Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155362, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522312

RESUMEN

BACKGROUND: Stroke is a leading cause of disability and death worldwide. Currently, there is a lack of clinically effective treatments for the brain damage following ischemic stroke. Catalpol is a bioactive compound derived from the traditional Chinese medicine Rehmannia glutinosa and shown to be protective in various neurological diseases. However, the potential roles of catalpol against ischemic stroke are still not completely clear. PURPOSE: This study aimed to further elucidate the protective effects of catalpol against ischemic stroke. METHODS: A rat permanent middle cerebral artery occlusion (pMCAO) and oxygen-glucose deprivation (OGD) model was established to assess the effect of catalpol in vivo and in vitro, respectively. Behavioral tests were used to examine the effects of catalpol on neurological function of ischemic rats. Immunostaining was performed to evaluate the proliferation, migration and differentiation of neural stem cells (NSCs) as well as the angiogenesis in each group. The protein level of related molecules was detected by western-blot. The effects of catalpol on cultured NSCs as well as brain microvascular endothelial cells (BMECs) subjected to OGD in vitro were also examined by similar methods. RESULTS: Catalpol attenuated the neurological deficits and improved neurological function of ischemic rats. It stimulated the proliferation of NSCs in the subventricular zone (SVZ), promoted their migration to the ischemic cortex and differentiation into neurons or glial cells. At the same time, catalpol increased the cerebral vessels density and the number of proliferating cerebrovascular endothelial cells in the infracted cortex of ischemic rats. The level of SDF-1α and CXCR4 in the ischemic cortex was found to be enhanced by catalpol treatment. Catalpol was also shown to promote the proliferation and migration of cultured NSCs as well as the proliferation of BMECs subjected to OGD insult in vitro. Interestingly, the impact of catalpol on cultured cells was inhibited by CXCR4 inhibitor AMD3100. Moreover, the culture medium of BMECs containing catalpol promoted the proliferation of NSCs, which was also suppressed by AMD3100. CONCLUSION: Our data demonstrate that catalpol exerts neuroprotective effects by promoting neurogenesis and angiogenesis via the SDF-1α/CXCR4 pathway, suggesting the therapeutic potential of catalpol in treating cerebral ischemia.


Asunto(s)
Quimiocina CXCL12 , Glucósidos Iridoides , Accidente Cerebrovascular Isquémico , Neurogénesis , Receptores CXCR4 , Animales , Masculino , Ratas , Angiogénesis , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CXCL12/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Glucósidos Iridoides/farmacología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Neovascularización Fisiológica/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ratas Sprague-Dawley , Receptores CXCR4/metabolismo , Rehmannia/química , Transducción de Señal/efectos de los fármacos
2.
J Ethnopharmacol ; 299: 115684, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36058480

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The classic traditional Chinese compound Naoluoxintong (NLXT) has been proven an effective remedy for ischemic stroke (IS). The protective effect of NLXT on neural stem cells (NSCs), however, remains unclear. AIM OF THE STUDY: To investigate the protective effect of NLXT on NSCs in rats with middle cerebral artery occlusion (MCAO) and the effect of Nestin expression in vivo. MATERIALS AND METHODS: Sprague-Dawley (SD) rats were randomly divided into three groups: the sham-operated group, the MCAO model group and the NLXT group. The MCAO model in rats was established by modified Longa wire embolization method. The sham-operated group, the model group and the NLXT groups were divided into three subgroups according to the sampling time points of 1 d, 3 d and 7 d after successful model-making. Immunofluorescence staining, including bromodeoxyuridine (BrdU)/glial fibrillary acidic protein (GFAP), ß-tubulinIII/GFAP, BrdU/doublecortin (DCX) and BrdU/neuronal nuclei (NeuN), was used to detect the proliferation and survival of NSCs in the hippocampal after drug administration. Protein expression of Nestin, DCX, GFAP and NeuN in the hippocampal was detected by Western blot (WB). RESULTS: Immunofluorescence experiment of Nestin labeled: on the first day, a few Nestin-positive cells were found in the hippocampal DG area. Afterwards, the number of Nestin-labeled positive cells in the model group increased, while the number of cells in the sham group did not fluctuate significantly. The number of positive cells in each administration group increased more than that in the model and normal group. ß-tubulin III/GFAP double-labeled: a small amount of double labeled cells was expressed in the normal group, and the number subsequently fluctuated little. In the model group, ß-tubulin III/GFAP positive cells increased initially after acute ischemia, and gradually decreased afterwards. In the NLXT-treated group, ß-Tubulin III positive cells were significantly increased on day 1, 3 and 7, while GFAP positive cells had little change. BrdU/DCX double-labeled: initially, a small number of BrdU/DCX-labeled positive cells were observed in the normal group and the model group, but there was no increasing trend over time. The positive cells in the NLXT group increased over time, and those in the seven-day group were significantly higher than those in the one-day and three-day groups. BrdU/NEUN double-labeled: in the normal group, BrdU/NEUN positive cells were enriched and distributed regularly. The number of positive cells in the model group was small and decreased gradually with time, and the decrease was most obvious on the third day. The number of positive cells in the NLXT group was significantly higher than that in the model group, and the number of positive cells in the seven-day group was significantly higher than that in the one-day and three-day groups. WB results reflected those three proteins, Nestin, NeuN and DCX, showed an increase in expression, except GFAP, which showed a decreasing trend. CONCLUSIONS: Preliminarily, NLXT can promote the migration and differentiation of NSCs. It may have a protective effect on the brain by promoting repair of brain tissue damage through upregulation of Nestin after IS.


Asunto(s)
Medicamentos Herbarios Chinos , Nestina , Células-Madre Neurales , Animales , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas de Dominio Doblecortina , Medicamentos Herbarios Chinos/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Nestina/efectos de los fármacos , Nestina/genética , Nestina/metabolismo , Células-Madre Neurales/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Tubulina (Proteína)/metabolismo
3.
Mol Neurobiol ; 59(1): 590-602, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741234

RESUMEN

DNA oxidative damage can cause telomere attrition or dysfunction that triggers cell senescence and apoptosis. The hypothesis of this study is that folic acid decreases apoptosis in neural stem cells (NSCs) by preventing oxidative stress-induced telomere attrition. Primary cultures of NSCs were incubated for 9 days with various concentrations of folic acid (0-40 µM) and then incubated for 24 h with a combination of folic acid and an oxidant (100-µM hydrogen peroxide, H2O2), antioxidant (10-mM N-acetyl-L-cysteine, NAC), or vehicle. Intracellular folate concentration, apoptosis rate, cell proliferative capacity, telomere length, telomeric DNA oxidative damage, telomerase activity, intracellular reactive oxygen species (ROS) levels, cellular oxidative damage, and intracellular antioxidant enzyme activities were determined. The results showed that folic acid deficiency in NSCs decreased intracellular folate concentration, cell proliferation, telomere length, and telomerase activity but increased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. In contrast, folic acid supplementation dose-dependently increased intracellular folate concentration, cell proliferative capacity, telomere length, and telomerase activity but decreased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. Exposure to H2O2 aggravated telomere attrition and oxidative damage, whereas NAC alleviated the latter. High doses of folic acid prevented telomere attrition and telomeric DNA oxidative damage by H2O2. In conclusion, inhibition of telomeric DNA oxidative damage and telomere attrition in NSCs may be potential mechanisms of inhibiting NSC apoptosis by folic acid.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Ácido Fólico/farmacología , Células-Madre Neurales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Telómero/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Peróxido de Hidrógeno/farmacología , Células-Madre Neurales/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Telómero/metabolismo
4.
Reprod Sci ; 29(1): 173-183, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34767244

RESUMEN

Adulthood obesity, diabetes, and metabolic diseases are associated with small for gestational age (SGA) newborns. This association could be related to abnormal appetite signaling pathways in the hypothalamus. This study investigated the appetite regulation by the hypothalamus of SGA newborns by establishing an SGA rat model and culturing SGA neural progenitor cells (NPCs) in vitro. Models of SGA were established by maternal food restriction embryonic day 10 (E10). At E18, postpartum day 1 (P1), and P5, hypothalamic neural precursor cells (NPCs) of offspring were cultured in vitro. Immunofluorescence, Western blot (WB), and qRT-PCR were used to assess NPY, POMC, and FoxO1 expression levels. The effects on mRNA expression of the FoxO1-specific inhibitor AS1842856 were examined. The results indicated that compared with controls, NPY was higher, and POMC was lower at embryonic day 18 (E18), postpartum day 1 (P1), and P5. The proliferation and migration of NPCs in the third ventricle of SGA hypothalami were lower than in controls. After treatment with the FoxO1 inhibitor AS1842856, the differences in the mRNA expression of NPY and POMC between the two groups disappeared. NPY and POMC mRNA levels in the SGA group treated with AS1842856 were not significantly different compared with the control group without AS1842856 treatment. In conclusion, SGA pups showed an increase in appetite-promoting NPY and a decrease in appetite-reducing POMC, probably contributing to adulthood weight gain, obesity, and endocrine disorders.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , Hipotálamo/metabolismo , Células-Madre Neurales/metabolismo , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo , Animales , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Proteína Forkhead Box O1/genética , Edad Gestacional , Hipotálamo/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neuropéptido Y/genética , Proopiomelanocortina/genética , Quinolonas/farmacología , Ratas
5.
J Ethnopharmacol ; 282: 114646, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34530095

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gastrodia elata Blume (GEB), known as Tianma in China, is a traditional medicinal herb that has been reported to have various pharmacological effects and neuroprotection, has long been used for treating dizziness, epilepsy, stroke. However, explanation of its underlying mechanisms remains a great challenge. AIM OF THE STUDY: The neuroprotective mechanism of GEB on hypoxia-induced neuronal injury in cultured mouse embryonic neural progenitor cells (eNPCs) was investigated, with emphasis on the eNPCs proliferation and DNA damage repair. MATERIALS AND METHODS: In this study, hypoxia was focused, which may be caused by stroke or acute cerebral ischemia and is considered as one of the important factors contributing to the Central Nervous System diseases. CoCl2 was adopted to construct a hypoxic/ischemic condition in eNPCs. eNPCs proliferation analysis validated GEB neuroprotective effect under hypoxic/ischemic condition. Transcriptome and weighted gene co-expression network analysis (WGCNA) screened the special gene-network module correlated with what appeared to have significant positive correlation with GEB. Then, Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed to explore the biological functions of selected genes in the modules that had high correlation with GEB. RESULTS: GEB has neuroprotective effect and could rescue eNPCs proliferation under hypoxic/ischemic condition induced by CoCl2. Transcriptome and WGCNA unveil the neuroprotective mechanism of GEB on improving DNA damage repair ability by increasing the expression of genes associated with DNA repair and replication. Western blotting and qPCR showed that GEB could improve DNA damage repair ability by increasing the expression of Mcm2, Mcm6, Pold2, Pole, Pole2, Rfc1, Pole4, Dna2 and Rpa2, which were associated with DNA damage and replication. CONCLUSION: Through transcriptome and WGCNA, this study unveiled Gastrodia elata Blume could increase the cell viability of eNPCs under hypoxic condition by improving DNA damage repair ability.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Daño del ADN , Reparación del ADN/efectos de los fármacos , Gastrodia , Células-Madre Neurales/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Cobalto/toxicidad , Embrión de Mamíferos , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Ratones , Oxígeno , Extractos Vegetales/química , RNA-Seq
6.
Molecules ; 26(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34771043

RESUMEN

Neural stem cells (NSCs) exist in the central nervous system of adult animals and capable of self-replication. NSCs have two basic functions, namely the proliferation ability and the potential for multi-directional differentiation. In this study, based on the bioassay-guided fractionation, we aim to screen active components in Cuscuta chinensis to promote the proliferation of NSCs. CCK-8 assays were used as an active detection method to track the active components. On the basis of isolating active fraction and monomer compounds, the structures of these were identified by LC-MS and (1H, 13C) NMR. Moreover, active components were verified by pharmacodynamics and network pharmacology. The system solvent extraction method combined with the traditional isolation method were used to ensure that the fraction TSZE-EA-G6 of Cuscuta chinensis exhibited the highest activity. Seven chemical components were identified from the TSZE-EA-G6 fraction by UPLC-QE-Orbitrap-MS technology, which were 4-O-p-coumarinic acid, chlorogenic acid, 5-O-p-coumarinic acid, hyperoside, astragalin, isochlorogenic acid C, and quercetin-3-O-galactose-7-O-glucoside. Using different chromatographic techniques, five compounds were isolated in TSZE-EA-G6 and identified as kaempferol, kaempferol-3-O-glucoside (astragalin), quercetin-3-O-galactoside (hyperoside), chlorogenic acid, and sucrose. The activity study of these five compounds showed that the proliferation rate of kaempferol had the highest effects; at a certain concentration (25 µg/mL, 3.12 µg/mL), the proliferation rate could reach 87.44% and 59.59%, respectively. Furthermore, research results using network pharmacology techniques verified that kaempferol had an activity of promoting NSCs proliferation and the activity of flavonoid aglycones might be greater than that of flavonoid glycosides. In conclusion, this research shows that kaempferol is the active component in Cuscuta chinensis to promote the proliferation of NSCs.


Asunto(s)
Cuscuta/química , Medicamentos Herbarios Chinos/farmacología , Células-Madre Neurales/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Fraccionamiento Químico , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Femenino , Espectrometría de Masas , Células-Madre Neurales/citología , Ratas
7.
BMC Complement Med Ther ; 21(1): 267, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696749

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common dementia worldwide, and there is still no satisfactory drug or therapeutic strategy. Polygala tenuifolia is a traditional Chinese medicine with multiple neuroprotective effects. In present study, we investigated the effects of three active constituents [3,6'-disinapoyl sucrose (DISS), onjisaponin B (OB) and tenuifolin (TEN)] of Polygala tenuifolia (PT) on the proliferation and differentiation of neural stem cells (NSCs) to identify the potential active constituent of PT promoting hippocampal neurogenesis. METHODS: NSCs were isolated from hippocampi of newborn C57BL/6 mice, and transfected with mutant amyloid precursor protein (APP) gene to establish an AD cell model (APP-NSCs). 3-(4,5- Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays were performed, and the proliferation and differentiation of NSCs were assessed by neurosphere formation assay, 5-bromo-2'-deoxyuridine (BrdU) incorporation assay and immunofluorescence (IF) staining analysis. APP/PS1 transgenic mice were administrated with the potential active constituent DISS for 4 weeks. Morris water maze (MWM), Nissl staining assay and IF staining assays were carried out to evaluate the cognitive function, neural damages and hippocampal neurogenesis, respectively. RESULTS: DISS exerted the optimal ability to strengthen APP-NSCs proliferation and neuronal differentiation, followed by OB and TEN. Furthermore, DISS treatment for 4 weeks strikingly rescued the cognitive deficits, neuronal injures, and neurogenesis disorder in adult APP/PS1 transgenic mice. CONCLUSIONS: Our findings demonstrated that DISS is the constituent of PT that triggers the most potent increase of hippocampal neurogenesis in our mouse model of AD.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Medicina Tradicional China , Células-Madre Neurales , Neurogénesis , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Medicina Tradicional China/métodos , Ratones Endogámicos C57BL , Ratones Transgénicos , Estructura Molecular , Prueba del Laberinto Acuático de Morris , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Polygala/química
8.
Molecules ; 26(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641624

RESUMEN

(‒)-Cannabidiol (CBD) is one of the major phytocannabinoids extracted from the Cannabis genus. Its non-psychoactiveness and therapeutic potential, partly along with some anecdotal-if not scientific or clinical-evidence on the prevention and treatment of neurological diseases, have led researchers to investigate the biochemical actions of CBD on neural cells. This review summarizes the previously reported mechanistic studies of the CBD actions on primary neural cells at the in vitro cell-culture level. The neural cells are classified into neurons, microglia, astrocytes, oligodendrocytes, and neural stem cells, and the CBD effects on each cell type are described. After brief introduction on CBD and in vitro studies of CBD actions on neural cells, the neuroprotective capability of CBD on primary neurons with the suggested operating actions is discussed, followed by the reported CBD actions on glia and the CBD-induced regeneration from neural stem cells. A summary section gives a general overview of the biochemical actions of CBD on neural cells, with a future perspective. This review will provide a basic and fundamental, but crucial, insight on the mechanistic understanding of CBD actions on neural cells in the brain, at the molecular level, and the therapeutic potential of CBD in the prevention and treatment of neurological diseases, although to date, there seem to have been relatively limited research activities and reports on the cell culture-level, in vitro studies of CBD effects on primary neural cells.


Asunto(s)
Cannabidiol/farmacología , Células-Madre Neurales/citología , Neuroglía/citología , Neuronas/citología , Animales , Cannabidiol/química , Células Cultivadas , Humanos , Estructura Molecular , Células-Madre Neurales/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Cultivo Primario de Células
9.
J Nat Prod ; 84(10): 2675-2682, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34542287

RESUMEN

Loss of neuronal tissue is a hallmark of age-related neurodegenerative diseases. Since adult neurogenesis has been confirmed in the human brain, great interest has arisen in substances stimulating the endogenous neuronal regeneration mechanism based on adult neural stem cells. Medicinal plants are a valuable source of neuroactive small molecules. In the structure-activity study presented here, the activities of prenyl- and pyranochalcones were compared to each other, using a differentiation assay based on the doublecortin promoter sequences. The latter revealed that the pyrano ring is a crucial structural element for the induction of neuronal differentiation of adult neural stem cells, while compounds with a prenyl group show significantly lower activities. Furthermore, a decrease of pro-differentiation activity was observed following structural modifications, such as substitutions on the pyrano ring and on the B-ring of the chalcone. We also initiated the elucidation of the structural characteristics of the newly discovered lead substance xanthohumol C, which correlated with the activation of the doublecortin promoter during neuronal differentiation.


Asunto(s)
Chalconas/farmacología , Células-Madre Neurales/efectos de los fármacos , Neurogénesis , Regeneración , Animales , Diferenciación Celular/efectos de los fármacos , Humulus/química , Ratones , Estructura Molecular , Relación Estructura-Actividad
10.
Aging (Albany NY) ; 13(14): 18131-18149, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34319910

RESUMEN

In recent years, the number of patients with neurodegenerative illness such as Alzheimer's disease (AD) has increased with the aging of the population. In this study, we evaluated the effect of Grape skin extract (GSE) on neurotypic SH-SY5Y cells as an in vitro AD model, murine neurospheres as an ex vivo neurogenesis model and SAMP8 mice as an in vivo AD model. Our in vitro result showed that pre-treatment of SH-SY5Y cells with GSE ameliorated Aß-induced cytotoxicity. Moreover, GSE treatment significantly decreased the number of neurospheres, but increased their size suggesting reduced stem cell self-renewal but increased proliferation. Our in vivo Morris water maze test indicated that GSE improves learning and memory in SAMP8 mice. To detect proliferation and newborn neurons, we measured BrdU+ cells in the dentate gyrus (DG). GSE treatment increased the number of BrdU+ cells in the DG of SAMP8 mice. Finally, we showed that GSE induced a decrease in inflammatory cytokines and an increase in neurotransmitters in the cerebral cortex of SAMP8 mice. These results suggested that GSE increased neurogenic zone proliferation and memory but decreased oxidative stress associated with pro-inflammatory cytokines in aging, thus protecting neurons.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Proliferación Celular/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Extractos Vegetales/farmacología , Aprendizaje Espacial/efectos de los fármacos , Enfermedad de Alzheimer/patología , Animales , Conducta Animal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Estrés Oxidativo , Vitis/química
11.
In Vitro Cell Dev Biol Anim ; 57(6): 641-648, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34128157

RESUMEN

Ginseng is a popular herbal medicine and known to have protective and therapeutic effects in various diseases. Ginsenosides are active gradients representing the diverse pharmacological efficacy of ginseng. Huntington's disease (HD) is incurable genetic disorder associated with mutant huntingtin (mHtt) aggregation in the central nervous system. This study was conducted to investigate the effects of ginsenoside Rg3 and Rf on mHtt aggregation, cell viability, mitochondrial function, and apoptotic molecules on HD model. To investigate the effect of ginsenosides on HD, neural stem cells were isolated from the R6/2 mouse brain and used as a cellular model of HD. Nuclear aggregation of mHtt was measured by immunocytochemistry, and expressions of mitochondrial biogenesis and apoptotic molecules were investigated by western blot. As a result, the number of mHtt aggregates positive cells has decreased by ginsenoside Rg3 and Rf treatment in cellular model of HD. Mitochondrial biogenesis-related molecules such as PGC-1α and phosphorylated CREB were increased or showed increased tendency by ginsenoside Rg3 and Rf. Apoptotic molecules, p53, Bax, and cleaved caspase-3, were down-regulated by treatment of ginsenoside Rg3 and Rf. In addition, Lysotracker staining result showed that cellular lysosomal content was reduced by ginsenoside Rg3 and Rf. Given that ginsenoside Rg3 and Rf have the potential to reduce mHtt aggregation and cellular apoptosis, these ginsenosides can be possible therapeutic candidates for treating HD phenotypes.


Asunto(s)
Ginsenósidos/farmacología , Proteína Huntingtina/genética , Enfermedad de Huntington/tratamiento farmacológico , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Proteínas Mutantes/genética , Células-Madre Neurales/efectos de los fármacos
12.
Epilepsia ; 62(7): 1689-1700, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33997963

RESUMEN

OBJECTIVE: Fetal exposure to the anticonvulsant drug valproic acid (VPA), used to treat certain types of epilepsy, increases the risk for birth defects, including neural tube defects, as well as learning difficulties and behavioral problems. Here, we investigated neurotoxic effects of VPA exposure using zebrafish as a model organism. The capacity of folic acid (FA) supplementation to rescue the VPA-induced neuronal and behavioral perturbations was also examined. METHODS: Zebrafish embryos of different transgenic lines with neuronal green fluorescent protein expression were exposed to increasing concentrations of VPA with or without FA supplementation. Fluorescence microscopy was used to visualize alterations in brain structures and neural progenitor cells, as well as motor neurons and neurite sprouting. A twitching behavioral assay was used to examine the functional consequences of VPA and FA treatment. RESULTS: In zebrafish embryos, VPA exposure caused a decrease in the midbrain size, an increase in the midline gap of the hindbrain, and perturbed neurite sprouting of secondary motor neurons, in a concentration-dependent manner. VPA exposure also decreased the fluorescence intensity of neuronal progenitor cells in early developmental stages, indicating fewer cells. Furthermore, VPA exposure significantly altered embryonic twitching activity, causing hyperactivity in dark and hypoactivity in light. Supplementation of FA rescued the VPA-induced smaller midbrain size and hindbrain midline gap defects. FA treatment also increased the number of neuronal progenitor cells in VPA-treated embryos and salvaged neurite sprouting of the secondary motor neurons. FA rescued the VPA-induced alterations in twitching activity in light but not in dark. SIGNIFICANCE: We conclude that VPA exposure induces specific neurotoxic perturbations in developing zebrafish embryos, and that FA reversed most of the identified defects. The results demonstrate that zebrafish is a promising model to study VPA-induced teratogenesis and to screen for countermeasures.


Asunto(s)
Anticonvulsivantes/toxicidad , Conducta Animal/efectos de los fármacos , Ácido Fólico/uso terapéutico , Síndromes de Neurotoxicidad/prevención & control , Síndromes de Neurotoxicidad/psicología , Ácido Valproico/toxicidad , Vitaminas/uso terapéutico , Pez Cebra , Animales , Animales Modificados Genéticamente , Suplementos Dietéticos , Desarrollo Embrionario/efectos de los fármacos , Larva , Iluminación , Mesencéfalo/anatomía & histología , Mesencéfalo/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Defectos del Tubo Neural/inducido químicamente , Neuritas/efectos de los fármacos , Rombencéfalo/anatomía & histología , Rombencéfalo/efectos de los fármacos , Ácido Valproico/antagonistas & inhibidores
13.
J Ethnopharmacol ; 277: 114224, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34044075

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: As one of major components of Buyang Huanwu decoction, Astragali Radix is broadly used for stroke treatment. Astragalus saponins (AST), the main active compound from Astragali Radix has the potentials for neuroprotection and improving spatial memory without clear pharmacological mechanism. AIM OF THE STUDY: The aim of this study was to investigate that pretreatment of AST is beneficial to protect against focal ischemic stroke in mouse model and its related underlying mechanism. MATERIALS AND METHODS: The neurological and motor function of MCAO mice were assessed by TTC staining and CatWalk gait analysis. The effect of AST on proliferation of NSCs was showed by the expression of Ki67 of MCAO mice and the number and size of primary neurospheres cultured from adult SVZ. The intersection of stroke-related targets, neurogenesis targets and drug-related targets were identified by the online website (https://www.omicstudio.cn/index). Then GO functional annotation and KEGG pathway enrichment analysis were performed. Candidate target Akt was confirmed to increase proliferation of cultured NSCs from adult SVZ by CCK8 assay and Western blot. RESULTS: We found that with the prolongation of administration time, AST improved neurological and motor function of MCAO mice, by promoting the proliferation of NSCs both in vivo and in vitro. Then, the primary network among drug, genes and biological pathway was established by using compound-target-disease & function-pathway analysis of astragalus membranaceus. PI3K/Akt which plays a key role in cell proliferation was among the top 10 most significant GO terms from above three aspects. Further analysis using cultured NSCs from adult SVZ confirmed that AST, astragaloside I (A1) and astragaloside III (A3) increased the proliferation of NSCs through targeting Akt. CONCLUSION: The present study elucidated that Astragalus saponins pretreatment could provide a protective effect on experimental stroke mainly by enhancing proliferation of NSCs through targeting Akt. The findings provided a basis for the development of novel strategies for the treatment of stroke.


Asunto(s)
Medicamentos Herbarios Chinos/química , Fármacos Neuroprotectores/farmacología , Saponinas/farmacología , Accidente Cerebrovascular/prevención & control , Animales , Astragalus propinquus , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Masculino , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Fármacos Neuroprotectores/aislamiento & purificación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Saponinas/aislamiento & purificación
14.
Brain Res ; 1763: 147459, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33794147

RESUMEN

Demyelination is the hallmark of multiple sclerosis (MS). Promoting remyelination is an important strategy to treat MS. Our previous study showed that Astragalus polysaccharides (APS), the main bioactive component of Astragalus membranaceus, could prevent demyelination in experimental autoimmune encephalomyelitis mice. To investigate the effects of APS on remyelination and the underlying mechanisms, in this study we set up a cuprizone-induced demyelination model in mice and treated them with APS. It was found that APS relieved the neurobehavioral dysfunctions caused by demyelination, and efficaciously facilitated remyelination in vivo. In order to determine whether the mechanism of enhancing remyelination was associated with the differentiation of neural stem cells (NSCs), biomarkers of NSCs, astrocytes, oligodendrocytes and neurons were measured in the corpus callosum tissues of mice through Real-time PCR, Western blot and immunohistochemistry assays. Data revealed that APS suppressed the stemness of NSCs, reduced the differentiation of NSCs into astrocytes, and promoted the differentiation into oligodendrocytes and neurons. This phenomenon was confirmed in the differentiation model of C17.2 NSCs cultured in vitro. Since Sonic hedgehog signaling pathway has been proven to be crucial to the differentiation of NSCs into oligodendrocytes, we examined expression levels of the key molecules in this pathway in vivo and in vitro, and eventually found APS activated this signaling pathway. Together, our results demonstrated that APS probably activated Sonic hedgehog signaling pathway first, then induced NSCs to differentiate into oligodendrocytes and promoted remyelination, which suggested that APS might be a potential candidate in treating MS.


Asunto(s)
Planta del Astrágalo/química , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Células-Madre Neurales/efectos de los fármacos , Oligodendroglía/citología , Polisacáridos/uso terapéutico , Remielinización/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Quelantes/farmacología , Cuprizona/farmacología , Encefalomielitis Autoinmune Experimental/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Polisacáridos/farmacología
15.
Brain Res Bull ; 170: 254-263, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33647420

RESUMEN

The deacetylase SIRT1 has been reported to play a critical role in regulating neurogenesis, which may be an adaptive processes contributing to recovery after stroke. Our previous work showed that the antioxidant capacity of Momordica charantia polysaccharides (MCPs) could protect against cerebral ischemia/reperfusion (I/R) after stroke. However, whether the protective effect of MCPs on I/R injury is related to neural stem cell (NSC) proliferation remains unclear. In the present study, we designed invivo and invitro experiments to elucidate the underlying mechanisms by which MCPs promote endogenous NSC proliferation during cerebral I/R. Invivo results showed that MCPs rescued the memory and learning abilities of rats after I/R damage and enhanced NSC proliferation in the rat subventricular zone (SVZ) and subgrannular zone (SGZ) during I/R. Invitro experiments demonstrated that MCPs could stimulate the proliferation of C17.2 cells under oxygen-glucose deprivation (OGD) conditions. Further studies revealed that the proliferation-promoting mechanism of MCPs relied on increasing the activity of SIRT1, decreasing the level of acetylation of ß-catenin in the cytoplasm, and then triggering the translocation of ß-catenin into the nucleus. These data provide experimental evidence that the up-regulation of SIRT1 activity by MCPs led to an increased cytoplasmic deacetylation of ß-catenin, which promoted translocation of ß-catenin to the nucleus to participate in the signaling pathway involved in NSC proliferation. The present study reveals that MCPs function as a therapeutic drug to promote stroke recovery by increasing the activity of SIRT1, decreasing the level of acetylated ß-catenin, promoting the nuclear translocation of ß-catenin and thereby increasing endogenous NSC proliferation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Momordica charantia , Células-Madre Neurales/efectos de los fármacos , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Daño por Reperfusión/metabolismo , Sirtuina 1/metabolismo , Animales , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos
16.
Metab Brain Dis ; 36(5): 969-981, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33608831

RESUMEN

Intrauterine growth restriction (IUGR) affects brain neural stem cell (NSC) differentiation. In the present study, we investigated whether taurine supplementation may improve NSC differentiation in IUGR fetal rats via the protein kinase A-cyclic adenosine monophosphate (cAMP) response element protein-brain derived neurotrophic factor (PKA-CREB-BDNF) signaling pathway. The IUGR fetal rat model was established with a low-protein diet. Fresh subventricular zone (SVZ) tissue from the fetuses on the 14th day of pregnancy was microdissected and dissociated into single-cell suspensions, then was cultured to form neurospheres. The neurospheres were divided into the control group, the IUGR group, the IUGR+taurine (taurine) group, the IUGR+H89 (H89) group and the IUGR+taurine+H89 (taurine+H89) group. The mRNA and protein expression levels of PKA, CREB and BDNF were measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting (WB). Tuj-1-positive neurons and GFAP-positive glial cells were detected by immunofluorescence. The total number of proliferating NSCs and the percentage of Tuj-1-positive neurons in the IUGR group were lower than those in the control group, but the percentage of GFAP-positive cells was higher in the IUGR group than in the control group. Taurine supplementation increased the total number of neural cells and the percentage of Tuj-1-positive neurons, and reduced the percentage of GFAP-positive cells among differentiated NSCs after IUGR. H89 reduced the total number and percentage of Tuj-1-positive neurons and increased the percentage of GFAP-positive cells. The mRNA and protein levels of PKA, CREB, and BDNF were lower in the IUGR group. The mRNA and protein expression levels of these factors were increased by taurine supplementation but reduced by the addition of H89. Taurine supplementation increased the ratio of neurons to glial cells and prevented gliosis in the differentiation of NSCs in IUGR fetal rats by activating the PKA-CREB-BDNF signaling pathway.


Asunto(s)
Retardo del Crecimiento Fetal/metabolismo , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Taurina/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ventrículos Laterales/efectos de los fármacos , Ventrículos Laterales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
17.
Cells ; 11(1)2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-35011630

RESUMEN

Fragile X syndrome (FXS) is the most common inherited cause of autism and intellectual disability. The majority of FXS cases are caused by transcriptional repression of the FMR1 gene due to epigenetic changes that are not recapitulated in current animal disease models. FXS patient induced pluripotent stem cell (iPSC)-derived gene edited reporter cell lines enable novel strategies to discover reactivators of FMR1 expression in human cells on a much larger scale than previously possible. Here, we describe the workflow using FXS iPSC-derived neural cell lines to conduct a massive, unbiased screen for small molecule activators of the FMR1 gene. The proof-of-principle methodology demonstrates the utility of human stem-cell-based methodology for the untargeted discovery of reactivators of the human FMR1 gene that can be applied to other diseases.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Ensayos Analíticos de Alto Rendimiento , Neuronas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Evaluación Preclínica de Medicamentos , Sitios Genéticos , Humanos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neuronas/efectos de los fármacos , Reproducibilidad de los Resultados
18.
Neurosci Lett ; 742: 135520, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33246026

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of midbrain dopaminergic (DA) neurons. Neural stem cells (NSCs) are the most promising cells for cell-replacement therapy for PD. However, the poor differentiation and maturation of DA neurons and decreased cell survival after transplantation are a challenge. Tetrahydroxystilbene glucoside (2,3,5,4'-tetrahydroxystilbene-2-O-glucoside; TSG), an active component of the popular traditional Chinese medicinal plant Polygonum multiflorum Thunb, possesses multiple pharmacological actions. In this study, we determined whether TSG can induce neural stem cell (NSCs) differentiation into neurons, especially DA neurons, and the possible involvement of Wnt/ß-catenin signaling pathways. Results revealed that NSCs differentiated primarily into astrocytes when cultured in 2 % serum-containing medium. However, TSG treatment during NSC differentiation in vitro increased the number of Tuj-1-positive neurons, as well as the proportion of tyrosine hydroxylase(TH)-positive cells and dopamine- transporter- positive neurons, a late marker of mature DA neurons. We also found that TSG enhanced the expression of nuclear receptor related factor 1, a transcription factor specific for the development and maintenance of midbrain DA neurons in inducing NSC differentiation into TH -immunoreactive DA neurons. Moreover, TSG upregulated the expression of Wnt/ß-catenin signaling molecules (Wnt1, Wnt3a, Wnt5a, and ß-catenin). However, these promoting effects were significantly inhibited by the application of IWR1, a Wnt signaling-specific blocker in culture. Our findings suggested that TSG may have potential in inducing the DA neuronal differentiation of mouse NSCs mediated by triggering the Wnt/ß-catenin signaling pathway. These results indicated the possible role for TSG in the transplantation of NSCs for PD.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Glucósidos/farmacología , Mesencéfalo/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Estilbenos/farmacología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Neuronas Dopaminérgicas/fisiología , Femenino , Glucósidos/uso terapéutico , Mesencéfalo/citología , Mesencéfalo/fisiología , Ratones , Ratones Endogámicos BALB C , Células-Madre Neurales/fisiología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Embarazo , Estilbenos/uso terapéutico , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/fisiología
19.
Psychopharmacology (Berl) ; 237(12): 3539-3552, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32803366

RESUMEN

RATIONALE: Autism spectrum disorders (ASDs) are highly prevalent neurodevelopmental disorders characterized by deficits in social communication and interaction, repetitive stereotyped behaviors, and cognitive impairments. Curcumin has been indicated to be neuroprotective against neurological and psychological disorders. However, the role of curcumin in autistic phenotypes remains unclear. OBJECTIVES: In the current study, we evaluated the effects of neonatal curcumin treatment on behavior and hippocampal neurogenesis in BTBRT+ltpr3tf/J (BTBR) mice, a model of autism. METHODS: C57BL/6J (C57) and BTBR mouse pups were treated with 0.1% dimethyl sulfoxide (DMSO) or curcumin (20 mg/kg) from postnatal day 6 (P6) to P8. Neural progenitor cells (NPCs) in the hippocampal dentate gyrus (DG) were evaluated on P8, and neurogenesis was measured on P24 by immunofluorescence. A battery of behavioral tests was carried out when the mice were 8 weeks of age. RESULTS: Neonatal curcumin treatment improved autism-related symptoms in BTBR mice, enhancing sociability, reducing repetitive behaviors, and ameliorating cognitive impairments. Furthermore, the suppression of hippocampal neurogenesis in BTBR mice was greatly rescued after neonatal curcumin treatment, leading to an increase in neurogenic processes and an increase in NPC proliferation concomitant with an expansion of the NPC pool on P8, and NPC differentiation towards the neuronal lineage was promoted in the DG of BTBR mice on P24. CONCLUSIONS: Our findings suggest that neonatal curcumin treatment elicits a therapeutic response through the restoration of hippocampal neurogenesis in BTBR mice and thus may represent a promising novel pharmacological strategy for ASD treatment.


Asunto(s)
Trastorno del Espectro Autista/prevención & control , Conducta Animal/efectos de los fármacos , Curcumina/farmacología , Giro Dentado/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Animales Recién Nacidos , Trastorno del Espectro Autista/psicología , Proliferación Celular/efectos de los fármacos , Giro Dentado/crecimiento & desarrollo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/efectos de los fármacos , Conducta Social
20.
Biochem Biophys Res Commun ; 531(4): 535-542, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32807492

RESUMEN

INTRODUCTION: Pre-clinical testing of small molecules for therapeutic development across many pathologies relies on the use of in-vitro and in-vivo models. When designed and implemented well, these models serve to predict the clinical outcome as well as the toxicity of the evaluated therapies. The two-dimensional (2D) reductionist approach where cells are incubated in a mono-layer on hard plastic microtiter plates is relatively inexpensive but not physiologically relevant. In contrast, well developed and applied three dimensional (3D) in vitro models could be employed to bridge the gap between 2D in vitro primary screening and expensive in vivo rodent models by incorporating key features of the tissue microenvironment to explore differentiation, cortical development, cancers and various neuronal dysfunctions. These features include an extracellular matrix, co-culture, tension and perfusion and could replace several hundred rodents in the drug screening validation cascade. METHODS: Human neural progenitor cells from middle brain (ReN VM, Merck Millipore, UK) were expanded as instructed by the supplier (Merck Millipore, UK), and then seeded in 96-well low-attachment plates (Corning, UK) to form multicellular spheroids followed by adding a Matrigel layer to mimic extracellular matrix around neural stem cell niche. ReN VM cells were then differentiated via EGF and bFGF deprivation for 7 days and were imaged at day 7. Radiotherapy was mimicked via gamma-radiation at 2Gy in the absence and presence of selected DYRK1A inhibitors Harmine, INDY and Leucettine 41 (L41). Cell viability was measured by AlamarBlue assay. Immunofluorescence staining was used to assess cell pluripotency marker SOX2 and differentiation marker GFAP. RESULTS: After 7 days of differentiation, neuron early differentiation marker (GFAP, red) started to be expressed among the cells expressing neural stem cell marker SOX2 (green). Radiation treatment caused significant morphology change including the reduced viability of the spheroids. These spheroids also revealed sensitizing potential of DYRK1A inhibitors tested in this study, including Harmine, INDY and L41. DISCUSSION & CONCLUSIONS: Combined with the benefit of greatly reducing the issues associated with in vivo rodent models, including reducing numbers of animals used in a drug screening cascade, cost, ethics, and potential animal welfare burden, we feel the well-developed and applied 3D neural spheroid model presented in this study will provide a crucial tool to evaluate combinatorial therapies, optimal drug concentrations and treatment dosages.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Células-Madre Neurales/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Esferoides Celulares/efectos de los fármacos , Línea Celular , Colágeno , Dioxoles/farmacología , Combinación de Medicamentos , Matriz Extracelular , Rayos gamma , Harmina/farmacología , Humanos , Imidazoles/farmacología , Laminina , Células-Madre Neurales/efectos de la radiación , Neuritas/efectos de los fármacos , Proteoglicanos , Fármacos Sensibilizantes a Radiaciones/farmacología , Factores de Transcripción SOXB1/metabolismo , Esferoides Celulares/efectos de la radiación , Quinasas DyrK
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA