Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Reprogram ; 26(2): 79-84, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579133

RESUMEN

Cumulus cells (CCs) synthesize estrogens that are essential for follicular development. However, the effects of androgen on estrogen production in buffalo CCs remain unknown. In the present study, the impacts of testosterone on estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes were investigated. The results showed that testosterone supplementation improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 17ß-HSD) and the secretion levels of estradiol in buffalo CCs surrounding in vitro-matured oocytes. Furthermore, testosterone treatment enhanced the sensitivity of buffalo CCs surrounding in vitro-matured oocytes to follicle-stimulating hormone (FSH). This study indicated that testosterone supplementation promoted the estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes mainly through strengthening the responsiveness of CCs to FSH. The present study serves as a foundation of acquiring high-quality recipient oocytes for buffalo somatic cell nuclear transfer.


Asunto(s)
Búfalos , Testosterona , Femenino , Animales , Testosterona/farmacología , Testosterona/metabolismo , Células del Cúmulo , Oocitos , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Suplementos Dietéticos , Estrógenos/farmacología , Estrógenos/metabolismo
2.
Biol Reprod ; 110(4): 672-683, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38263524

RESUMEN

Chemically defined oocyte maturation media supplemented with FGF2, LIF, and IGF-1 (FLI medium) enabled significantly improved oocyte quality in multiple farm animals, yet the molecular mechanisms behind such benefits were poorly defined. Here, we first demonstrated that FLI medium enhanced mouse oocyte quality assessed by blastocyst formation after in vitro fertilization and implantation and fetal development after embryo transfer. We then analyzed the glucose concentrations in the spent media; reactive oxygen species concentrations; mitochondrial membrane potential; spindle morphology in oocytes; and the abundance of transcripts of endothelial growth factor-like factors, cumulus expansion factors, and glucose metabolism-related genes in cumulus cells. We found that FLI medium enabled increased glucose metabolism through glycolysis, pentose phosphate pathway, and hexosamine biosynthetic pathway, as well as more active endothelial growth factor-like factor expressions in cumulus cells, resulting in improved cumulus cell expansion, decreased spindle abnormality, and overall improvement in oocyte quality. In addition, the activities of MAPK1/3, PI3K/AKT, JAK/STAT3, and mTOR signaling pathways in cumulus cells were assessed by the phosphorylation of MAPK1/3, AKT, STAT3, and mTOR downstream target RPS6KB1. We demonstrated that FLI medium promoted activations of all these signaling pathways at multiple different time points during in vitro maturation.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Técnicas de Maduración In Vitro de los Oocitos , Animales , Ratones , Femenino , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factores de Crecimiento Endotelial/análisis , Factores de Crecimiento Endotelial/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Oocitos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Suplementos Dietéticos , Glucosa/farmacología , Glucosa/metabolismo , Células del Cúmulo/metabolismo
3.
Theriogenology ; 215: 78-85, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38016304

RESUMEN

During in vitro maturation (IVM) cumulus-oocyte complexes (COCs) are exposed to conditions that can trigger oxidative stress, thus, reducing oocyte maturation and viability. Aiming to mitigate these detrimental conditions, the effects of IVM medium supplementation with anethole have been tested. Anethole, also known as trans-anethole (1-methoxy-4 [1-propenyl]-benzene), is a naturally occurring phenylpropanoid with various pharmacological properties, including antioxidant effects. However, no study has examined anethole effect on goat COCs during IVM. Thus, the aim of this study was to evaluate the effects of different anethole concentrations on oocyte maturation, oxidative stress, and in vitro development of caprine embryos after parthenogenetic activation. Goat COCs were selected and randomly distributed into the following treatments: TCM-199+ medium (control), or TCM-199+ medium supplemented with 30 µg/mL (AN30); 300 µg/mL (AN300) or 2000 µg/mL (AN2000) of anethole. After IVM, part of the COCs was chosen for oocyte viability and chromatin configuration, intracellular reactive oxygen species levels, and mitochondrial membrane potential assessment. Another part of COCs was parthenogenetically activated, and presumptive zygotes were cultured for 7 days. Results demonstrated that anethole at 30 µg/mL increased oocyte maturation and cleavage rates when compared to the other treatments (P < 0.05), as well as oocyte viability and in vitro embryo production when compared to the control treatment (P < 0.05). Additionally, treatment with anethole at 2000 µg/mL decreased oocyte nuclear maturation and cleavage rates when compared to other treatments (P < 0.05) and embryo production if compared to control and AN30 treatments (P < 0.05). Moreover, anethole at 2000 µg/mL increased mitochondrial membrane potential when compared to the other treatments (P < 0.05). In conclusion, anethole exerts a concentration-dependent effect during goat COCs IVM. For a more desirable outcome of oocyte viability and maturation, and in vitro embryo production, the use of anethole at 30 µg/mL is recommended.


Asunto(s)
Cabras , Técnicas de Maduración In Vitro de los Oocitos , Animales , Femenino , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Cabras/fisiología , Oocitos/fisiología , Suplementos Dietéticos , Células del Cúmulo
4.
Biol Trace Elem Res ; 202(1): 161-174, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37127784

RESUMEN

Selenium (Se), an essential trace element, plays an important role in the antioxidative defense mechanism, and it has been proven to improve fertility and reproductive efficiency in dairy cattle. The present study evaluated the potential protective action of Se supplement of in vitro maturation (IVM) media on the maturation and subsequent development of bovine cumulus-oocyte complexes (COCs) exposed to heat stress (HS). The treatment with Se improved the viability of cumulus cells (CCs) and oocytes (P < 0.05). The proportion of oocytes reached metaphase II (MII) and those arrested at metaphase I (MI) was greater and lower in treatment than control respectively (P < 0.05). Supplementation with Se increased the percentage of cleaved embryos, total blastocysts, and blastocyst/cleavage ratio (P < 0.05). Moreover, the upregulation of CCND1, SEPP1, GPX-4, SOD, CAT, and downregulation of GRP78, CHOP, and BAX in both Se-treated CCs and oocytes were recorded. The upregulation of NRF2 was detected in Se-treated CCs other than in oocytes, which showed upregulation of IGF2R and SOX-2 as the markers of quality as well. Se supplement in IVM media improved the viability, maturation, and the level of transcripts related to antioxidant defense and quality of heat-treated oocytes, which coincided with greater subsequent development outcomes. Se ameliorated the viability of CCs along with upregulation of antioxidative candidate gene expression and downregulation of apoptosis-related ones to support their protective role on restoring the quality of oocytes against compromising effects of HS.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Selenito de Sodio , Bovinos , Animales , Femenino , Selenito de Sodio/farmacología , Selenito de Sodio/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos , Respuesta al Choque Térmico , Células del Cúmulo/fisiología
5.
Theriogenology ; 216: 93-102, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159389

RESUMEN

Granulocyte colony-stimulating factor (G-CSF), a pleiotropic cytokine, is secreted by the reproductive tract. Furthermore, our previous study indicated that human recombinant G-CSF (hrG-CSF) supplementation during porcine oocyte in vitro maturation (IVM) or during embryo in vitro culture (IVC) improved their quality and development potential when using cumulus-oocyte complexes (COCs) with more than three cumulus cell layers (CCL >3). Thus, in this study, we investigate the optimal conditions of hrG-CSF supplementation throughout the in vitro production (IVP: IVM + IVC) system to improve the embryo production efficiency of "poor-quality (CCL ≤3)" oocytes. COCs were classified into two groups according to the number of CCL (>3 and ≤3) and embryonic viability was analyzed after treatment with hrG-CSF during IVC. The mRNA transcription levels of G-CSF in COCs were compared based on their type and the period of IVM. Finally, developmental capacity and quality were evaluated after treatment with hrG-CSF for different periods of IVP. No marked effects on the developmental potential of embryos when using CCL ≤3 type COCs were observed after supplementing hrG-CSF only during IVC. Moreover, the mRNA transcription level of G-CSF increased gradually with IVM culture time and was higher in CCL ≤3 COCs than in >3. Supplementing hrG-CSF only during the IVM period resulted in the best embryo developmental potential, while supplementing hrG-CSF during the IVP period resulted in the best quality embryos, reflected in the increased total cell number and decreased apoptotic nuclei index of blastocysts. These findings indicate that "poor-quality" COCs may have a greater demand for G-CSF than "good-quality", meanwhile hrG-CSF supplementation throughout IVP improves resource utilization efficiency in poor-quality COCs.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Oocitos , Femenino , Humanos , Animales , Porcinos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Desarrollo Embrionario , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Células del Cúmulo/metabolismo , Blastocisto , ARN Mensajero/metabolismo , Suplementos Dietéticos , Granulocitos
6.
Anim Biotechnol ; 34(8): 3887-3896, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37466367

RESUMEN

This study aimed to investigate the effect of putrescine supplementation to maturation medium during in vitro embryo production in cattle on maturation and embryo development/quality. Oocytes obtained from the ovaries of Holstein cattle were used in the study. Obtained cumulus-oocyte complexes were evaluated according to morphological structure, cytoplasmic features, and cumulus cell number, and only Category-I ones were used in the study. Before the in vitro maturation step, oocytes were randomly divided into two groups. In the first group (Putrescine group, n = 159), 0.5 mM putrescine was added to the maturation medium before in vitro maturation. No addition was applied to the maturation medium of the second group (Control group, n = 149). Cumulus expansion degrees of oocytes following maturation (Grade I: poor, Grade II: partial, and Grade III: complete) were determined. In addition, the meiosis of oocytes after maturation was evaluated by differential staining. Then the oocytes were left for fertilization with sperm and finally, possible zygotes were transferred to the culture medium. After determining the developmental stages and quality of the embryos after in vitro culture, only the embryos at the blastocyst stage were stained with the differential staining method to determine the cell numbers. When the cumulus expansion degrees of the groups were evaluated, the Grade III cumulus expansion rate in the putrescine group was higher than the control group (74.21% and 60.4%; respectively) and the Grade I expansion rate (11.95% and 26.17%; respectively) was found lower (p < .05). When the resumption of meiosis was evaluated according to the cumulus expansion degrees, it was determined that the rate of resumption of meiosis increased as the cumulus expansion increased. In addition, the cleavage rates of oocytes and reaching the blastocyst in the putrescine group were found to be higher than in the control group (p < .05). Moreover, inner cell mass, trophectoderm cells, and total cell counts were found to be higher in blastocysts obtained after the putrescine supplementation to the maturation medium compared to the control group (p < .05). As a result, it was determined that the putrescine supplementation to the maturation medium during in vitro embryo production in cattle increased the degree of cumulus expansion and the rate of resumption of meiosis. In addition, putrescine supplementation was thought to increase the rate of reaching the blastocyst of oocytes due to better cell development in embryos.


Asunto(s)
Putrescina , Semen , Masculino , Femenino , Bovinos , Animales , Putrescina/farmacología , Oocitos , Desarrollo Embrionario , Blastocisto , Suplementos Dietéticos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Fertilización In Vitro/veterinaria , Células del Cúmulo
7.
Theriogenology ; 201: 126-137, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36893617

RESUMEN

Fibroblast growth factor 10 (FGF10) is an important regulator of the mammalian cumulus-oocyte complex that plays a crucial role in oocyte maturation. In this study, we investigated the effects of FGF10 supplementation on the in vitro maturation (IVM) of buffalo oocytes and its related mechanisms. During IVM, the maturation medium was supplemented with a range of concentrations of FGF10 (0, 0.5, 5, and 50 ng/mL) and the resulting effects were corroborated using aceto-orcein staining, TUNEL apoptosis assay, detection of Cdc2/Cdk1 kinase in oocytes, and real-time quantitative PCR. In matured oocytes, the 5 ng/mL-FGF10 treatment resulted in a significantly increased nuclear maturation rate, which increased the activity of maturation-promoting factor (MPF) and enhanced buffalo oocyte maturation. Furthermore, it treatment significantly inhibited the apoptosis of cumulus cells, while simultaneously promoting its proliferation and expansion. This treatment also increased the absorption of glucose in cumulus cells. Thus, our results indicate that adding an appropriate concentration of FGF10 to a maturation medium during IVM can be beneficial to the maturation of buffalo oocytes and improve the potential of embryo development.


Asunto(s)
Búfalos , Técnicas de Maduración In Vitro de los Oocitos , Animales , Femenino , Células del Cúmulo/metabolismo , Suplementos Dietéticos , Factor 10 de Crecimiento de Fibroblastos/farmacología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos
8.
Theriogenology ; 195: 93-102, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36332377

RESUMEN

Follicular fluid (FF) is a complex biological medium providing a fully balanced microenvironment for the oocyte. The standard medium for in vitro maturation of porcine oocytes contains 10% of FF which due to its unknown and inconstant composition is a source of a significant variation. This study aimed to investigate whether follicular fluids of significantly different fatty acid contents (standardized follicular fluid) supplemented to porcine IVM media affects lipid metabolism of porcine oocytes and cumulus cells. Two categories of FF from cyclic gilts containing high (H) and low (L) FA content was added to IVM medium for oocytes from prepubertal gilts. Altogether, 521 cumulus oocyte-complexes (oocytes and corresponding cumulus cells) were analyzed for mRNA expression of 7 genes regulating lipid metabolism and selected traits of the lipid droplets (LD). The applied FFs of different FA levels exerted distinct effects on oocytes and cumulus cells (CCs). During IVM oocytes tended to utilize the lipids as demonstrated by the reduced LD number and lipid fluorescence, whereas cumulus cells accumulated lipids as indicated by the increase in LD number, the occupied area and fluorescence level. Changes in cumulus cells were independent of the FA content in the follicular fluid which means an efficient lipid accumulation during IVM. Final analysis including the effect of FA level on LD traits in oocytes and corresponding CCs revealed two distinct patterns. COCs matured in FF of high FA content were characterized by elevated dynamics of lipid accumulation in CCs and stable lipid content in oocytes. In the case of FF with low FA content, CCs accumulated lipids at a significantly lower rate whereas lipid level in oocytes was reduced. The alterations observed in the LD parameters were not accompanied by changes in oocyte nuclear maturation and in transcript level of any from the 7 analyzed genes. In conclusion, fatty acid content of the follicular fluid supplemented to porcine IVM medium affects lipid metabolism in cumulus cells of the maturing oocyte and application of a standardized FF may help to improve the quality of porcine oocytes matured in vitro.


Asunto(s)
Células del Cúmulo , Líquido Folicular , Porcinos , Animales , Femenino , Ácidos Grasos , Oocitos , Sus scrofa
9.
Reprod Domest Anim ; 57(11): 1440-1449, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36317481

RESUMEN

Increased palmitic acid (PA) levels have been found in females with reduced fertility due to metabolic disorders. However, effective antioxidant astaxanthin (AXE) might positively affect animal reproduction. Therefore, the present study was designed to evaluate the impact of a high concentration of PA on oocyte maturation and the possible protective effect of AXE against high PA concentration in pigs. Firstly, different concentrations (0.2, 0.5, 0.8 mM) of PA were conducted on in vitro maturation (IVM) of pig oocytes (PA0.2, PA0.5, and PA0.8), while no addition of PA was performed as the control group (Ctrl). Results showed that the cumulus cell expansion index (CCEI) was lower in PA0.5 and PA0.8 groups compared to Ctrl group (p < .05). In PA0.5 group, not only did the percentage of matured oocytes with the first polar body (PB1) reduced, that with more oocytes arrested at germinal vesicle (GV) stage (53.44% ± 7.16% vs. 20.93% ± 5.16%, p < .05), but also a higher number of transzonal projections (TZPs) was observed in PA0.5 than Ctrl group. Besides, supplement of PA resulted in a dose-dependent decrease in mitochondrial activity. Although no difference of lipid content was observed between PA0.5 and Ctrl groups, the lipid content was at a higher level in PA0.2 group than in the other three groups. Hence, concentration of 0.5 mM of PA was performed in the following experiments, and 2.5 µM AXE carried out to investigate the possible relief effects of PA (PA0.5 + AXE). Results showed that the percentage of matured oocytes with PB1 was higher in PA0.5 + AXE than in PA0.5 group (63.43% ± 1.50% vs. 55.33% ± 0.81%, p < .01), and ROS levels both in oocytes and their cumulus cells (CCs) reduced in PA0.5 + AXE when compared to PA0.5 group. In addition, the rate of CCs with apoptosis decreased in PA0.5 + AXE, and the expression level of caspase 3 and BAX was lower than PA0.5 group. In conclusion, the maturation of pig oocytes was inhibited by the high concentration of PA; however, this negative effect of PA-induced might be relieved by the supplement of AXE.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Ácido Palmítico , Femenino , Animales , Porcinos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Ácido Palmítico/farmacología , Ácido Palmítico/metabolismo , Células del Cúmulo , Oocitos
10.
Theriogenology ; 192: 62-72, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36063671

RESUMEN

Oocyte in vitro maturation (IVM) and vitrification procedures lead to detrimental effects on the overall oocyte quality. The addition of antioxidants during IVM, such as the coenzyme Q10 (Q10), has been demonstrated to positively impact on the cumulus-oocyte complexes due to its role in protection from oxidative damage and modulating gene transcription. Furthermore, glucocorticoids (GC) regulate gene transcription, energy metabolism and apoptosis during the early steps of reproduction. In this sense, most GC actions are mediated by the glucocorticoid receptor (NR3C1), a transcription factor. However, the specific roles of GC in ovarian physiology and oocyte maturation are still unknown. In this regard, a better knowledge on the expression of GC-related and apoptosis-related genes during IVM and cryopreservation procedures could potentially benefit the refinement of assisted reproductive techniques in the bovine species. The present study aims to explore the expression of NR3C1 mRNA in fresh and vitrified bovine oocytes and cumulus cells in response to Q10 (50 µM), and the effect of cortisol addition (0.25 µM, 0.5 µM) on the expression of NR3C1. We also studied the mRNA expression of NR3C1-related genes belonging to the GC regulation pathway, such as hydroxysteroid dehydrogenases (HSD11B1; HSD11B2), immunophilins (FKBP4; FKBP5), signal transducers and activators of transcription (STAT3; STAT5A), the mineralocorticoid receptor (NR3C2), and to the apoptosis pathway, such as the anti- (BCL2) and pro-apoptotic (BAX) mRNA transcripts in oocytes and cumulus cells 1) after IVM, and 2) after vitrification, both in presence or absence of Q10 supplementation during IVM. Our results show that there is an increase in the NR3C1 receptor expression after vitrification of oocytes, but not after exogenous cortisol supplementation during IVM. In addition, Q10 reduces the mRNA expression of HSD11B1 and FKBP5 in oocytes at levels of immature oocytes (HSD11B1 mRNA expression also in cumulus cells), and the BAX:BCL2 ratio mRNA expression. After vitrification in the presence of Q10, HSD11B2 mRNA expression increases in cumulus cells, while HSD11B1 and BAX:BCL2 mRNA expression decreases significantly both in oocytes and cumulus cells. In conclusion, our results show for the first time the effect of IVM, vitrification and Q10 supplementation on the mRNA relative expression of GC-related and apoptosis genes, and the effect of vitrification in the protein expression of NR3C1.


Asunto(s)
Células del Cúmulo , Vitrificación , Animales , Apoptosis , Bovinos , Células del Cúmulo/fisiología , Suplementos Dietéticos , Femenino , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Hidrocortisona/metabolismo , Hidroxiesteroide Deshidrogenasas/metabolismo , Hidroxiesteroide Deshidrogenasas/farmacología , Inmunofilinas/metabolismo , Inmunofilinas/farmacología , Técnicas de Maduración In Vitro de los Oocitos/métodos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/fisiología , ARN Mensajero/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Factores de Transcripción/metabolismo , Ubiquinona/análogos & derivados , Proteína X Asociada a bcl-2/metabolismo
11.
Cell Reprogram ; 24(4): 175-185, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35861708

RESUMEN

The oocyte in vitro maturation (IVM) technique is important in animal husbandry, biomedicine, and human-assisted reproduction. However, the developmental potential of in vitro matured oocytes is usually lower than that of in vivo matured (IVVM) oocytes. Amphiregulin (AREG) is an EGF-like growth factor that plays critical roles in the maturation and development of mammalian oocytes. This study investigated the effects of AREG supplementation during pig oocyte IVM on the subsequent development of cloned embryos. The addition of AREG to pig oocyte IVM medium improved the developmental competence of treated oocyte-derived cloned embryos by enhancing the expansion and proliferation of cumulus cells (CCs) during IVM. The positive effect of AREG on enhancing the quality of IVVM pig oocytes might be due to the activation of proliferation-related pathways in CCs by acting on the AREG receptor. The present study provides an AREG treatment-based method to improve the developmental competence of cloned pig embryos.


Asunto(s)
Células del Cúmulo , Técnicas de Maduración In Vitro de los Oocitos , Anfirregulina/metabolismo , Anfirregulina/farmacología , Animales , Proliferación Celular , Suplementos Dietéticos , Femenino , Humanos , Técnicas de Maduración In Vitro de los Oocitos/métodos , Mamíferos , Oocitos , Porcinos
12.
Zygote ; 30(5): 600-610, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35674131

RESUMEN

Despite previous research demonstrating the benefits of including growth factors and antioxidants to maturation medium to support embryo production, to date the effect of epidermal growth factor (EGF) and melatonin (Mel) on oocyte competency has not been studied. This study supplemented in vitro maturation (IVM) medium with EGF (10 ng/ml) and Mel (50 ng/ml) alone, or in combination, and evaluated cumulus cell (CC) gene expression and the development and quality of parthenogenetic blastocysts. No differences in CC gene expression levels indicative of developmental potential were found among the treatment groups. Antioxidant gene CuZnSOD was significantly (P < 0.05) decreased in CCs from the Mel group. Moreover, blastocyst rates on day 7 were significantly increased in EGF or Mel (P < 0.05), but not EGF+Mel. Significant decrease (P < 0.05) in GPX1, CuZnSOD, SLC2A1 and HSPA1A (P = 0.07) mRNA levels was observed in blastocysts from the Mel group. OCT4 gene expression was significantly increased (P < 0.05) in EGF+Mel and confirmed using immunofluorescence. Our results indicate that, despite the lack of changes of competence-related genes in CCs, IVM medium supplemented with Mel improved the culture environment sufficiently, resulting in improved blastocysts. Moreover, EGF and Mel combined during maturation increased OCT4 gene and protein expression in blastocysts, indicating its potential for stem cells.


Asunto(s)
Células del Cúmulo , Melatonina , Animales , Antioxidantes/metabolismo , Blastocisto , Bovinos , Desarrollo Embrionario , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/farmacología , Femenino , Expresión Génica , Técnicas de Maduración In Vitro de los Oocitos/métodos , Melatonina/farmacología , Oocitos , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Taiwan J Obstet Gynecol ; 61(2): 223-229, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35361380

RESUMEN

OBJECTIVE: Poor ovarian responder (POR) poses a significant challenge for in vitro fertilization (IVF). Previous studies have suggested that dehydroepiandrosterone (DHEA) may improve IVF outcomes in POR. The current study attempts to investigate the clinical benefits of DHEA in POR and the possible mechanism of DHEA on cumulus cells (CCs). MATERIALS AND METHODS: A total of 60 women who underwent IVF treatment participated, including 22 normal ovarian responders (NORs) and 38 PORs. PORs were assigned to receive DHEA supplementation (n = 18) or not (n = 20) before IVF cycles. For all patients, CCs were obtained after oocyte retrieval. In the CCs, mRNA expression of mitochondrial dynamics relataed genes were measured. RESULTS: Supplementation of DHEA in POR reduced mitochondrial fission in CCs and decreased the expression of PGAM5 in CCs. CONCLUSION: The benefit of DHEA supplementation on IVF outcomes in POR is significant, and this effect may be mediated in part through improved mitochondrial dynamics in CC.


Asunto(s)
Células del Cúmulo , Deshidroepiandrosterona , Dinámicas Mitocondriales , Proteínas Mitocondriales , Inducción de la Ovulación , Fosfoproteínas Fosfatasas , Células del Cúmulo/citología , Células del Cúmulo/efectos de los fármacos , Deshidroepiandrosterona/farmacología , Femenino , Fertilización In Vitro , Humanos , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/genética , Ovario , Fosfoproteínas Fosfatasas/genética
14.
J Assist Reprod Genet ; 39(6): 1277-1295, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35469374

RESUMEN

PURPOSE: To study whether the cumulus cell antioxidant system varies accordingly to patients clinical characteristics' as age, infertility diagnosis, BMI, and stimulation protocol applied and if the antioxidant profile of cumulus cells could be used as a predictor of embryo development. METHODS: A prospective study including 383 human cumulus samples provided by 191 female patients undergoing intracytoplasmic sperm injection during in vitro fertilization treatments from a local in vitro fertilization center and processed in university laboratories. Catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) enzyme activity levels and reduced glutathione (GSH) levels were measured in cumulus oophorus cells individually collected from each aspirated cumulus-oocyte complex, and the results of each sample were compared considering the oocytes outcome after ICSI and patients clinical characteristics. A total of 223 other human cumulus samples from previous studies were submitted to a gene expression meta-analysis. RESULTS: The antioxidant system changes dramatically depending on patients' age, infertility diagnosis, stimulation protocol applied, and oocyte quality. SOD activity in cumulus cells revealed to be predictive of top-quality blastocysts for young patients with male factor infertility (P < 0.05), while GST levels were shown to be extremely influenced by infertility cause (P < 0.0001) and stimulation protocol applied (P < 0.05), but nonetheless, it can be used as a complementary tool for top-quality blastocyst prediction in patients submitted to intracytoplasmic sperm injection technique (ICSI) by male factor infertility (P < 0.05). CONCLUSION: Through a simple and non-invasive analysis, the evaluation of redox enzymes in cumulus cells could be used to predict embryo development, in a personalized matter in specific patient groups, indicating top-quality oocytes and improving success rates in in vitro fertilization treatments. TRIAL REGISTRATION: The trial was registered at UFRGS Research Ethics Committee and Plataforma Brasil under approval number 68081017.2.0000.5347 in June 6, 2019.


Asunto(s)
Células del Cúmulo , Infertilidad Masculina , Antioxidantes/metabolismo , Células del Cúmulo/fisiología , Desarrollo Embrionario/genética , Femenino , Fertilización In Vitro , Humanos , Infertilidad Masculina/metabolismo , Masculino , Oocitos/metabolismo , Estudios Prospectivos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
15.
Reprod Domest Anim ; 57(7): 734-742, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35313050

RESUMEN

This study was designed to investigate the effect of different concentrations of L-cysteine supplementation into the maturation medium on the oocyte nuclear maturation, cumulus cell expansion, ultrastructure of the oocytes and the expression of oocyte-derived growth factors BMP-15, GDF-9 and CB-1 genes. Cumulus oocyte complexes (COCs) were collected from cow's ovaries obtained from abattoir and incubated at 38.5°C in maturation media supplemented with 0, 0.6, 0.8 or 1 mM L-cysteine in 5% CO2 under humidified air for 24 hr. We found that a significantly higher percentage of oocytes progressed to metaphase II stage in the in vitro maturation (IVM) medium supplemented with L-cysteine, particularly 0.8 mM group, compared with untreated control oocytes. Additionally, L-cysteine treatment significantly increased the number of expanded COCs and the degree of expansion of individual COCs. Results of RT-qPCR showed significant increase in expression levels of BMP-15 and GDF-9 in L-cysteine-treated groups compared with control one. Electron microgram showed improvement of cytoplasmic maturation regarding ultrastructure of the oocytes and oocyte-cumulus cell gap junction communication in all L-cysteine-treated groups especially 0.8 mM L-cysteine-treated one. In conclusion, supplementation of IVM medium with a potential anti-oxidant, L-cysteine can effectively improve in vitro oocytes cytoplasmic and nuclear maturation via activation of oocyte maturation related BMP-15 and GDF-9 genes in bovine oocytes, benefiting the extended researches about the potential applications of L-cysteine in mammalian breeding technologies.


Asunto(s)
Proteína Morfogenética Ósea 15 , Factor 9 de Diferenciación de Crecimiento , Animales , Proteína Morfogenética Ósea 15/metabolismo , Proteína Morfogenética Ósea 15/farmacología , Bovinos , Células del Cúmulo/fisiología , Cisteína/farmacología , Femenino , Factor 9 de Diferenciación de Crecimiento/metabolismo , Factor 9 de Diferenciación de Crecimiento/farmacología , Técnicas de Maduración In Vitro de los Oocitos/métodos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Mamíferos , Oocitos/fisiología
16.
Mol Biol Rep ; 49(2): 875-884, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35040006

RESUMEN

RESEARCH QUESTION: The mechanism of Myo-Inositol, as an adjuvant, on key signaling pathways related to oocyte maturation, fertilization rate, and embryo quality as well as ovarian steroidogenesis in cumulus cells of PCOS patients, is still unclear. DESIGN: Infertile patients who were candidates for ART cycles were divided into three groups (n = 30 in each group), including group 1: PCOS patients only receiving folic acid, group 2: PCOS patients receiving daily Myo-Inositol combined with folic acid, and a control group (group 3): normal ovulatory women without PCOS receiving only folic acid from 1 month prior to IVF cycle until the day of ovum pick up. During the ART procedure, oocytes maturation, fertilization rate, and embryo quality were assessed. The gene expressions of FSHR, LHR, CYP11A1, CYP19A1, 3ß-HSD2, and StAR were also analyzed using qRT-PCR. Western blot analysis was performed for the evaluation of AKT, ERK, CREB, and AMPK phosphorylation. RESULT: Despite equal number of retrieved oocytes, the percentages of MII oocytes, fertilization rate, and embryo quality were found to be significantly higher in group 2 due to the administration of inofolic. The expressions of all the studied genes were significantly higher in the cumulus cells of group 1 compared to the group 2. Higher phosphorylation of ERK1/2 was found in the groups 2 and 3 compared to the group 1. On the other hand, p-Akt has significantly decreased in the group 2 compared to the group 1. CONCLUSION: Our study provides new insight into the molecular mechanism underlying the positive effect of Myo-Inositol on intrinsic ovarian defects in PCOS, steroidogenesis, oocyte maturation, fertilization rate, and embryo quality.


Asunto(s)
Fertilización In Vitro/métodos , Inositol/farmacología , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Adulto , Células del Cúmulo/metabolismo , Suplementos Dietéticos , Femenino , Ácido Fólico/farmacología , Hormonas Esteroides Gonadales/metabolismo , Humanos , Infertilidad Femenina , Irán , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/fisiopatología , Técnicas Reproductivas Asistidas
17.
Sci Rep ; 11(1): 18175, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518614

RESUMEN

Heat shock (HS) protein 70 (HSP70), a well-known HS-induced protein, acts as an intracellular chaperone to protect cells against stress conditions. Although HS induces HSP70 expression to confer stress resistance to cells, HS causes cell toxicity by increasing reactive oxygen species (ROS) levels. Recently, a standardized extract of Asparagus officinalis stem (EAS), produced from the byproduct of asparagus, has been shown to induce HSP70 expression without HS and regulate cellular redox balance in pheochromocytoma cells. However, the effects of EAS on reproductive cell function remain unknown. Here, we investigated the effect of EAS on HSP70 induction and oxidative redox balance in cultured bovine cumulus-granulosa (CG) cells. EAS significantly increased HSP70 expression; however, no effect was observed on HSP27 and HSP90 under non-HS conditions. EAS decreased ROS generation and DNA damage and increased glutathione (GSH) synthesis under both non-HS and HS conditions. Moreover, EAS synergistically increased HSP70 and HSF1 expression and increased progesterone levels in CG cells. Treatment with an HSP70 inhibitor significantly decreased GSH level, increased ROS level, and decreased HSF1, Nrf2, and Keap1 expression in the presence of EAS. Furthermore, EAS significantly increased progesterone synthesis. Thus, EAS improves HSP70-mediated redox balance and cell function in bovine CG cells.


Asunto(s)
Asparagus/química , Células del Cúmulo/citología , Células del Cúmulo/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Extractos Vegetales/farmacología , Animales , Bovinos , Daño del ADN , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/genética , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Tallos de la Planta/química , Progesterona/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Estándares de Referencia
18.
Theriogenology ; 173: 144-155, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34390905

RESUMEN

The beneficial effect of glutathione (GSH) on the in vitro maturation (IVM) of bovine/porcine oocytes has been confirmed; however, the antioxidant effect of exogenous GSH supplementation on the IVM of ovine oocytes has not been determined. In this study, ovine cumulus oocyte complexes (COCs) were classified into three groups according to the layer number of cumulus cells (the Grade A group has more than five layers, the Grade B group has three to four layers and the Grade C group has less than three layers). After in vitro culture of COCs in the presence of exogenous GSH, the meiotic competence of ovine oocytes was assessed by analyzing nuclear maturation to metaphase II (MII) stage, cortical granules (CGs) dynamics, astacin like metalloendopeptidase (ASTL) distribution, histone methylation pattern, reactive oxygen species (ROS) production, mitochondrial activities and genes expression. After in vitro fertilization (IVF), assessments of embryonic development were conducted to confirm the effects of exogenous GSH supplementation. The results showed that exogenous GSH not only enhanced the maturation rates of the Grade B and Grade C groups but also promoted CGs dynamics and ASTL distribution of the Grade A, B and C groups (p < 0.05). Exogenous GSH increased the mitochondrial activities of the Grade A, B and C groups and decreased the ROS production levels of oocytes (p < 0.05), regardless of the layer number of cumulus cells. Moreover, exogenous GSH promoted the expression levels of genes related with oocyte maturation, antioxidant activity and antiapoptotic effects in the Grade B and Grade C groups (p < 0.05). The expression levels of H3K4me3 and H3K9me3 in the Grade B and Grade C groups were promoted after exogenous GSH supplementation (p < 0.05), consistent with the expression levels of genes related with histone methylation (p < 0.05). In addition, exogenous GSH strongly promoted the embryonic developmental competence of Grade B and Grade C groups (p < 0.05). Taken together, our findings provide foundational evidence for the free radical scavenging potential of exogenous GSH in the in vitro developmental competence of ovine oocytes, especially oocytes from COCs lacking cumulus cells. These findings, which demonstrated the potential for improving the quality of ovine oocytes during IVM, will contribute to researches on GSH applications and the efficiency of assisted reproductive technology for ovine breeding.


Asunto(s)
Glutatión , Técnicas de Maduración In Vitro de los Oocitos , Animales , Células del Cúmulo , Suplementos Dietéticos , Desarrollo Embrionario , Femenino , Fertilización In Vitro/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos , Embarazo , Ovinos
19.
Nutrients ; 13(7)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34371958

RESUMEN

Female reproductive aging is an irreversible process associated with a decrease in oocyte quality, which is a limiting factor for fertility. Previous studies have shown that dehydroepiandrosterone (DHEA) has been shown to improve in vitro fertilization (IVF) outcomes in older women. Herein, we showed that the decline in oocyte quality with age is accompanied by a significant decrease in the level of bioenergetic metabolism genes. We compared the clinical characteristics between groups of infertile women who either received DHEA or did not. Treatment with DHEA may enhance oocyte quality by improving energy production and metabolic reprogramming in cumulus cells (CCs) of aging women. Our results showed that compared with the group without DHEA, the group with DHEA produced a large number of day-three (D3) embryos, top-quality D3 embryos, and had improved ongoing pregnancy rate and clinical pregnancy rate. This may be because DHEA enhances the transport of oxidative phosphorylation and increases mitochondrial oxygen consumption in CCs, converting anaerobic to aerobic metabolism commonly used by aging cells to delay oocyte aging. In conclusion, our results suggest that the benefit of DHEA supplementation on IVF outcomes in aging cells is significant and that this effect may be mediated in part through the reprogramming of metabolic pathways and conversion of anaerobic to aerobic respiration.


Asunto(s)
Deshidroepiandrosterona/administración & dosificación , Suplementos Dietéticos , Metabolismo Energético , Infertilidad Femenina/metabolismo , Oocitos/metabolismo , Biogénesis de Organelos , Adulto , Envejecimiento , Senescencia Celular , Células del Cúmulo/metabolismo , Femenino , Fertilización In Vitro , Humanos , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Embarazo , Resultado del Embarazo
20.
J Tissue Eng Regen Med ; 15(10): 807-817, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34310055

RESUMEN

Here, we present a novel in vitro maturation (IVM) system comprising an agarose matrix supplemented with extracellular matrix (ECM) proteins for enhanced maturation of immature oocytes within cumulus-oocyte complexes (COCs) derived from porcine medium antral follicles (MAFs). Immunocytochemical analyses of integrin subunit α2 , α5 , α6 , ß1 , and ß4 expression suggested that integrin α2 ß1 , α5 ß1 , α6 ß1 , and α6 ß4 play pivotal roles in IVM of porcine immature oocytes. Combinatorial supplementation of fibronectin interacting with integrin α5 ß1 , collagen interacting with integrin α2 ß1 , and laminin interacting with integrin α6 ß1 and α6 ß4 to the agarose matrix had no significant effect on nuclear maturation. However, the number of parthenogenetic embryos that developed into blastocysts increased when oocytes were matured using agarose IVM matrices supplemented with fibronectin, collagen, or laminin. Furthermore, significant increases in cytoplasmic maturation-related parameters (BMP15 level, cumulus cell expansion score, intra-oocyte ATP level, and index of cortical granule distribution) were observed in COCs matured in vitro using ECM protein-incorporated agarose matrices. Our data suggest that mature porcine oocytes with enhanced developmental competence and high-quality cytoplasm can be generated via IVM using agarose matrices supplemented with fibronectin, collagen, or laminin.


Asunto(s)
Citoplasma/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Oocitos/citología , Sefarosa/farmacología , Adenosina Trifosfato/metabolismo , Animales , Blastocisto/efectos de los fármacos , Proteína Morfogenética Ósea 15 , Células del Cúmulo/citología , Células del Cúmulo/efectos de los fármacos , Células del Cúmulo/metabolismo , Citoplasma/efectos de los fármacos , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Técnicas de Maduración In Vitro de los Oocitos , Integrinas/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Partenogénesis/efectos de los fármacos , Subunidades de Proteína/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA