Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Science ; 372(6543): 706-711, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33986175

RESUMEN

Plants have evolved complex nanofibril-based cell walls to meet diverse biological and physical constraints. How strength and extensibility emerge from the nanoscale-to-mesoscale organization of growing cell walls has long been unresolved. We sought to clarify the mechanical roles of cellulose and matrix polysaccharides by developing a coarse-grained model based on polymer physics that recapitulates aspects of assembly and tensile mechanics of epidermal cell walls. Simple noncovalent binding interactions in the model generate bundled cellulose networks resembling that of primary cell walls and possessing stress-dependent elasticity, stiffening, and plasticity beyond a yield threshold. Plasticity originates from fibril-fibril sliding in aligned cellulose networks. This physical model provides quantitative insight into fundamental questions of plant mechanobiology and reveals design principles of biomaterials that combine stiffness with yielding and extensibility.


Asunto(s)
Pared Celular/fisiología , Pared Celular/ultraestructura , Celulosa , Células Vegetales/ultraestructura , Epidermis de la Planta/ultraestructura , Polisacáridos , Fenómenos Biomecánicos , Conformación de Carbohidratos , Celulosa/química , Elasticidad , Modelos Biológicos , Simulación de Dinámica Molecular , Cebollas/ultraestructura , Estrés Mecánico
2.
Food Chem ; 300: 125194, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31325749

RESUMEN

The effects of near freezing temperature (NFT) storage at -1.9 °C on cell wall degradation of 'Shushanggan' apricot was studied comparing to 0 °C and 5 °C storage. Our results indicated that NFT storage strongly inhibited the solubilization of Na2CO3-soluble pectin and cellulose, by the suppression of cell wall modifying enzymes (polygalacturonase, ß-Galactosidase, pectin methyl esterase and cellulase) and related genes expressions. The loss of side chains was the main modification in CDTA (Cyclohexane-diamine-tetraacetic Acid)-soluble pectin during storage and made the main contribution to the softening of apricot, while the loss of side chain was suppressed by NFT storage. Microscopic observation showed that NFT storage delayed the degradation of pectin fraction and protected cell wall structure from loosing. This study proves that NFT storage is an effective technology to suppress the cell wall polysaccharides degradation and ultrastructure modification of apricot.


Asunto(s)
Pared Celular/ultraestructura , Almacenamiento de Alimentos/métodos , Polisacáridos/química , Prunus armeniaca/química , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Celulosa/química , Frío , Congelación , Frutas/química , Frutas/citología , Frutas/ultraestructura , Pectinas/química , Células Vegetales/química , Células Vegetales/ultraestructura , Poligalacturonasa/química , Poligalacturonasa/metabolismo , Polisacáridos/metabolismo , Prunus armeniaca/citología , Solubilidad , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo
3.
Biosci Biotechnol Biochem ; 83(4): 666-674, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30585123

RESUMEN

Asparagus (Asparagus officinalis) has several traits that make it a useful model for cytogenetic studies, however, few studies of the meiosis process have been made in asparagus. Here, we present in detail an atlas of male meiosis in asparagus, from preleptotene to telophase II. The meiosis process in asparagus is largely similar to those of the well-characterized model plants Arabidopsis thaliana, Zea mays, and Oryza sativa. However, most asparagus prophase I meiotic chromosomes show a strongly aggregated morphology, and this phenotype persists through the pachytene stage, highlighting a property in the control of chromosome migration and distribution in asparagus. Further, we observed no obvious banding of autofluorescent dots between divided nuclei of asparagus meiocytes, as one would expect in Arabidopsis. This description of wild-type asparagus meiosis will serve as a reference for the analyses of meiotic mutants, as well as for comparative studies among difference species. Abbreviations: DAPI: 4',6-diamidino-2-phenylindole; FISH: fluorescence in situ hybridization; PBS: phosphate-buffered saline; PMC: pollen mother cell; SEM: Scanning Electron Microscope.


Asunto(s)
Asparagus/ultraestructura , Cromosomas de las Plantas/ultraestructura , Meiosis , Células Vegetales/ultraestructura , Polen/ultraestructura , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Asparagus/genética , Asparagus/crecimiento & desarrollo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromosomas de las Plantas/química , Flores/genética , Flores/crecimiento & desarrollo , Flores/ultraestructura , Hibridación Fluorescente in Situ , Microscopía Electrónica de Rastreo , Células Vegetales/metabolismo , Polen/genética , Polen/crecimiento & desarrollo
4.
Plant Physiol Biochem ; 127: 573-589, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29727861

RESUMEN

During somatic embryogenesis (SE), explant cells undergo changes in the direction of their differentiation, which lead to diverse cell phenotypes. Although the genetic bases of the SE have been extensively studied in Arabidopsis thaliana, little is known about the chemical characteristics of the wall of the explant cells, which undergo changes in the direction of differentiation. Thus, we examined the occurrence of selected pectic and AGP epitopes in explant cells that display different phenotypes during SE. Explants examinations have been supplemented with an analysis of the ultrastructure. The deposition of selected pectic and AGP epitopes in somatic embryos was determined. Compared to an explant at the initial stage, a/embryogenic/totipotent and meristematic/pluripotent cells were characterized by a decrease in the presence of AGP epitopes, b/the presence of AGP epitopes in differentiated cells was similar, and c/an increase of analyzed epitopes was detected in the callus cells. Totipotent cells could be distinguished from pluripotent cells by: 1/the presence of the LM2 epitope in the latest one, 2/the appearance of the JIM16 epitope in totipotent cells, and 3/the more abundant presence of the JIM7 epitope in the totipotent cells. The LM5 epitope characterized the wall of the cells that were localized within the mass of embryogenic domain. The JIM8, JIM13 and JIM16 AGP epitopes appeared to be the most specific for the callus cells. The results indicate a relationship between the developmental state of the explant cells and the chemical composition of the cell walls.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Galactanos , Pectinas , Células Vegetales , Técnicas de Embriogénesis Somática de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Galactanos/biosíntesis , Galactanos/genética , Pectinas/biosíntesis , Pectinas/genética , Células Vegetales/metabolismo , Células Vegetales/ultraestructura
5.
Plant Biol (Stuttg) ; 20(4): 654-661, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29603529

RESUMEN

Pollination in Solanum (Solanaceae) species is commonly performed by female bees, which vibrate anthers to extract pollen. Another pollen removal type is by male euglossine bees, milking the anthers when searching for floral scents produced by secretory tissues (osmophorous) at the swollen connective of the anthers of species in the Cyphomandra clade. Some species of this clade, however, are buzz-pollinated and present papillate anthers that should also have secretory activity, a hypothesis here tested. The anthers of Solanum luridifuscescens were fixed at different stages of development and analysed under light microscopy, SEM and TEM. Histochemical tests for the detection of starch and lipids were done. Epidermal cells of the abaxial surface of the anthers were visibly papillose, had large nuclei and dense cytoplasm rich in organelles such as mitochondria and plastids, typical features of secretory tissues. In this site, lipid droplets were detected, concomitantly with starch consumption, compatible with the secretory process in osmophores. No exudate or accumulation of substances was seen on the surface; in agreement with a previous pollination study performed in field conditions, where no pollinators were observed collecting floral scents, only pollen. The histochemical and structural analyses have evidenced the lipidic composition of the secretion, strongly pointing to terpenes as the secreted compounds. Ours findings show that papillae of the anthers have secretory activities that produce lipophilic compounds. This does not result in resources for bees, but could be an evolutionary step to the development of more specialised anthers in the Cyphomandra clade.


Asunto(s)
Flores/anatomía & histología , Solanum/anatomía & histología , Solanum/fisiología , Animales , Abejas , Flores/citología , Flores/metabolismo , Flores/ultraestructura , Gotas Lipídicas , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Células Vegetales/ultraestructura , Polinización , Terpenos/metabolismo
6.
Plant Physiol ; 174(2): 788-797, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28584065

RESUMEN

As one of the earliest plant groups to evolve stomata, hornworts are key to understanding the origin and function of stomata. Hornwort stomata are large and scattered on sporangia that grow from their bases and release spores at their tips. We present data from development and immunocytochemistry that identify a role for hornwort stomata that is correlated with sporangial and spore maturation. We measured guard cells across the genera with stomata to assess developmental changes in size and to analyze any correlation with genome size. Stomata form at the base of the sporophyte in the green region, where they develop differential wall thickenings, form a pore, and die. Guard cells collapse inwardly, increase in surface area, and remain perched over a substomatal cavity and network of intercellular spaces that is initially fluid filled. Following pore formation, the sporophyte dries from the outside inwardly and continues to do so after guard cells die and collapse. Spore tetrads develop in spore mother cell walls within a mucilaginous matrix, both of which progressively dry before sporophyte dehiscence. A lack of correlation between guard cell size and DNA content, lack of arabinans in cell walls, and perpetually open pores are consistent with the inactivity of hornwort stomata. Stomata are expendable in hornworts, as they have been lost twice in derived taxa. Guard cells and epidermal cells of hornworts show striking similarities with the earliest plant fossils. Our findings identify an architecture and fate of stomata in hornworts that is ancient and common to plants without sporophytic leaves.


Asunto(s)
Anthocerotophyta/anatomía & histología , Fósiles , Células Vegetales , Estomas de Plantas/citología , Anthocerotophyta/citología , Pared Celular/ultraestructura , Tamaño del Genoma , Genoma de Planta , Microscopía Electrónica de Transmisión , Pectinas/química , Células Vegetales/ultraestructura , Estomas de Plantas/anatomía & histología , Estomas de Plantas/genética
7.
Phys Biol ; 14(1): 015004, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28140367

RESUMEN

In plant tissues, cells are glued to each other by a pectic polysaccharide rich material known as middle lamella (ML). Along with many biological functions, the ML plays a crucial role in maintaining the structural integrity of plant tissues and organs, as it prevents the cells from separating or sliding against each other. The macromolecular organization and the material properties of the ML are different from those of the adjacent primary cell walls that envelop all plant cells and provide them with a stiff casing. Due to its nanoscale dimensions and the extreme challenge to access the structure for material characterization, the ML is poorly characterized in terms of its distinct material properties. This review explores the ML beyond its functionality as a gluing agent. The putative molecular interactions of constituent macromolecules within the ML and at the interface between ML and primary cell wall are discussed. The correlation between the spatiotemporal distribution of pectic polysaccharides in the different portions of the ML and the subcellular distribution of mechanical stresses within the plant tissue are analyzed.


Asunto(s)
Adhesivos/análisis , Pectinas/análisis , Células Vegetales/ultraestructura , Plantas/ultraestructura , Adhesivos/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Pectinas/química , Células Vegetales/química , Células Vegetales/metabolismo , Plantas/química , Plantas/metabolismo , Estrés Mecánico
8.
Cell Biol Int ; 41(3): 340-344, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28032378

RESUMEN

Behavior of nucleolus during the nuclear migration between plant cells (cytomixis) is studied for the first time in the tobacco male meiosis. As is shown, the nucleolus is located in a nonrandom manner in the migrating nuclei. In the majority of cases, the nucleolus resides on the nuclear pole strictly opposite to the cytomictic channel. Owing to this localization, the nucleolus extremely rare enters the recipient cell, so that the nucleolar material is in most cases undetectable in the micronuclei formed after cytomixis. When a whole nucleus migrates from a donor cell to recipient, the nucleolus can leave the nucleus and remain in the donor cells either alone or with a small amount of chromatin. The causes underlying a nonrandom location of the nucleolus in cytomictic cells are discussed. It is assumed that the nucleolar material contacts the cytoplasmic cytoskeleton, which prevents migration of the nucleolus into another cell within the nucleus. The potential use of cytomixis as a model for studying the nuclear motion is discussed.


Asunto(s)
Nucléolo Celular/fisiología , Meiosis/fisiología , Nicotiana/citología , Nicotiana/fisiología , Células Vegetales/fisiología , Nucléolo Celular/ultraestructura , Flores , Células Vegetales/ultraestructura , Extractos Vegetales/aislamiento & purificación , Nicotiana/ultraestructura
9.
Methods Mol Biol ; 1511: 213-232, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27730614

RESUMEN

The cytosol is at the core of cellular metabolism and contains many important metabolic pathways, including glycolysis, gluconeogenesis, and the pentose phosphate pathway. Despite the importance of this matrix, few attempts have sought to specifically enrich this compartment from plants. Although a variety of biochemical pathways and signaling cascades pass through the cytosol, much of the focus has usually been targeted at the reactions that occur within membrane-bound organelles of the plant cell. In this chapter, we outline a method for the enrichment of the cytosol from rice suspension cell cultures which includes sample preparation and enrichment as well as validation using immunoblotting and fluorescence-tagged proteins.


Asunto(s)
Fraccionamiento Celular/métodos , Citosol/química , Cebollas/química , Oryza/química , Células Vegetales/química , Proteínas de Plantas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biomarcadores/metabolismo , Western Blotting , Técnicas de Cultivo de Célula , Fraccionamiento Celular/instrumentación , Medios de Cultivo/química , Citosol/metabolismo , Electroforesis en Gel de Poliacrilamida , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Espectrometría de Masas , Cebollas/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Proteínas de Plantas/metabolismo
10.
Methods Mol Biol ; 1474: 233-42, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27515084

RESUMEN

Cryofixation and freeze-substitution techniques provide excellent preservation of plant ultrastructure. The advantage of cryofixation is not only in structural preservation, as seen in the smooth plasma membrane, but also in the speed in arresting cell activity. Immunoelectron microscopy reveals the subcellular localization of molecules within cells. Immunolabeling in combination with cryofixation and freeze-substitution techniques provides more detailed information on the immunoelectron-microscopic localization of molecules in the plant cell than can be obtained from chemically fixed tissues. Here, we introduce methods for immunoelectron microscopy of cryofixed and freeze-substituted plant tissues.


Asunto(s)
Criopreservación/métodos , Substitución por Congelación/métodos , Inmunohistoquímica/métodos , Cebollas/ultraestructura , Células Vegetales/ultraestructura , Adhesión del Tejido/métodos , Anticuerpos/química , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Resinas Epoxi/química , Fijadores/química , Expresión Génica , Glutaral/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Microscopía Inmunoelectrónica/métodos , Microtomía , Cebollas/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/ultraestructura , Populus/metabolismo , Populus/ultraestructura , Semillas/metabolismo , Semillas/ultraestructura , Coloración y Etiquetado/métodos , Fijación del Tejido/métodos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
11.
Methods Mol Biol ; 1309: 209-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25981778

RESUMEN

The constant force of gravity plays a primordial role in the ontogeny of all living organisms. Plants, for example, develop their roots and shoots in accordance with the direction of the gravitational vector. Any change in the magnitude and/or the direction of gravity has an important impact on the development of tissues and cells. In order to understand how the gravitational force affects plant cell growth and differentiation, we established two complementary experimental procedures with which the effect of hyper-gravity on single plant cell development can be assessed. The single model cell system we used is the pollen tube or male gametophyte which, because of its rapid growth behavior, is known for its instant response to external stresses. The physiological response of the pollen tube can be assessed in a quantitative manner based on changes in the composition and spatial distribution of its cell wall components and in the precisely defined pattern of its very dynamic cytoplasmic streaming. Here, we provide a detailed description of the steps required for the immuno-localization of various cell wall components using microwave-assisted techniques and we explain how live imaging of the intracellular traffic can be achieved under hyper-gravity conditions.


Asunto(s)
Raíces de Plantas/metabolismo , Polen/metabolismo , Proteómica , Análisis de la Célula Individual/métodos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Gravitación , Sensación de Gravedad , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Desarrollo de la Planta/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/ultraestructura , Polen/crecimiento & desarrollo , Polen/ultraestructura , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Tubo Polínico/ultraestructura
12.
Proc Natl Acad Sci U S A ; 112(15): 4541-5, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25825744

RESUMEN

Conventional approaches to create biomaterials rely on reverse engineering of biological structures, on biomimicking, and on bioinspiration. Plant nanobionics is a recent approach to engineer new materials combining plant organelles with synthetic nanoparticles to enhance, for example, photosynthesis. Biological structures often outperform man-made materials. For example, higher plants sense temperature changes with high responsivity. However, these properties do not persist after cell death. Here, we permanently stabilize the temperature response of isolated plant cells adding carbon nanotubes (CNTs). Interconnecting cells, we create materials with an effective temperature coefficient of electrical resistance (TCR) of -1,730% K(-1), ∼2 orders of magnitude higher than the best available sensors. This extreme temperature response is due to metal ions contained in the egg-box structure of the pectin backbone, lodged between cellulose microfibrils. The presence of a network of CNTs stabilizes the response of cells at high temperatures without decreasing the activation energy of the material. CNTs also increase the background conductivity, making these materials suitable elements for thermal and distance sensors.


Asunto(s)
Materiales Biocompatibles/química , Calcio/química , Calor , Nanotubos de Carbono/química , Pectinas/química , Células Vegetales/química , Materiales Biocompatibles/metabolismo , Calcio/metabolismo , Ingeniería Celular/métodos , Ingeniería Celular/tendencias , Línea Celular , Pared Celular/química , Pared Celular/metabolismo , Pared Celular/ultraestructura , Microscopía Electrónica de Rastreo , Nanotecnología/métodos , Nanotecnología/tendencias , Nanotubos de Carbono/ultraestructura , Pectinas/metabolismo , Células Vegetales/metabolismo , Células Vegetales/ultraestructura
13.
Artículo en Inglés | MEDLINE | ID: mdl-25392584

RESUMEN

BACKGROUND: The succulent genus, Gasteria, which comprises 16 species, is endemic to South Africa and has its main centre of distribution in the Savanna Region of the Eastern Cape. Whereas G. bicolor has been investigated phyto-chemically and pharmacologically, not much data concerning the anatomical and micro-morphological features can be found in literature. MATERIALS AND METHODS: This study was undertaken, using light and scanning electron microscopy to obtain information on the micro-morphological features of this important medicinal plant to facilitate its identification and authentication. The elemental composition of the leaf was determined by energy dispersive X-ray spectroscopy (EDXS). RESULTS: The epidermal cells are either hexagonal or pentagonal in form, and are compactly arranged with undulate anti-clinal cell walls. The epidermal cell width was approximately 50 µm. Stomata apertures are elliptical and the upper epidermis of the leaf has paracytic stomata which are slightly raised above the epidermal surface with 4 to 5 subsidiary cells surrounding each stoma. Based on the EDXS microanalysis, the mineral crystals present at the level of the mesophyll of G. bicolor were probably mixtures of calcium oxalate, calcium sulphate and silica. CONCLUSION: The co-occurrence of aluminum suggests the potential role of the crystals in detoxification of aluminum and heavy metals, as reported previously.


Asunto(s)
Liliaceae/ultraestructura , Células Vegetales/ultraestructura , Epidermis de la Planta/ultraestructura , Hojas de la Planta/ultraestructura , Oxalato de Calcio/metabolismo , Sulfato de Calcio/metabolismo , Cristalización , Liliaceae/metabolismo , Microscopía Electrónica de Rastreo , Extractos Vegetales/normas , Hojas de la Planta/metabolismo , Estomas de Plantas/ultraestructura , Plantas Medicinales/metabolismo , Plantas Medicinales/ultraestructura , Dióxido de Silicio/metabolismo , Sudáfrica
14.
Methods Mol Biol ; 1117: 663-75, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24357384

RESUMEN

This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.


Asunto(s)
Microanálisis por Sonda Electrónica/métodos , Microscopía Electrónica de Rastreo/métodos , Minerales/metabolismo , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Técnicas de Preparación Histocitológica , Microscopía/métodos
15.
Plant Biol (Stuttg) ; 15(2): 405-14, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22759307

RESUMEN

Cellulose is the major component of plant cell walls and is an important source of industrial raw material. Although cellulose biosynthesis is one of the most important biochemical processes in plant biology, the regulatory mechanisms of cellulose synthesis are still unclear. Here, we report that 2,6-dichlorobenzonitrile (DCB), an inhibitor of cellulose synthesis, inhibits Arabidopsis root development in a dose- and time-dependent manner. When treated with DCB, the plant cell wall showed altered cellulose distribution and intensity, as shown by calcofluor white and S4B staining. Moreover, pectin deposition was reduced in the presence of DCB when immunostained with the monoclonal antibody JIM5, which was raised against pectin epitopes. This result was confirmed using Fourier transform infrared (FTIR) analysis. Confocal microscopy revealed that the organisation of the microtubule cytoskeleton was significantly disrupted in the presence of low concentrations of DCB, whereas the actin cytoskeleton only showed changes with the application of high DCB concentrations. In addition, the subcellular dynamics of Golgi bodies labelled with N-ST-YFP and TGN labelled with VHA-a1-GFP were both partially blocked by DCB. Transmission electron microscopy indicated that the cell wall structure was affected by DCB, as were the Golgi bodies. Scanning electron microscopy showed changes in the organisation of cellulose microfibrils. These results suggest that the inhibition of cellulose synthesis by DCB not only induced changes in the chemical composition of the root cell wall and cytoskeleton structure, but also changed the distribution of cellulose microfibrils, implying that cellulose plays an important role in root development in Arabidopsis.


Asunto(s)
Arabidopsis/efectos de los fármacos , Pared Celular/efectos de los fármacos , Celulosa/biosíntesis , Citoesqueleto/efectos de los fármacos , Nitrilos/farmacología , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Transporte Biológico , Pared Celular/química , Pared Celular/ultraestructura , Celulosa/antagonistas & inhibidores , Citoesqueleto/química , Relación Dosis-Respuesta a Droga , Aparato de Golgi/química , Aparato de Golgi/ultraestructura , Inmunohistoquímica , Microfibrillas/química , Microscopía Confocal , Microscopía Electrónica de Transmisión , Pectinas/química , Células Vegetales/química , Células Vegetales/ultraestructura , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Semillas/química , Semillas/crecimiento & desarrollo , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo
16.
Mol Genet Metab ; 107(3): 571-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22944366

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid ß (Aß) peptides and the failure of mechanisms to clear toxic aggregates. The Aß42 peptide is considered to be a causative factor that underlies the pathophysiology of AD, in part due to its propensity for misfolding and aggregation; the small oligomers that result represent toxic species. Thus agents that prevent Aß42 misfolding/aggregation or, alternatively improve Aß42 oligomer clearance, may have significant therapeutic value. We have developed the basis for a drug screening system based on transgenic plant cells that express Aß42 fusion proteins to serve as the reliable indicators of the general conformational status of Aß42. Within cells of transgenic tobacco and Nicotiana benthamiana, misfolding of Aß42 causes the misfolding of a GFP fusion partner, and consequently there is a loss of fluorescence associated with the native GFP protein. In a similar fusion consisting of Aß42 linked to hygromycin phosphotransferase II (Hpt II), a hygromycin-resistance marker, misfolding of Aß42 leads to a misfolded Hpt II, and consequently the transgenic cells are unable to grow on media containing hygromycin. Importantly, substitution of the 'aggregation-prone' Aß42 with a missense mutant of Aß42 (F19S/L34F) that is not prone to misfolding/aggregation, 'rescues' both fusion partners. Several 'positive control' chemicals that represent inhibitors of Aß42 aggregation, including curcumin, epigallocatechin-3-gallate (EGCG), and resveratrol show efficacy in preventing the Aß42-fusion proteins from misfolding/aggregating in the transgenic plant cells. We discuss the potential of the two fusion protein systems to serve as the basis for an inexpensive, selective, and efficient screening system in which a plant cell can fluoresce or survive only in the presence of drug candidates that are able to prevent Aß42 misfolding/aggregation.


Asunto(s)
Péptidos beta-Amiloides/química , Evaluación Preclínica de Medicamentos/métodos , Nicotiana/química , Fragmentos de Péptidos/química , Células Vegetales/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Catequina/análogos & derivados , Catequina/farmacología , Ingeniería Celular , Curcumina/farmacología , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Humanos , Microscopía Fluorescente , Modelos Biológicos , Mutación , Fragmentos de Péptidos/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Células Vegetales/efectos de los fármacos , Células Vegetales/ultraestructura , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Resveratrol , Estilbenos/farmacología , Nicotiana/efectos de los fármacos , Nicotiana/ultraestructura
17.
Plant Physiol ; 160(2): 978-89, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22846192

RESUMEN

Transparent Testa16 (TT16), a transcript regulator belonging to the B(sister) MADS box proteins, regulates proper endothelial differentiation and proanthocyanidin accumulation in the seed coat. Our understanding of its other physiological roles, however, is limited. In this study, the physiological and developmental roles of TT16 in an important oil crop, canola (Brassica napus), were dissected by a loss-of-function approach. RNA interference (RNAi)-mediated down-regulation of tt16 in canola caused dwarf phenotypes with a decrease in the number of inflorescences, flowers, siliques, and seeds. Fluorescence microscopy revealed that tt16 deficiency affects pollen tube guidance, resulting in reduced fertility and negatively impacting embryo and seed development. Moreover, Bntt16 RNAi plants had reduced oil content and altered fatty acid composition. Transmission electron microscopy showed that the seeds of the RNAi plants had fewer oil bodies than the nontransgenic plants. In addition, tt16 RNAi transgenic lines were more sensitive to auxin. Further analysis by microarray showed that tt16 down-regulation alters the expression of genes involved in gynoecium and embryo development, lipid metabolism, auxin transport, and signal transduction. The broad regulatory function of TT16 at the transcriptional level may explain the altered phenotypes observed in the transgenic lines. Overall, the results uncovered important biological roles of TT16 in plant development, especially in fatty acid synthesis and embryo development.


Asunto(s)
Brassica napus/embriología , Lípidos/biosíntesis , Proteínas de Dominio MADS/metabolismo , Semillas/crecimiento & desarrollo , Transporte Biológico , Brassica napus/genética , Brassica napus/metabolismo , Ácidos Grasos/biosíntesis , Ácidos Grasos Monoinsaturados/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Metabolismo de los Lípidos , Proteínas de Dominio MADS/genética , Microscopía Electrónica de Transmisión , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Plantas Modificadas Genéticamente/embriología , Plantas Modificadas Genéticamente/metabolismo , Polen/crecimiento & desarrollo , Polinización , Interferencia de ARN , Aceite de Brassica napus , Semillas/ultraestructura , Autofecundación , Transducción de Señal
18.
J Plant Physiol ; 169(10): 955-64, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22575055

RESUMEN

Extreme low temperatures cause plants multiple stresses, among which oxidative stress is presumed to be the major component affecting the resultant recovery rate. Plants of Hypericum perforatum L., which are known especially for the photodynamic activities of hypericins capable of producing reactive oxygen species under exposure to visible light, were observed to display a substantial increase and persistence in active oxygen production at least two months after recovery from cryogenic treatment. In an effort to uncover the causative mechanism, the individual contributions of wounding during explant isolation, dehydration and cold were examined by means of antioxidant profiling. The investigation revealed activation of genes coding for enzymatic antioxidant catalase and superoxide dismutase at both the transcript and protein levels. Interestingly, plants responded more to wounding than to either low-temperature associated stressor, presumably due to tissue damage. Furthermore, superoxide dismutase zymograms showed the Cu/Zn isoforms as the most responsive, directing the ROS production particularly to chloroplasts. Transmission electron microscopy revealed chloroplasts as damaged structures with substantial thylakoid ruptures.


Asunto(s)
Antioxidantes/metabolismo , Frío , Hypericum/fisiología , Estrés Oxidativo , 3,3'-Diaminobencidina/metabolismo , Catalasa/genética , Catalasa/metabolismo , Cloroplastos/ultraestructura , Criopreservación , Fluoresceínas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genotipo , Peróxido de Hidrógeno/metabolismo , Hypericum/enzimología , Hypericum/genética , Hypericum/ultraestructura , Isoenzimas/genética , Isoenzimas/metabolismo , Estrés Oxidativo/genética , Células Vegetales/ultraestructura , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Especies Reactivas de Oxígeno/metabolismo , Coloración y Etiquetado , Estrés Fisiológico/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factores de Tiempo
19.
Am J Bot ; 99(6): 998-1009, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22623609

RESUMEN

PREMISE OF THE STUDY: While cell wall thickening in plants is generally associated with tissue maturation, fungal tissues in at least two lichens continue to grow extensively while accumulating massively thickened cell walls. We examined Usnea longissima to determine how diffuse growth shapes morphological and anatomical development of thallus axes and how the highly thickened cell walls of the central cord behave in diffuse growth. METHODS: Fresh material was examined with light and epifluorescence microscopy and conventional and low-temperature SEM. Fixed material was embedded in Spurr's resin, microtome-sectioned, and examined with TEM and light microscopy. KEY RESULTS: Main axes consisted essentially of bare medullary cord tissue; their characteristic morphology developed by destruction of the overlying cortex and consequent stimulation of lateral branch formation. Fungal cells of the cord tissue continually deposited wall layers of electron-transparent substances and layered, electron-dense materials that include UV-epifluorescent components. Discontinuities were evident in the outermost layers; new branch cells grew through wall materials accumulated by older neighboring cells. CONCLUSIONS: Sustained diffuse growth of cord tissue in U. longissima underlies the structural transformation of a corticated thallus branch into a long axis. In the cord tissue, diffuse growth may be responsible for the increasingly disrupted appearance of the older, electron-dense cell wall layers, while new wall materials are laid down adjacent to the protoplast. Cell and tissue development appeared comparable to that observed previously in Ramalina menziesii, although accumulation of wall material was somewhat less extensive and with a greater proportion of electron-dense/UV-epifluorescent components.


Asunto(s)
Ascomicetos/crecimiento & desarrollo , Pared Celular/metabolismo , Usnea/crecimiento & desarrollo , Ascomicetos/citología , Ascomicetos/ultraestructura , Pared Celular/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Modelos Biológicos , Células Vegetales/ultraestructura , Usnea/citología , Usnea/ultraestructura
20.
Protoplasma ; 248(4): 717-24, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21286765

RESUMEN

Intercellular chromatin migration (cytomixis) in the pollen mother cells of two tobacco (Nicotiana tabacum L.) lines was analyzed by electron microscopy during the first meiotic prophase. The maximal manifestation of cytomixis was observed in the pachytene. As a rule, several cells connected with one another by cytomictic channels wherein the nuclei migrated were observable at this stage. In the majority of cases, nuclei passed from cell to cell concurrently through several closely located cytomictic channels. Chromatin migrated between cells within the nuclear envelope, and its disintegration was unobservable. The nucleus, after passing through cytomictic channels into another cell, can be divided into individual micronuclei or, in the case of a direct contact with another nucleus, can form a nuclear bridge. It has been demonstrated that the chromatin structure after intracellular migration visually matches the chromatin structure before it passed through the cytomictic channel. No signs of pyknosis were observable in the chromatin of the micronuclei formed after cytomixis, and the synaptonemal complex was distinctly seen. The dynamics of changes in the nucleoli during cytomixis was for the first time monitored on an ultrastructural level. Possible mechanisms determining cytomixis are discussed and the significance of this process in plant development is considered.


Asunto(s)
Núcleo Celular/ultraestructura , Cromatina/fisiología , Nicotiana/citología , Células Vegetales/ultraestructura , Polen/ultraestructura , Núcleo Celular/fisiología , Citoplasma/fisiología , Microscopía Electrónica , Membrana Nuclear/fisiología , Fase Paquiteno , Células Vegetales/fisiología , Polen/fisiología , Nicotiana/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA