Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biophotonics ; 12(10): e201900043, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31219220

RESUMEN

Laser therapy, also known as Photobiomodulation (PBM) is indicated to reduce pain associated with different pathologies and applied using protocols that vary in wavelength, irradiance and fluence. Its mechanisms of action are still unclear and possibly able to directly impact on pain transmission, reducing nociceptor response. In our study, we examined the effect of two specific laser wavelengths, 800 and 970 nm, extensively applied in the clinical context and known to exert important analgesic effects. Our results point to mitochondria as the primary target of laser light in isolated dorsal root ganglion (DRG) neurons, reducing adenosine triphosphate content and increasing reactive oxygen species levels. Specifically, the 800 nm laser wavelength induced mitochondrial dysregulation, that is, increased superoxide generation and mitochondrial membrane potential. When DRG neurons were firstly illuminated by the different laser protocols and then stimulated with the natural transient receptor potential cation channel subfamily V member 1 (TRPV1) ligand capsaicin, only the 970 nm wavelength reduced the calcium response, in both amplitude and frequency. Consistent results were obtained in vivo in mice, by subcutaneous injection of capsaicin. Our findings demonstrate that the effect of PBM depends on the wavelength used, with 800 nm light mainly acting on mitochondrial metabolism and 970 nm light on nociceptive signal transmission.


Asunto(s)
Terapia por Luz de Baja Intensidad , Dolor/radioterapia , Animales , Calcio/metabolismo , Femenino , Ganglios Espinales/patología , Ganglios Espinales/efectos de la radiación , Potencial de la Membrana Mitocondrial/efectos de la radiación , Ratones , Nocicepción/efectos de la radiación , Dolor/metabolismo , Dolor/patología , Dolor/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Células Receptoras Sensoriales/patología , Células Receptoras Sensoriales/efectos de la radiación
2.
Lab Chip ; 17(10): 1725-1731, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28447086

RESUMEN

Ultrasound neuro-modulation has gained increasing attention as a non-invasive method. In this paper, we present an ultrasound neuro-modulation chip, capable of initiating reversal behaviour and activating neurons of C. elegans under the stimulation of a single-shot, short-pulsed ultrasound. About 85.29% ± 6.17% of worms respond to the ultrasound stimulation exhibiting reversal behaviour. Furthermore, the worms can adapt to the ultrasound stimulation with a lower acoustic pulse duration of stimulation. In vivo calcium imaging shows that the activity of ASH, a polymodal sensory neuron in C. elegans, can be directly evoked by the ultrasound stimulation. On the other hand, AFD, a thermal sensitive neuron, cannot be activated by the ultrasound stimulation using the same parameter and the temperature elevation during the stimulation process is relatively small. Consistent with the calcium imaging results, the tax-4 mutants, which are insensitive to temperature increase, do not show a significant difference in avoidance probability compared to the wild type. Therefore, the mechanical effects induced by ultrasound are the main reason for neural and behavioural modulation of C. elegans. With the advantages of confined acoustic energy on the surface, compatible with standard calcium imaging, this neuro-modulation chip could be a powerful tool for revealing the molecular mechanisms of ultrasound neuro-modulation.


Asunto(s)
Estimulación Acústica/instrumentación , Caenorhabditis elegans/efectos de la radiación , Dispositivos Laboratorio en un Chip , Neurobiología/instrumentación , Células Receptoras Sensoriales/efectos de la radiación , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Imagen Molecular/métodos , Neurobiología/métodos , Células Receptoras Sensoriales/fisiología , Ondas Ultrasónicas
3.
J Biophotonics ; 8(6): 480-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25077453

RESUMEN

The effect of a 645 nm Light Emitting Diode (LED) light irradiation on the neurite growth velocity of adult Dorsal Root Ganglion (DRG) neurons with peripheral axon injury 4-10 days before plating and without previous injury was investigated. The real amount of light reaching the neurons was calculated by taking into account the optical characteristics of the light source and of media in the light path. The knowledge of these parameters is essential to be able to compare results of the literature and a way to reduce inconsistencies. We found that 4 min irradiation of a mean irradiance of 11.3 mW/cm(2) (corresponding to an actual irradiance reaching the neurons of 83 mW/cm(2)) induced a 1.6-fold neurite growth acceleration on non-injured neurons and on axotomized neurons. Although the axotomized neurons were naturally already in a rapid regeneration process, an enhancement was found to occur while irradiating with the LED light, which may be promising for therapy applications. Dorsal Root Ganglion neurons (A) without previous injury and (B) subjected to a conditioning injury.


Asunto(s)
Ganglios Espinales/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Neuritas/efectos de la radiación , Nervio Ciático/lesiones , Células Receptoras Sensoriales/efectos de la radiación , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ganglios Espinales/patología , Ganglios Espinales/fisiopatología , Terapia por Luz de Baja Intensidad/instrumentación , Vértebras Lumbares , Ratones , Microscopía , Neuritas/patología , Neuritas/fisiología , Distribución Aleatoria , Células Receptoras Sensoriales/patología , Células Receptoras Sensoriales/fisiología , Análisis Espectral , Grabación en Video
4.
Front Biosci (Landmark Ed) ; 14(13): 4921-31, 2009 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-19482595

RESUMEN

Exposures to ultraviolet radiation (UVR) during accidental or voluntary sun exposure or treatment with phototherapy or photochemotherapy have a significant impact on the skin. Many skin diseases such as psoriasis, atopic dermatitis, or cutaneous T-cell lymphoma significantly improve by photo(chemo)therapy, though the mechanisms behind the therapeutic effects of photo(chemo)therapy are still far from understood. Various pathways and means through which the energy of UVR from natural or artificial sources is ultimately transformed into biologic effects within the skin have been suggested and cutaneous sensory nerves, neuropeptides, neurotrophins, and certain nerve-related receptors have been among them. In fact a three-dimensional network of sensory nerve fibers derived from dorsal root ganglia intersperses all layers of the skin including the epidermis. In this forefront of defense against environmental impacts (including UVR) on the skin, sensory nerve fibers become targets by itself and closely contact resident and infiltrating cutaneous cells. Thus, terminals of cutaneous sensory nerve fibers, and neuropeptides within these fibers, are in a central position to participate in mediating therapeutic effects of photo(chemo)therapy.


Asunto(s)
Fototerapia , Células Receptoras Sensoriales/efectos de la radiación , Piel/inervación , Piel/efectos de la radiación , Animales , Humanos , Modelos Neurológicos , Factor de Crecimiento Nervioso/fisiología , Fotoquimioterapia , Receptores de Factor de Crecimiento Nervioso/fisiología , Receptores de Neuropéptido/fisiología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología , Envejecimiento de la Piel , Fenómenos Fisiológicos de la Piel/efectos de la radiación , Terapia Ultravioleta
5.
J Neurosci ; 28(45): 11615-21, 2008 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-18987197

RESUMEN

The brain selectively extracts the most relevant information in top-down processing manner. Does the corticofugal system, a "back projection system," constitute the neural basis of such top-down selection? Here, we show how focal activation of the auditory cortex with 500 nA electrical pulses influences the auditory information processing in the cochlear nucleus (CN) that receives almost unprocessed information directly from the ear. We found that cortical activation increased the response magnitudes and shortened response latencies of physiologically matched CN neurons, whereas decreased response magnitudes and lengthened response latencies of unmatched CN neurons. In addition, cortical activation shifted the frequency tunings of unmatched CN neurons toward those of the activated cortical neurons. Our data suggest that cortical activation selectively enhances the neural processing of particular auditory information and attenuates others at the first processing level in the brain based on sound frequencies encoded in the auditory cortex. The auditory cortex apparently implements a long-range feedback mechanism to select or filter incoming signals from the ear.


Asunto(s)
Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Potenciales Evocados/fisiología , Sonido , Estimulación Acústica/métodos , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Corteza Auditiva/efectos de la radiación , Conducta Animal , Estimulación Eléctrica/métodos , Potenciales Evocados/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Psicofísica , Tiempo de Reacción/fisiología , Tiempo de Reacción/efectos de la radiación , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/efectos de la radiación , Umbral Sensorial/efectos de los fármacos , Umbral Sensorial/fisiología , Umbral Sensorial/efectos de la radiación
6.
Fiziol Zh (1994) ; 49(2): 35-44, 2003.
Artículo en Ucraniano | MEDLINE | ID: mdl-12945112

RESUMEN

An existence of separate functional system of regulation of electromagnetic balance of organism has been substantiated and a working conception of light therapy has been formulated. As a basis, there is a possibility to use the acupuncture points for input of biologically necessary electromagnetic waves into the system of their conductors in a body that might be considered as a transport facility for energy of the polarized electromagnetic waves. Zones-recipients are organs having an electromagnetic disbalance due to excess of biologically inadequate radiation and being the targets for peroxide oxidation. Foremost, a body has the neurohormonal and immune regulatory systems. Electromagnetic stimulation or modification of functions of the zones-recipients determines the achievement of therapeutic and useful effects, and their combination with local reparative processes allows to attain a clinical goal. We represent own and literary experimental data about the development of physiological responses (analgesia) to BIOPTRON-light exposure on the acupuncture points or biologically active zones. We show the experimental facts in support of a hypothesis that a living organism can perceive an action of the electromagnetic fields of optical range not only via the visual system, but also through the off-nerve receptors (specific energy-sensitive proteins detecting critical changes of energy in cells and functioning as the "sensory" cell systems), as well as via the acupuncture points. It confirms an important role of the electromagnetic waves of optical range in providing normal vital functions of living organisms. A current approach to BIOPTRON light therapy (by polarized polychromatic coherent low energy light) consists in combined (local and system) exposure of the electromagnetic waves within the biologically necessary range.


Asunto(s)
Campos Electromagnéticos , Microondas/uso terapéutico , Células Receptoras Sensoriales/fisiología , Analgesia por Acupuntura/efectos adversos , Puntos de Acupuntura , Terapia por Acupuntura , Relación Dosis-Respuesta en la Radiación , Humanos , Modelos Biológicos , Dolor/radioterapia , Fototerapia , Células Receptoras Sensoriales/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA