Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(46): e2308670120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37939085

RESUMEN

Understanding the neurobiological mechanisms underlying consciousness remains a significant challenge. Recent evidence suggests that the coupling between distal-apical and basal-somatic dendrites in thick-tufted layer 5 pyramidal neurons (L5PN), regulated by the nonspecific-projecting thalamus, is crucial for consciousness. Yet, it is uncertain whether this thalamocortical mechanism can support emergent signatures of consciousness, such as integrated information. To address this question, we constructed a biophysical network of dual-compartment thick-tufted L5PN, with dendrosomatic coupling controlled by thalamic inputs. Our findings demonstrate that integrated information is maximized when nonspecific thalamic inputs drive the system into a regime of time-varying synchronous bursting. Here, the system exhibits variable spiking dynamics with broad pairwise correlations, supporting the enhanced integrated information. Further, the observed peak in integrated information aligns with criticality signatures and empirically observed layer 5 pyramidal bursting rates. These results suggest that the thalamocortical core of the mammalian brain may be evolutionarily configured to optimize effective information processing, providing a potential neuronal mechanism that integrates microscale theories with macroscale signatures of consciousness.


Asunto(s)
Neuronas , Células Piramidales , Animales , Neuronas/fisiología , Células Piramidales/fisiología , Dendritas/fisiología , Tálamo/fisiología , Mamíferos
2.
Nat Commun ; 14(1): 6077, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770450

RESUMEN

Excitatory spiny stellate neurons are prominently featured in the cortical circuits of sensory modalities that provide high salience and high acuity representations of the environment. These specialized neurons are considered developmentally linked to bottom-up inputs from the thalamus, however, the molecular mechanisms underlying their diversification and function are unknown. Here, we investigated this in mouse somatosensory cortex, where spiny stellate neurons and pyramidal neurons have distinct roles in processing whisker-evoked signals. Utilizing spatial transcriptomics, we identified reciprocal patterns of gene expression which correlated with these cell-types and were linked to innervation by specific thalamic inputs during development. Genetic manipulation that prevents the acquisition of spiny stellate fate highlighted an important role for these neurons in processing distinct whisker signals within functional cortical columns, and as a key driver in the formation of specific whisker-related circuits in the cortex.


Asunto(s)
Neuronas , Vibrisas , Animales , Vibrisas/fisiología , Neuronas/metabolismo , Células Piramidales/fisiología , Neuritas , Corteza Somatosensorial/fisiología , Tálamo/fisiología
3.
Curr Biol ; 33(16): 3465-3477.e5, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37543035

RESUMEN

Regional brain activity often decreases from baseline levels in response to external events, but how neurons develop such negative responses is unclear. To study this, we leveraged the negative response that develops in the primary motor cortex (M1) after classical fear learning. We trained mice with a fear conditioning paradigm while imaging their brains with standard two-photon microscopy. This enabled monitoring changes in neuronal responses to the tone with synaptic resolution through learning. We found that M1 layer 5 pyramidal neurons (L5 PNs) developed negative tone responses within an hour after conditioning, which depended on the weakening of their dendritic spines that were active during training. Blocking this form of anti-Hebbian plasticity using an optogenetic manipulation of CaMKII activity disrupted negative tone responses and freezing. Therefore, reducing the strength of spines active at the time of memory encoding leads to negative responses of L5 PNs. In turn, these negative responses curb M1's capacity for promoting movement, thereby aiding freezing. Collectively, this work provides a mechanistic understanding of how area-specific negative responses to behaviorally relevant cues can be achieved.


Asunto(s)
Corteza Motora , Ratones , Animales , Espinas Dendríticas/fisiología , Congelación , Células Piramidales/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología
4.
J Physiol ; 601(2): 335-353, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515167

RESUMEN

Layer V neurons in the primary motor cortex (M1) are important for motor skill learning. Since pretreatment of either CNQX or APV in rat M1 layer V impaired rotor rod learning, we analysed training-induced synaptic plasticity by whole-cell patch-clamp technique in acute brain slices. Rats trained for 1 day showed a decrease in small inhibitory postsynaptic current (mIPSC) frequency and an increase in the paired-pulse ratio of evoked IPSCs, suggesting a transient decrease in presynaptic GABA release in the early phase. Rats trained for 2 days showed an increase in miniature excitatory postsynaptic current (mEPSC) amplitudes/frequency and elevated AMPA/NMDA ratios, suggesting a long-term strengthening of AMPA receptor-mediated excitatory synapses. Importantly, rotor rod performance in trained rats was correlated with the mean mEPSC amplitude and the frequency obtained from that animal. In current-clamp analysis, 1-day-trained rats transiently decreased the current-induced firing rate, while 2-day-trained rats returned to pre-training levels, suggesting dynamic changes in intrinsic properties. Furthermore, western blot analysis of layer V detected decreased phosphorylation of Ser408-409 in GABAA receptor ß3 subunits in 1-day-trained rats, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in 2-day-trained rats. Finally, live-imaging analysis of Thy1-YFP transgenic mice showed that the training rapidly recruited a substantial number of spines for long-term plasticity in M1 layer V neurons. Taken together, these results indicate that motor training induces complex and diverse plasticity in M1 layer V pyramidal neurons. KEY POINTS: Here we examined motor training-induced synaptic and intrinsic plasticity of layer V pyramidal neurons in the primary motor cortex. The training reduced presynaptic GABA release in the early phase, but strengthened AMPA receptor-mediated excitatory synapses in the later phase: acquired motor performance after training correlated with the strength of excitatory synapses rather than inhibitory synapses. As to the intrinsic property, the training transiently decreased the firing rate in the early phase, but returned to pre-training levels in the later phase. Western blot analysis detected decreased phosphorylation of Ser408-409 in GABAA receptor ß3 subunits in the acute phase, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in the later phase. Live-imaging analysis of Thy1-YFP transgenic mice showed rapid and long-term spine plasticity in M1 layer V neurons, suggesting training-induced increases in self-entropy per spine.


Asunto(s)
Corteza Motora , Receptores de GABA-A , Ratones , Ratas , Animales , Receptores de GABA-A/metabolismo , Receptores AMPA/metabolismo , Corteza Motora/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Plasticidad Neuronal/fisiología , Ácido gamma-Aminobutírico , Ratones Transgénicos
5.
Cell Rep ; 41(2): 111476, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223743

RESUMEN

Sensory signals are transmitted via the thalamus primarily to layer 4 (L4) of the primary sensory cortices. While information about average neuronal connectivity in L4 is available, its detailed higher-order circuit structure is not known. Here, we used three-dimensional electron microscopy for a connectomic analysis of the thalamus-driven inhibitory network in L4. We find that thalamic input drives a subset of interneurons with high specificity, which in turn target excitatory neurons with subtype specificity. These interneurons create a directed disinhibitory network directly driven by the thalamic input. Neuronal activity recordings show that strong synchronous sensory activation yields about 1.5-fold stronger activation of star pyramidal cells than spiny stellates, in line with differential windows of opportunity for activation of excitatory neurons in the thalamus-driven disinhibitory circuit model. With this, we have identified a high degree of specialization of the microcircuitry in L4 of the primary sensory cortex.


Asunto(s)
Conectoma , Interneuronas/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Tálamo/fisiología
6.
Science ; 376(6594): 724-730, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35549430

RESUMEN

Rapid eye movement (REM) sleep is associated with the consolidation of emotional memories. Yet, the underlying neocortical circuits and synaptic mechanisms remain unclear. We found that REM sleep is associated with a somatodendritic decoupling in pyramidal neurons of the prefrontal cortex. This decoupling reflects a shift of inhibitory balance between parvalbumin neuron-mediated somatic inhibition and vasoactive intestinal peptide-mediated dendritic disinhibition, mostly driven by neurons from the central medial thalamus. REM-specific optogenetic suppression of dendritic activity led to a loss of danger-versus-safety discrimination during associative learning and a lack of synaptic plasticity, whereas optogenetic release of somatic inhibition resulted in enhanced discrimination and synaptic potentiation. Somatodendritic decoupling during REM sleep promotes opposite synaptic plasticity mechanisms that optimize emotional responses to future behavioral stressors.


Asunto(s)
Dendritas , Plasticidad Neuronal , Corteza Prefrontal , Sueño REM , Animales , Dendritas/fisiología , Ratones , Plasticidad Neuronal/fisiología , Parvalbúminas/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Sueño REM/fisiología , Tálamo/citología , Tálamo/fisiología
7.
Neuroscience ; 494: 140-151, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35598701

RESUMEN

In Robo3R3-5cKO mouse brain, rhombomere 3-derived trigeminal principal nucleus (PrV) neurons project bilaterally to the somatosensory thalamus. As a consequence, whisker-specific neural modules (barreloids and barrels) representing whiskers on both sides of the face develop in the sensory thalamus and the primary somatosensory cortex. We examined the morphological complexity of layer 4 barrel cells, their postsynaptic partners in layer 3, and functional specificity of layer 3 pyramidal cells. Layer 4 spiny stellate cells form much smaller barrels and their dendritic fields are more focalized and less complex compared to controls, while layer 3 pyramidal cells did not show notable differences. Using in vivo 2-photon imaging of a genetically encoded fluorescent [Ca2+] sensor, we visualized neural activity in the normal and Robo3R3-5cKO barrel cortex in response to ipsi- and contralateral single whisker stimulation. Layer 3 neurons in control animals responded only to their contralateral whiskers, while in the mutant cortex layer 3 pyramidal neurons showed both ipsi- and contralateral whisker responses. These results indicate that bilateral whisker map inputs stimulate different but neighboring groups of layer 3 neurons which normally relay contralateral whisker-specific information to other cortical areas.


Asunto(s)
Corteza Somatosensorial , Vibrisas , Animales , Ratones , Neuronas/fisiología , Células Piramidales/fisiología , Corteza Somatosensorial/fisiología , Tálamo , Vibrisas/fisiología
8.
Neurobiol Aging ; 109: 113-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715442

RESUMEN

Layer 3 (L3) pyramidal neurons in aged rhesus monkey lateral prefrontal cortex (LPFC) exhibit significantly elevated excitability in vitro and reduced spine density compared to neurons in young subjects. The time-course of these alterations, and whether they can be ameliorated in middle age by the powerful anti-oxidant curcumin is unknown. We compared the properties of L3 pyramidal neurons from the LPFC of behaviorally characterized rhesus monkeys over the adult lifespan using whole-cell patch clamp recordings and neuronal reconstructions. Working memory (WM) impairment, neuronal hyperexcitability, and spine loss began in middle age. There was no significant relationship between neuronal properties and WM performance. Middle-aged subjects given curcumin exhibited better WM performance and less neuronal excitability compared to control subjects. These findings suggest that the appropriate time frame for intervention for age-related cognitive changes is early middle age, and points to the efficacy of curcumin in delaying WM decline. Because there was no relationship between excitability and behavior, the effects of curcumin on these measures appear to be independent.


Asunto(s)
Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Curcumina/administración & dosificación , Curcumina/farmacología , Suplementos Dietéticos , Memoria a Corto Plazo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/patología , Células Piramidales/efectos de los fármacos , Células Piramidales/patología , Factores de Edad , Envejecimiento/psicología , Animales , Femenino , Macaca mulatta , Masculino , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Factores de Tiempo
9.
Cereb Cortex ; 32(18): 3975-3989, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34905771

RESUMEN

The primary motor cortex (M1) integrates various long-range signals from other brain regions for the learning and execution of goal-directed movements. How the different inputs target the distinct apical and basal dendrites of M1 pyramidal neurons is crucial in understanding the functions of M1, but the detailed connectivity pattern is still largely unknown. Here, by combining cre-dependent rabies virus tracing, layer-specific chemical retrograde tracing, optogenetic stimulation, and electrophysiological recording, we mapped all long-range monosynaptic inputs to M1 deep output neurons in layer 5 (L5) in mice. We revealed that most upstream areas innervate both dendritic compartments concurrently. These include the sensory cortices, higher motor cortices, sensory and motor thalamus, association cortices, as well as many subcortical nuclei. Furthermore, the dichotomous inputs arise mostly from spatially segregated neuronal subpopulations within an upstream nucleus, and even in the case of an individual cortical layer. Therefore, these input areas could serve as both feedforward and feedback sources albeit via different subpopulations. Taken together, our findings revealed a previously unknown and highly intricate synaptic input pattern of M1L5 neurons, which implicates that the dendritic computations carried out by these neurons during motor execution or learning are far more complicated than we currently understand.


Asunto(s)
Corteza Motora , Animales , Dendritas/fisiología , Ratones , Corteza Motora/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Tálamo/fisiología
10.
Eur J Neurosci ; 55(2): 566-588, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34927292

RESUMEN

The effect of sensory deprivation on anatomical and physiological properties in two genetically defined types of layer 6 corticothalamic pyramidal cells in mouse somatosensory barrel cortex was investigated using in vitro electrophysiology. The two types analysed were the L6-Ntsr1 subtype, found preferentially in the upper region of layer 6 and projecting to both ventral posterior medial nucleus of the thalamus and posterior medial nucleus of the thalamus, and the L6-Drd1a subtype, located mostly in the lower regions of layer 6 and projecting to posterior medial nucleus. We found that the apical dendrite in L6-Ntsr1 cells is longer and more branched, compared with L6-Drd1a cells, and that the increase in firing frequency with increasing current stimulation is steeper in L6-Drd1a cells. Sensory deprivation was achieved clipping one row of whiskers from birth until the day of experiment (16 ± 2 days). Mice of this age are actively exploring. In L6-Ntsr1, but not in L6-Drd1a cells, sensory deprivation decreased apical and basal dendrite outgrowth, and calcium influx evoked by backpropagating action potentials. These results contribute to the ongoing functional characterisation of corticothalamic layer 6 cells and indicate differences in the postnatal cortical refinement of two distinct corticothalamic circuits.


Asunto(s)
Privación Sensorial , Vibrisas , Animales , Ratones , Células Piramidales/fisiología , Privación Sensorial/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Vibrisas/fisiología
11.
Neurobiol Dis ; 157: 105447, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34274461

RESUMEN

Huntington's disease (HD) is a progressive, fatal neurodegenerative disorder characterized by motor, cognitive, and psychiatric disturbances. There is no known cure for HD, but its progressive nature allows for early therapeutic intervention. Currently, much of the research has focused on the striatum, however, there is evidence suggesting that disruption of thalamocortical circuits could underlie some of the early symptoms of HD. Loss of both cortical pyramidal neurons (CPNs) and thalamic neurons occurs in HD patients, and cognitive, somatosensory, and attention deficits precede motor abnormalities. However, the role of thalamocortical pathways in HD progression has been understudied. Here, we measured single unit activity and local field potentials (LFPs) from electrode arrays implanted in the thalamus and primary motor cortex of 4-5 month-old male and female Q175 mice. We assessed neuronal activity under baseline conditions as well as during presentation of rewards delivered via actuation of an audible solenoid valve. HD mice showed a significantly delayed licking response to the reward stimulus. At the same time, neuronal activation to the reward was delayed in thalamic neurons, CPNs and fast-spiking cortical interneurons (FSIs) of HD mice. In addition, thalamocortical coherence increased at lower frequencies in HD relative to wildtype mice. Together, these data provide evidence that impaired cortical and thalamic responses to reward stimuli, and impaired thalamocortical coherence, may play an important early role in motor, cognitive, and learning deficits in HD patients.


Asunto(s)
Enfermedad de Huntington/fisiopatología , Corteza Motora/fisiopatología , Tálamo/fisiopatología , Animales , Corteza Cerebral/fisiopatología , Cognición , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Técnicas de Sustitución del Gen , Interneuronas/fisiología , Ratones , Actividad Motora , Vías Nerviosas/fisiopatología , Técnicas de Placa-Clamp , Células Piramidales/fisiología
12.
Elife ; 102021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34003113

RESUMEN

The hippocampus is critical for memory formation. The hypothalamic supramammillary nucleus (SuM) sends long-range projections to hippocampal area CA2. While the SuM-CA2 connection is critical for social memory, how this input acts on the local circuit is unknown. Using transgenic mice, we found that SuM axon stimulation elicited mixed excitatory and inhibitory responses in area CA2 pyramidal neurons (PNs). Parvalbumin-expressing basket cells were largely responsible for the feedforward inhibitory drive of SuM over area CA2. Inhibition recruited by the SuM input onto CA2 PNs increased the precision of action potential firing both in conditions of low and high cholinergic tone. Furthermore, SuM stimulation in area CA2 modulated CA1 activity, indicating that synchronized CA2 output drives a pulsed inhibition in area CA1. Hence, the network revealed here lays basis for understanding how SuM activity directly acts on the local hippocampal circuit to allow social memory encoding.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA2 Hipocampal/fisiología , Hipotálamo/fisiología , Red Nerviosa/fisiología , Potenciales de Acción , Animales , Línea Celular , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Piramidales/fisiología
13.
Ann Neurol ; 89(2): 226-241, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33068018

RESUMEN

OBJECTIVE: Epileptic spasms are a hallmark of severe seizure disorders. The neurophysiological mechanisms and the neuronal circuit(s) that generate these seizures are unresolved and are the focus of studies reported here. METHODS: In the tetrodotoxin model, we used 16-channel microarrays and microwires to record electrophysiological activity in neocortex and thalamus during spasms. Chemogenetic activation was used to examine the role of neocortical pyramidal cells in generating spasms. Comparisons were made to recordings from infantile spasm patients. RESULTS: Current source density and simultaneous multiunit activity analyses indicate that the ictal events of spasms are initiated in infragranular cortical layers. A dramatic pause of neuronal activity was recorded immediately prior to the onset of spasms. This preictal pause is shown to share many features with the down states of slow wave sleep. In addition, the ensuing interictal up states of slow wave rhythms are more intense in epileptic than control animals and occasionally appear sufficient to initiate spasms. Chemogenetic activation of neocortical pyramidal cells supported these observations, as it increased slow oscillations and spasm numbers and clustering. Recordings also revealed a ramp-up in the number of neocortical slow oscillations preceding spasms, which was also observed in infantile spasm patients. INTERPRETATION: Our findings provide evidence that epileptic spasms can arise from the neocortex and reveal a previously unappreciated interplay between brain state physiology and spasm generation. The identification of neocortical up states as a mechanism capable of initiating epileptic spasms will likely provide new targets for interventional therapies. ANN NEUROL 2021;89:226-241.


Asunto(s)
Ondas Encefálicas/fisiología , Neocórtex/fisiopatología , Células Piramidales/fisiología , Espasmos Infantiles/fisiopatología , Tálamo/fisiopatología , Animales , Modelos Animales de Enfermedad , Electrocorticografía , Femenino , Humanos , Lactante , Masculino , Neocórtex/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Bloqueadores de los Canales de Sodio/toxicidad , Espasmo/inducido químicamente , Espasmo/fisiopatología , Espasmos Infantiles/inducido químicamente , Tetrodotoxina/toxicidad , Tálamo/efectos de los fármacos
14.
Front Immunol ; 11: 587825, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262768

RESUMEN

Widow spiders are among the few spider species worldwide that can cause serious envenoming in humans. The clinical syndrome resulting from Latrodectus spp. envenoming is called latrodectism and characterized by pain (local or regional) associated with diaphoresis and nonspecific systemic effects. The syndrome is caused by α-latrotoxin, a ~130 kDa neurotoxin that induces massive neurotransmitter release. Due to this function, α-latrotoxin has played a fundamental role as a tool in the study of neuroexocytosis. Nevertheless, some questions concerning its mode of action remain unresolved today. The diagnosis of latrodectism is purely clinical, combined with the patient's history of spider bite, as no analytical assays exist to detect widow spider venom. By utilizing antibody phage display technology, we here report the discovery of the first recombinant human monoclonal immunoglobulin G antibody (TPL0020_02_G9) that binds α-latrotoxin from the Mediterranean black widow spider (Latrodectus tredecimguttatus) and show neutralization efficacy ex vivo. Such antibody can be used as an affinity reagent for research and diagnostic purposes, providing researchers with a novel tool for more sophisticated experimentation and analysis. Moreover, it may also find therapeutic application in future.


Asunto(s)
Anticuerpos Monoclonales , Araña Viuda Negra/inmunología , Inmunoglobulina G , Venenos de Araña , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Femenino , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/farmacología , Masculino , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ratas Wistar , Venenos de Araña/inmunología , Venenos de Araña/toxicidad
15.
Neurobiol Aging ; 96: 79-86, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32950781

RESUMEN

In recent years, aberrant neural oscillations in various cortical areas have emerged as a common physiological hallmark across mouse models of amyloid pathology and patients with Alzheimer's disease. However, much less is known about the underlying effect of amyloid pathology on single cell activity. Here, we used high-density silicon probe recordings from frontal cortex area of 9-month-old APP/PS1 mice to show that local field potential power in the theta and beta band is increased in transgenic animals, whereas single-cell firing rates, specifically of putative pyramidal cells, are significantly reduced. At the same time, these sparsely firing pyramidal cells phase-lock their spiking activity more strongly to the ongoing theta and beta rhythms. Furthermore, we demonstrated that the antiepileptic drug, levetiracetam, counteracts these effects by increasing pyramidal cell firing rates in APP/PS1 mice and uncoupling pyramidal cells and interneurons. Overall, our results highlight reduced firing rates of cortical pyramidal cells as a pathophysiological phenotype in APP/PS1 mice and indicate a potentially beneficial effect of acute levetiracetam treatment.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/fisiopatología , Amiloidosis/tratamiento farmacológico , Amiloidosis/fisiopatología , Lóbulo Frontal/citología , Levetiracetam/farmacología , Células Piramidales/fisiología , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Levetiracetam/uso terapéutico , Masculino , Ratones Transgénicos , Presenilina-1/genética
16.
J Neurophysiol ; 124(5): 1327-1342, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32937084

RESUMEN

A substantial reorganization of neural activity and neuron-to-movement relationship in motor cortical circuits accompanies the emergence of reproducible movement patterns during motor learning. Little is known about how this tempest of neural activity restructuring impacts the stability of network states in recurrent cortical circuits. To investigate this issue, we reanalyzed data in which we recorded for 14 days via population calcium imaging the activity of the same neural populations of pyramidal neurons in layer 2/3 and layer 5 of forelimb motor and premotor cortex in mice during the daily learning of a lever-press task. We found that motor cortex network states remained stable with respect to the critical network state during the extensive reorganization of both neural population activity and its relation to lever movement throughout learning. Specifically, layer 2/3 cortical circuits unceasingly displayed robust evidence for operating at the critical network state, a regime that maximizes information capacity and transmission and provides a balance between network robustness and flexibility. In contrast, layer 5 circuits operated away from the critical network state for all 14 days of recording and learning. In conclusion, this result indicates that the wide-ranging malleability of synapses, neurons, and neural connectivity during learning operates within the constraint of a stable and layer-specific network state regarding dynamic criticality, and suggests that different cortical layers operate under distinct constraints because of their specialized goals.NEW & NOTEWORTHY The neural activity reorganizes throughout motor learning, but how this reorganization impacts the stability of network states is unclear. We used two-photon calcium imaging to investigate how the network states in layer 2/3 and layer 5 of forelimb motor and premotor cortex are modulated by motor learning. We show that motor cortex network states are layer-specific and constant regarding criticality during neural activity reorganization, and suggests that layer-specific constraints could be motivated by different functions.


Asunto(s)
Aprendizaje/fisiología , Corteza Motora/fisiología , Movimiento/fisiología , Células Piramidales/fisiología , Animales , Conducta Animal , Señalización del Calcio , Condicionamiento Operante , Ratones , Vías Nerviosas/fisiología , Imagen Óptica
17.
Neuroimage ; 221: 117189, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711064

RESUMEN

Cortical recordings of task-induced oscillations following subanaesthetic ketamine administration demonstrate alterations in amplitude, including increases at high-frequencies (gamma) and reductions at low frequencies (theta, alpha). To investigate the population-level interactions underlying these changes, we implemented a thalamo-cortical model (TCM) capable of recapitulating broadband spectral responses. Compared with an existing cortex-only 4-population model, Bayesian Model Selection preferred the TCM. The model was able to accurately and significantly recapitulate ketamine-induced reductions in alpha amplitude and increases in gamma amplitude. Parameter analysis revealed no change in receptor time-constants but significant increases in select synaptic connectivity with ketamine. Significantly increased connections included both AMPA and NMDA mediated connections from layer 2/3 superficial pyramidal cells to inhibitory interneurons and both GABAA and NMDA mediated within-population gain control of layer 5 pyramidal cells. These results support the use of extended generative models for explaining oscillatory data and provide in silico support for ketamine's ability to alter local coupling mediated by NMDA, AMPA and GABA-A.


Asunto(s)
Ondas Encefálicas , Corteza Cerebral , Antagonistas de Aminoácidos Excitadores/farmacología , Interneuronas , Ketamina/farmacología , Magnetoencefalografía , Modelos Biológicos , Células Piramidales , Tálamo , Adolescente , Adulto , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Humanos , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reconocimiento Visual de Modelos/efectos de los fármacos , Reconocimiento Visual de Modelos/fisiología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Tálamo/efectos de los fármacos , Tálamo/fisiología , Adulto Joven
18.
Sci Rep ; 10(1): 10905, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616766

RESUMEN

The primary auditory cortex (A1) plays a key role for sound perception since it represents one of the first cortical processing stations for sounds. Recent studies have shown that on the cellular level the frequency organization of A1 is more heterogeneous than previously appreciated. However, many of these studies were performed in mice on the C57BL/6 background which develop high frequency hearing loss with age making them a less optimal choice for auditory research. In contrast, mice on the CBA background retain better hearing sensitivity in old age. Since potential strain differences could exist in A1 organization between strains, we performed comparative analysis of neuronal populations in A1 of adult (~ 10 weeks) C57BL/6 mice and F1 (CBAxC57) mice. We used in vivo 2-photon imaging of pyramidal neurons in cortical layers L4 and L2/3 of awake mouse primary auditory cortex (A1) to characterize the populations of neurons that were active to tonal stimuli. Pure tones recruited neurons of widely ranging frequency preference in both layers and strains with neurons in F1 (CBAxC57) mice exhibiting a wider range of frequency preference particularly to higher frequencies. Frequency selectivity was slightly higher in C57BL/6 mice while neurons in F1 (CBAxC57) mice showed a greater sound-level sensitivity. The spatial heterogeneity of frequency preference was present in both strains with F1 (CBAxC57) mice exhibiting higher tuning diversity across all measured length scales. Our results demonstrate that the tone evoked responses and frequency representation in A1 of adult C57BL/6 and F1 (CBAxC57) mice are largely similar.


Asunto(s)
Corteza Auditiva/fisiología , Estimulación Acústica , Animales , Corteza Auditiva/fisiopatología , Cadherinas/deficiencia , Cadherinas/genética , Cruzamientos Genéticos , Potenciales Evocados Auditivos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Microscopía Confocal , Neuroimagen/métodos , Presbiacusia/genética , Presbiacusia/fisiopatología , Células Piramidales/fisiología
19.
Neuron ; 107(5): 954-971.e9, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32589878

RESUMEN

Adaptive movements are critical for animal survival. To guide future actions, the brain monitors various outcomes, including achievement of movement and appetitive goals. The nature of these outcome signals and their neuronal and network realization in the motor cortex (M1), which directs skilled movements, is largely unknown. Using a dexterity task, calcium imaging, optogenetic perturbations, and behavioral manipulations, we studied outcome signals in the murine forelimb M1. We found two populations of layer 2-3 neurons, termed success- and failure-related neurons, that develop with training, and report end results of trials. In these neurons, prolonged responses were recorded after success or failure trials independent of reward and kinematics. In addition, the initial state of layer 5 pyramidal tract neurons contained a memory trace of the previous trial's outcome. Intertrial cortical activity was needed to learn new task requirements. These M1 layer-specific performance outcome signals may support reinforcement motor learning of skilled behavior.


Asunto(s)
Aprendizaje/fisiología , Corteza Motora/citología , Corteza Motora/fisiología , Destreza Motora/fisiología , Células Piramidales/citología , Células Piramidales/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
20.
J Comput Neurosci ; 48(2): 161-176, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32307640

RESUMEN

Transcranial Direct brain stimulation (tDCS) is commonly used in order to modulate cortical networks activity during physiological processes through the application of weak electrical fields with scalp electrodes. Cathodal stimulation has been shown to decrease brain excitability in the context of epilepsy, with variable success. However, the cellular mechanisms responsible for the acute and the long-lasting effect of tDCS remain elusive. Using a novel approach of computational modeling that combines detailed but functionally integrated neurons we built a physiologically-based thalamocortical column. This model comprises 10,000 individual neurons made of pyramidal cells, and 3 types of gamma-aminobutyric acid (GABA) -ergic cells (VIP, PV, and SST) respecting the anatomy, layers, projection, connectivity and neurites orientation. Simulating realistic electric fields in term of intensity, main results showed that 1) tDCS effects are best explained by modulation of the presynaptic probability of release 2) tDCS affects the dynamic of cortical network only if a sufficient number of neurons are modulated 3)VIP GABAergic interneurons of the superficial layer of the cortex are especially affected by tDCS 4) Long lasting effect depends on glutamatergic synaptic plasticity.


Asunto(s)
Epilepsia/fisiopatología , Epilepsia/terapia , Modelos Neurológicos , Estimulación Transcraneal de Corriente Directa , Adulto , Algoritmos , Encéfalo/fisiopatología , Corteza Cerebral/fisiopatología , Simulación por Computador , Fenómenos Electrofisiológicos , Humanos , Interneuronas , Vías Nerviosas/fisiopatología , Neuritas/fisiología , Plasticidad Neuronal , Neuronas , Terminales Presinápticos , Células Piramidales/fisiología , Tálamo/fisiopatología , Ácido gamma-Aminobutírico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA