinant MXRA7 proteins. In adipogenesis induction settings, the potency of MXRA7-deficient BMSCs to differentiate into adipocytes was increased over the WT ones. In conclusion, this study demonstrated that MXRA7 influences bone formation via regulating the balance between osteogenesis and adipogenesis in BMSCs.


Asunto(s)
Enfermedades Óseas Metabólicas/metabolismo , Diferenciación Celular , Fémur/metabolismo , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Adipocitos/metabolismo , Adipocitos/patología , Adipogénesis , Animales , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/patología , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fémur/patología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Células Madre Mesenquimatosas/patología , Ratones Noqueados , Osteoblastos/patología , Fenotipo , Transducción de Señal , beta Catenina/metabolismo
18.
J Cell Biochem ; 120(6): 9906-9916, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30556154

RESUMEN

We investigated the effects of photobiomodulation therapy (PBMT) and conditioned medium (CM) of human bone marrow mesenchymal stem cells (hBM-MSC) individually and/or in combination on the stereological parameters and the expression of basic fibroblast growth factor (bFGF), hypoxia-inducible factor (HIF-1α), and stromal cell-derived factor-1α (SDF-1α) in a wound model infected with methicillin-resistant Staphylococcus aureus (MRSA) in diabetic rats. CM was provided by culturing hBM-MSCs. Type 1 diabetes mellitus (T1DM) was induced in 72 rats, divided into four groups, harboring 18 rats each: group 1 served as a control group, group 2 received PBMT, group 3 received CM, and group 4 received CM + PBMT. On days 4, 7, and 15, six animals from each group were euthanized and the skin samples were separated for stereology examination and gene expression analysis by real-time polymerase chain reaction. In the CM + PBMT, CM, and PBMT groups, significant decreases were induced in the number of neutrophils (1460 ± 93, 1854 ± 138, 1719 ± 248) and macrophages (539 ± 69, 804 ± 63, 912 ± 41), and significant increases in the number of fibroblasts (1073 ± 116, 836 ± 75, 912 ± 41) and angiogenesis (15 230 ± 516, 13 318 ± 1116, 14 041 ± 867), compared with those of the control group (2690 ± 371, 1139 ± 145, 566 ± 90, 12 585 ± 1219). Interestingly, the findings of the stereological examination in the CM + PBMT group were statistically more significant than those in the other groups. In the PBMT group, in most cases, the expression of bFGF, HIF-1α, and SDF-1α, on day 4 (27.7 ± 0.14, 28.8 ± 0.52, 27.5 ± 0.54) and day 7 (26.8 ± 1.4, 29.6 ± 1.4, 28.3 ± 1.2) were more significant than those in the control (day 4, 19.3 ± 0.42, 25.5 ± 0.08, 22.6 ± 0.04; day 7, 22.3 ± 0.22, 28.3 ± 0.59, 24.3 ± 0.19) and other treatment groups. The application of PBMT + CM induced anti-inflammatory and angiogenic activities, and hastened wound healing process in a T1 DM model of MRSA infected wound.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Terapia por Luz de Baja Intensidad , Staphylococcus aureus Resistente a Meticilina/metabolismo , Infecciones Estafilocócicas , Cicatrización de Heridas , Infección de Heridas , Animales , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Medios de Cultivo Condicionados/farmacología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/microbiología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/radioterapia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiología , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/radioterapia , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratas , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Infecciones Estafilocócicas/radioterapia , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/efectos de la radiación , Infección de Heridas/metabolismo , Infección de Heridas/microbiología , Infección de Heridas/patología , Infección de Heridas/radioterapia
19.
Lasers Med Sci ; 34(1): 169-178, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30456535

RESUMEN

The aim of this in vitro study was to evaluate the effects of low-level laser therapy (LLLT) at different energy intensities on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under healthy and inflammatory microenvironments. Human BMSCs and BMSCs from inflammatory conditions (i-BMSCs, BMSCs treated with tumor necrosis factor α; TNF-α) were subject to LLLT (Nd:YAG;1064 nm) at different intensities. We designed one control group (without irradiation) and four testing groups (irradiation at 2, 4, 8, and 16 J/cm2) for both BMSCs and i-BMSCs. Cell proliferation was measured using colony-forming unit fibroblast assay and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay. Osteogenic capacity of cells was determined by alkaline phosphatase (ALP) staining, ALP activity assay, Alizarin Red S staining and the mRNA transcript levels of genes runt-related transcription factor 2 (Runx2), ALP, and osteocalcin. Moreover, the effects of LLLT on secretion of TNF-α in BMSCs and i-BMSCs were measured by enzyme-linked immunosorbent assay. Our results demonstrated LLLT could significantly promote BMSC proliferation and osteogenesis at densities of 2 and 4 J/cm2. LLLT at density of 8 J/cm2 could promote the proliferation and osteogenesis of i-BMSCs. However, LLLT at 16 J/cm2 significantly suppressed the proliferation and osteogenesis of BMSCs both in healthy and in inflammatory microenvironment. Moreover, we also found that the expression of TNF-α was obviously inhibited by LLLT at 4, 8, and 16 J/cm2, in an inflammatory microenvironment. Considering these findings, LLLT could improve current in vitro methods of differentiating BMSCs under healthy and inflammatory microenvironments prior to transplantation.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Inflamación/patología , Terapia por Luz de Baja Intensidad , Células Madre Mesenquimatosas/patología , Células Madre Mesenquimatosas/efectos de la radiación , Osteogénesis/efectos de la radiación , Células de la Médula Ósea/citología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Células Cultivadas , Humanos , Interleucina-1/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
20.
PLoS One ; 13(9): e0201671, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30180158

RESUMEN

The high-throughput, label-free Corning Epic assay has applications in drug discovery, pharmacogenomics, cell receptor signaling, cell migration, and viral titration. The utility of Epic technology for biocompatibility testing has not been well established. In manufacturing of medical devices, in vitro and in vivo biocompatibility assessments are mandatory, according to ISO 10993. The new medical device regulation MDR 745/2017 specifies that ex vivo assays that can closely recapitulate in vivo scenarios are needed to better evaluate biomedical devices. We propose herein that Epic technology-which enables detection of variations in cell mass distribution-is suitable for biocompatibility screening of compounds. In this study, we challenged primary human osteoblasts, endothelial cells, and neurons derived from induced pluripotent stem cells with specific concentrations of methyl methacrylate (MMA). Polymeric MMA has long been applied in cranioplasty, where it makes contact with multiple cell types. Application of Epic technology yielded real-time cytotoxicity profiles for all considered cell types. The results were compared with those from microscopic observation of the same culture plate used in the Epic analyses. The Epic assay should be further examined for its utility for cell biology, genomics, and proteomics companion assays. Our results suggest that Epic technology can be applied to biocompatibility evaluation of human cells in medical device development.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Metilmetacrilato/toxicidad , Neuronas/metabolismo , Evaluación Preclínica de Medicamentos/instrumentación , Evaluación Preclínica de Medicamentos/métodos , Humanos , Células Madre Pluripotentes Inducidas/patología , Células Madre Mesenquimatosas/patología , Neuronas/patología , Cultivo Primario de Células
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA