Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 181, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468197

RESUMEN

BACKGROUND: The era of high throughput sequencing offers new paths to identifying species boundaries that are complementary to traditional morphology-based delimitations. De novo species delimitation using traditional or DNA super-barcodes serve as efficient approaches to recognizing putative species (molecular operational taxonomic units, MOTUs). Tea plants (Camellia sect. Thea) form a group of morphologically similar species with significant economic value, providing the raw material for tea, which is the most popular nonalcoholic caffeine-containing beverage in the world. Taxonomic challenges have arisen from vague species boundaries in this group. RESULTS: Based on the most comprehensive sampling of C. sect. Thea by far (165 individuals of 39 morphospecies), we applied three de novo species delimitation methods (ASAP, PTP, and mPTP) using plastome data to provide an independent evaluation of morphology-based species boundaries in tea plants. Comparing MOTU partitions with morphospecies, we particularly tested the congruence of MOTUs resulting from different methods. We recognized 28 consensus MOTUs within C. sect. Thea, while tentatively suggesting that 11 morphospecies be discarded. Ten of the 28 consensus MOTUs were uncovered as morphospecies complexes in need of further study integrating other evidence. Our results also showed a strong imbalance among the analyzed MOTUs in terms of the number of molecular diagnostic characters. CONCLUSION: This study serves as a solid step forward for recognizing the underlying species boundaries of tea plants, providing a needed evidence-based framework for the utilization and conservation of this economically important plant group.


Asunto(s)
Camellia sinensis , Camellia , Humanos , Código de Barras del ADN Taxonómico/métodos , Camellia sinensis/genética , Té/genética , ADN , Filogenia
2.
PeerJ ; 12: e16567, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313030

RESUMEN

Metabarcoding is a powerful tool, increasingly used in many disciplines of environmental sciences. However, to assign a taxon to a DNA sequence, bioinformaticians need to choose between different strategies or parameter values and these choices sometimes seem rather arbitrary. In this work, we present a case study on ITS2 and rbcL databases used to identify pollen collected by bees in Belgium. We blasted a random sample of sequences from the reference database against the remainder of the database using different strategies and compared the known taxonomy with the predicted one. This in silico cross-validation (CV) approach proved to be an easy yet powerful way to (1) assess the relative accuracy of taxonomic predictions, (2) define rules to discard dubious taxonomic assignments and (3) provide a more objective basis to choose the best strategy. We obtained the best results with the best blast hit (best bit score) rather than by selecting the majority taxon from the top 10 hits. The predictions were further improved by favouring the most frequent taxon among those with tied best bit scores. We obtained better results with databases containing the full sequences available on NCBI rather than restricting the sequences to the region amplified by the primers chosen in our study. Leaked CV showed that when the true sequence is present in the database, blast might still struggle to match the right taxon at the species level, particularly with rbcL. Classical 10-fold CV-where the true sequence is removed from the database-offers a different yet more realistic view of the true error rates. Taxonomic predictions with this approach worked well up to the genus level, particularly for ITS2 (5-7% of errors). Using a database containing only the local flora of Belgium did not improve the predictions up to the genus level for local species and made them worse for foreign species. At the species level, using a database containing exclusively local species improved the predictions for local species by ∼12% but the error rate remained rather high: 25% for ITS2 and 42% for rbcL. Foreign species performed worse even when using a world database (59-79% of errors). We used classification trees and GLMs to model the % of errors vs. identity and consensus scores and determine appropriate thresholds below which the taxonomic assignment should be discarded. This resulted in a significant reduction in prediction errors, but at the cost of a much higher proportion of unassigned sequences. Despite this stringent filtering, at least 1/5 sequences deemed suitable for species-level identification ultimately proved to be misidentified. An examination of the variability in prediction accuracy between plant families showed that rbcL outperformed ITS2 for only two of the 27 families examined, and that the % correct species-level assignments were much better for some families (e.g. 95% for Sapindaceae) than for others (e.g. 35% for Salicaceae).


Asunto(s)
Código de Barras del ADN Taxonómico , Polen , Abejas/genética , Animales , Código de Barras del ADN Taxonómico/métodos , Polen/genética , Plantas , Bases de Datos Factuales , Bélgica
3.
Braz J Biol ; 84: e278393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422290

RESUMEN

Artemisia vulgaris L. belongs to Asteraceae, is a herbal plant that has various benefits in the medical field, so that its use in the medical field can be explored optimally, the plant must be thoroughly identified. This study aims to identify A. vulgaris both in terms of descriptive morpho-anatomy and DNA barcoding using BLAST and phylogenetic tree reconstruction. The morpho-anatomical character was observed on root, stem, and leaf. DNA barcoding analysis was carried out through amplification and alignment of the rbcL and matK genes. All studies were conducted on three samples from Taman Husada (Medicinal Plant Garden) Graha Famili Surabaya, Indonesia. The anatomical slide was prepared by the paraffin method. Morphological studies revealed that the leaves of A. vulgaris both on the lower-middle part and on the upper part of the stem have differences, especially in the character of the stipules, petioles, and incisions they have. Meanwhile, from the study of anatomy, A. vulgaris has an anomocytic type of stomata and its distribution is mostly on the ventral part of the leaves. Through the BLAST process and phylogenetic tree reconstruction, the plant sequences being studied are closely related to several species of the genus Artemisia as indicated by a percentage identity above 98% and branch proximity between taxa in the reconstructed phylogenetic tree.


Asunto(s)
Código de Barras del ADN Taxonómico , Plantas Medicinales , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Filogenia , Plantas Medicinales/genética , Hojas de la Planta/genética
4.
Sci Rep ; 14(1): 2879, 2024 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311607

RESUMEN

Safety concerns, stemming from the presence of complex and unpredictable adulterants, permeate the entire industrial chain of traditional Chinese medicines (TCMs). The Notopterygii Rhizoma et Radix (NReR) from the Apiaceae family, commonly known as "Qiang-huo", is a widely used herbal medicine. The recent surge in its demand has given rise to a proliferation of counterfeit and substituted products in the market. Traditional identification presents inherent limitations, while DNA mini-barcoding, reliant on sequencing a short-standardized region, has received considerable attention as a new potential means to identify processed medicinal materials. In this study, we constructed a comprehensive Internal Transcribed Spacer 2 (ITS2) matrix encompassing genuine NReR and their commonly found adulterants for the first time. Leveraging this matrix, we conducted a thorough assessment of the genetic profiles and sources of NReR available in the Chinese herbal medicine market. Following established DNA barcoding protocols, the intra-specific genetic divergences within NReR species were found to be lower than the inter-specific genetic divergences from other species. Among the 120 samples that were successfully amplified, ITS2 exhibits an outstanding species-level identification efficiency of 100% when evaluated using both the BLASTN and neighbor-joining (NJ) tree methods. We concluded that ITS2 is a mini-barcode that has shown its potential and may become a universal mini-barcode for the quality control of "Qiang-huo", thereby ensuring the safety of clinical medication.


Asunto(s)
Medicamentos Herbarios Chinos , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , ADN Espaciador Ribosómico/genética , Filogenia
5.
PLoS One ; 18(7): e0286069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37399206

RESUMEN

Identifying plant, fungal, and animal ingredients in a specific mixture remains challenging during the limitation of PCR amplification and low specificity of traditional methods. Genomic DNA was extracted from mock and pharmaceutical samples. Four type of DNA barcodes were generated from shotgun sequencing dataset with the help of a local bioinformatic pipeline. Taxa of each barcode was assigned by blast to TCM-BOL, BOLD, and GenBank. Traditional methods including microscopy, thin layer chromatography (TLC), and high-performance liquid chromatography (HPLC) were carried out according to Chinese pharmacopoeia. On average, 6.8 Gb shotgun reads were sequenced from genomic DNA of each sample. Then, 97, 11, 10, 14, and one operational taxonomic unit (OTU) were generated for ITS2, psbA-trnH, rbcL, matK, and COI, respectively. All the labeled ingredients including eight plant, one fungal, and one animal species were successfully detected in both the mock and pharmaceutical samples, in which Chebulae Fructus, Poria, and Fritilariae Thunbergia Bulbus were identified via mapping reads to organelle genomes. In addition, four unlabeled plant species were detected from pharmaceutical samples, while 30 genera of fungi, such as Schwanniomyces, Diaporthe, Fusarium were detected from mock and pharmaceutical samples. Furthermore, the microscopic, TLC, and HPLC analysis were all in accordance with the standards stipulated by Chinese Pharmacopoeia. This study indicated that shotgun metabarcoding could simultaneously identified plant, fungal, and animal ingredients in herbal products, which has the ability to serve as a valuable complement to traditional methods.


Asunto(s)
Código de Barras del ADN Taxonómico , Plantas , Animales , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Plantas/genética , Extractos Vegetales
6.
PLoS One ; 18(4): e0282715, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37071613

RESUMEN

DNA metabarcoding of pollen is a useful tool for studying bee foraging ecology. However, several questions about this method remain unresolved, including the extent to which sequence read data is quantitative, which type of sequence count removal threshold to use and how that choice affects our ability to detect rare flower visits, and how sequence artefacts may confound conclusions about bee foraging behavior. To address these questions, we isolated pollen from five plant species and created treatments comprised of pollen from each species alone and combinations of pollen from multiple species that varied in richness and evenness. We used ITS2 and rbcL metabarcoding to identify plant species in the samples, compared the proportion of pollen by mass to the proportion of sequencing reads for each plant species in each treatment, and analyzed the sequencing data using both liberal and conservative thresholds. We collected pollen from foraging bees, analyzed metabarcoding data from those samples using each threshold, and compared the differences in the pollinator networks constructed from the data. Regardless of the threshold used, the relationship between the proportion of pollen by mass and sequencing reads was inconsistent, suggesting that the number of sequence reads is a poor proxy for pollen abundance in mixed-species samples. Using a liberal threshold resulted in greater detection of original plant species in mixtures but also detected additional species in mixtures and single-species samples. The conservative threshold reduced the number of additional plant species detected, but several species in mixtures were not detected above the threshold, resulting in false negatives. Pollinator networks produced using the two thresholds differed and illustrated tradeoffs between detection of rare species and estimation of network complexity. Threshold selection can have a major effect on conclusions drawn from studies using metabarcoding of bee pollen to study plant-pollinator interactions.


Asunto(s)
Código de Barras del ADN Taxonómico , Polen , Abejas/genética , Animales , Código de Barras del ADN Taxonómico/métodos , Polen/genética , Plantas/genética , Ecología , Polinización
7.
Mol Biol Rep ; 50(3): 2421-2433, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36592289

RESUMEN

BACKGROUND: Herbal medicines have recently attracted increasing attention for use as food supplements with health benefits; however, species authentication can be difficult due to incomplete morphological characters. Here, a molecular tool was developed for the identification of species in the National List of Essential Medicinal Plants in Thailand. METHODS: The identification process used DNA fingerprints including start codon targeted (SCoT) and inter simple sequence repeat (ISSR) polymorphisms, coupled with high resolution melting (HRM), to produce melting fingerprint (MF)-HRM. RESULTS: Results indicated that MF-HRM, SCoT-HRM and ISSR-HRM could be used for DNA fingerprints as S34, S36, S9 and S8 of SCoT and UBC873, S25 and UBC841 of ISSR. The melting fingerprints obtained from S34 of SCoT exhibited the best primers for identification of herbal species with 87.5% accuracy and relatively high repeatability. The presence of intraspecific variation in a few species affected the shift of melting fingerprints within species. MF-HRM using S34 showed improved species prediction compared to DNA fingerprints. The concentration of DNA with 10 ng/µl was recommended to perform MF-HRM. MF-HRM enabled species authentication of herbal commercialized products at only 20% resulting from the low quality of DNA isolated, while admixture of multiple product species interfered with the MF process. CONCLUSION: Findings suggested that MF-HRM showed promise as a molecular tool for the authentication of species in commercial herbal products with high specificity, moderate repeatability and rapidity without prior sequence information. This information will greatly improve quality control and traceability during the manufacturing process.


Asunto(s)
Código de Barras del ADN Taxonómico , Plantas Medicinales , ADN de Plantas/genética , Código de Barras del ADN Taxonómico/métodos , Plantas Medicinales/genética , Reacción en Cadena de la Polimerasa , Cartilla de ADN
8.
Mol Biol Rep ; 50(1): 245-253, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36329337

RESUMEN

Apiaceae plants are used as medicinal herbs, pesticides, spices, and vegetables; thus, accurately identifying Apiaceae species is important. The grassland ecosystem of Heilongjiang Province in northern China has huge reserves of wild Apiaceae plants, but few reports have systematically documented their diversity. In this study, 275 Apiaceae plants of 23 species in 18 genera were collected from this area. We identified Apiaceae species by using nuclear internal transcribed spacer (ITS/ITS2) and psbA-trnH (chloroplast non-coding region) sequences based on experimental data. The identification efficiency of ITS, ITS2 and psbA-trnH sequences was determined and evaluated by sequence alignment and analysis, intraspecific and interspecific genetic distance analyses, and phylogenetic tree construction. ITS, ITS2 could distinguish 21 species from 17 genera of Apiaceae with good identification effect. When identifying species in the Apiaceae family, ITS2 can be used as the core barcode and psbA-trnH can be used as the supplementary barcode. These results can enrich the reference Apiaceae DNA barcode database.


Asunto(s)
Apiaceae , Plantas Medicinales , Código de Barras del ADN Taxonómico/métodos , Apiaceae/genética , Filogenia , Ecosistema , ADN de Plantas/genética , Plantas Medicinales/genética
9.
Genome ; 66(2): 21-33, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516431

RESUMEN

Lingxiaohua (Campsis Flos, Campsis grandiflora (Thunb.) K. Schum) is a medicinal herb used for promoting diuresis and treating blood-related disorders by the promotion of blood circulation. It also possesses anti-inflammatory and antioxidative properties. This non-poisonous plant is frequently confused with poisonous Yangjinhua (Daturae Metelis Flos, Datura metel Linnaeus) in the market, resulting in serious anticholinergic poisoning. The confusion of these two herbs is due to the similarity in their appearances. In our study, we compared the complete chloroplast genomes of the two plants and found that they are very different in terms of their gene content and gene arrangement. There were also significant differences in the number and repeating motifs of microsatellites and complex repeats. We used universal primers for the amplification of rbcL, matK, psbA-trnH, and ITS2 regions and successfully differentiated the two plants. Furthermore, we designed two pairs of primers based on the nucleotide differences in chloroplast genomes at the rps14 and rpoC1 regions to provide additional authentication markers. The universal primers and specific primers when used together can accurately discriminate Lingxiaohua and Yangjinhua.


Asunto(s)
Genoma del Cloroplasto , Plantas Medicinales , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Plantas Medicinales/genética , Cloroplastos/genética , Marcadores Genéticos , ADN de Cloroplastos/genética
10.
Planta Med ; 89(8): 824-832, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35868331

RESUMEN

The unambiguous identification of plant material is a prerequisite of rational phytotherapy. Misidentification can even cause serious health problems, as in the case of the Chinese medicinal herb Zicao. Commercial material labelled "Zicao" may be derived from the roots of Arnebia euchroma (ruan zicao), Lithospermum erythrorhizon (ying zicao), or Onosma paniculata (dian zicao). All of these roots contain shikonin derivatives as main bioactive constituents, but ying zicao and dian zicao contain also hepatotoxic pyrrolizidine alkaloids in high amounts. Therefore, the use of A. euchroma with a very low pyrrolizidine alkaloid content is desirable. Confusions of the species occur quite often, indicating an urgent need for an unambiguous identification method. Discrimination of 23 zicao samples has been achieved by analyses of the nuclear internal transcribed spacer ITS2 and trnL-F intergenic spacer of the chloroplast DNA. Data were analyzed using Bioedit, ClustalX, Mega 11 and BLAST. Results indicate that ITS2 barcoding can accurately distinguish Arnebia euchroma from their adulterants. Subsequently, an HPTLC method has been developed allowing a chemical discrimination of the most widely used species. (22E)-Ergosta-4,6,8(14),22-tetraen-3-one has been identified as characteristic marker compound, allowing an unambiguous discrimination of A. euchroma and L. erythrorhizon.


Asunto(s)
Código de Barras del ADN Taxonómico , Lithospermum , Código de Barras del ADN Taxonómico/métodos , ADN de Cloroplastos , Lithospermum/genética , ADN de Plantas/genética
11.
Mol Ecol ; 32(23): 6345-6362, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36086900

RESUMEN

Anthropogenic activities are triggering global changes in the environment, causing entire communities of plants, pollinators and their interactions to restructure, and ultimately leading to species declines. To understand the mechanisms behind community shifts and declines, as well as monitoring and managing impacts, a global effort must be made to characterize plant-pollinator communities in detail, across different habitat types, latitudes, elevations, and levels and types of disturbances. Generating data of this scale will only be feasible with rapid, high-throughput methods. Pollen DNA metabarcoding provides advantages in throughput, efficiency and taxonomic resolution over traditional methods, such as microscopic pollen identification and visual observation of plant-pollinator interactions. This makes it ideal for understanding complex ecological networks and their responses to change. Pollen DNA metabarcoding is currently being applied to assess plant-pollinator interactions, survey ecosystem change and model the spatiotemporal distribution of allergenic pollen. Where samples are available from past collections, pollen DNA metabarcoding has been used to compare contemporary and past ecosystems. New avenues of research are possible with the expansion of pollen DNA metabarcoding to intraspecific identification, analysis of DNA in ancient pollen samples, and increased use of museum and herbarium specimens. Ongoing developments in sequencing technologies can accelerate progress towards these goals. Global ecological change is happening rapidly, and we anticipate that high-throughput methods such as pollen DNA metabarcoding are critical for understanding the evolutionary and ecological processes that support biodiversity, and predicting and responding to the impacts of change.


Asunto(s)
Código de Barras del ADN Taxonómico , Ecosistema , Código de Barras del ADN Taxonómico/métodos , Polen/genética , Plantas/genética , ADN , Polinización/genética
12.
Genes (Basel) ; 13(11)2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36360175

RESUMEN

Morinda officinalis How is well-known as a valuable medicinal plant found in some regions of Vietnam. This species is mainly used for treating male impotence, irregular menstruation, and rheumatoid arthritis. This study aimed to identify the species of and genetic diversity in three M. officinalis populations: one each in Quang Binh (QB), Thua Thien Hue (TTH), and Quang Nam (QN). In this study, four DNA barcoding markers (ITS1, ITS2, matK, and rbcL) were used to identify the species and 22 microsatellite markers were applied for population structure and diversity analyses. The results showed that the sequences of gene regions studied in M. officinalis had a high similarity (>95%) to the ITS1, ITS2, matK, and rbcL sequences of M. officinalis on BLAST. Of the four DNA barcoding markers used, ITS1 and ITS2 showed higher efficiency in DNA amplification of M. officinalis. From this study, 27 GenBank codes were published on BLAST. The results also revealed high levels of genetic diversity in populations. The average observed and expected heterozygosity values were HO = 0.513 and HE = 0.612, respectively. The average FST value was 0.206. Analysis of molecular variance (AMOVA) showed 70% variation within populations and 30% among populations. The population structure of M. officinalis inferred in STRUCTURE revealed that the optimum number of genetic groups for the admixture model was K = 2. These findings provided vital background information for future studies in the conservation of M. officinalis in both ex situ and in situ plans.


Asunto(s)
Código de Barras del ADN Taxonómico , Morinda , Filogenia , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Análisis de Secuencia de ADN , Vietnam , Marcadores Genéticos , Repeticiones de Microsatélite/genética , Variación Genética/genética
13.
Genes (Basel) ; 13(9)2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36140845

RESUMEN

Commercial interest in the culinary herb, Eryngium foetidum L., has increased worldwide due to its typical pungency, similar to coriander or cilantro, with immense pharmaceutical components. The molecular delimitation and taxonomic classification of this lesser-known medicinal plant are restricted to conventional phenotyping and DNA-based marker evaluation, which hinders accurate identification, genetic conservation, and safe utilization. This study focused on species discrimination using DNA sequencing with chloroplast-plastid genes (matK, Kim matK, and rbcL) and the nuclear ITS2 gene in two Eryngium genotypes collected from the east coast region of India. The results revealed that matK discriminated between two genotypes, however, Kim matK, rbcL, and ITS2 identified these genotypes as E. foetidum. The ribosomal nuclear ITS2 region exhibited significant inter- and intra-specific divergence, depicted in the DNA barcodes and the secondary structures derived based on the minimum free energy. Although the efficiency of matK genes is better in species discrimination, ITS2 demonstrated polyphyletic phylogeny, and could be used as a reliable marker for genetic divergence studies understanding the mechanisms of RNA molecules. The results of this study provide insights into the scientific basis of species identification, genetic conservation, and safe utilization of this important medicinal plant species.


Asunto(s)
Eryngium , Plantas Medicinales , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/química , ADN de Plantas/genética , Marcadores Genéticos/genética , Genotipo , Preparaciones Farmacéuticas , Filogenia , Plantas Medicinales/genética , ARN
14.
PLoS One ; 17(6): e0270167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35709217

RESUMEN

Recently, Qi-Nan germplasm, the germplasm of Aquilaria species that easily forms agarwood, has been widely cultivated in Guangdong and Hainan Provinces in China. Since the morphological characteristics of Qi-Nan germplasm are similar to those of Aquilaria species and germplasm is bred by grafting, it is difficult to determine the source species of this germplasm by traditional taxonomic characteristics. In this study, we performed a DNA barcoding analysis of 58 major Qi-Nan germplasms as well as Aquilaria sinensis, A. yunnanensis, A. crassna, A. malaccensis and A. hirta with 5 primers (nuclear gene internal transcribed spacer 2 (ITS2) and the chloroplast genes matK, trnH-psbA, rbcL and trnL-trnF). This field survey in the Qi-Nan germplasm plantations in Guangdong and Hainan Provinces aimed to accurately identify the source species of Qi-Nan germplasm. According to the results, ITS2 and matK showed the most variability and the highest divergence at all genetic distances. This ITS2+matK combination, screened for with TaxonDNA analysis, showed the highest success rate in species identification of the Qi-Nan germplasm. Clustering in the phylogenetic trees constructed with Bayesian inference and maximum likelihood indicated that the Qi-Nan germplasm was most closely related to A. sinensis and more distantly related to A. yunnanensis, A. crassna, A. malaccensis and A. hirta. Therefore, this study determined that the source species of the Qi-Nan germplasm is A. sinensis.


Asunto(s)
Fitomejoramiento , Thymelaeaceae , Teorema de Bayes , China , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Filogenia , Thymelaeaceae/genética
15.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1814-1823, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35534251

RESUMEN

Scutellaria baicalensis is a commonly used Chinese medicinal herb. In this study, we identified the germplasm resources of commercial S. baicalensis samples based on trnH-psbA, petA-psbJ, and ycf4-cemA sequences according to the available chloroplast genome sequencing results, and measured the content of baicalin by HPLC. Through the above means we determined the best DNA barcode that can be used to detect the germplasm resources and evaluate the quality of commercial S. baicalensis samples. A total of 104 samples were collected from 24 provinces, from which DNA was extracted for PCR amplification. The amplification efficiencies of trnH-psbA, petA-psbJ, and ycf4-cemA sequences were 100%, 59.62%, and 25.96%, respectively. The results of sequence analysis showed that 5, 4, and 2 haplotypes were identified based on trnH-psbA, petA-psbJ, and ycf4-cemA sequences, respectively. However, the sequences of haplotypes in commercial samples were different from that of the wild type, and the joint analysis of three fragments of S. baicalensis only identified 6 haplotypes. Furthermore, the phylogenetic analysis and genetic distance analysis indicated that trnH-psbA could be used to identify S. baicalensis from adulterants. The above analysis showed that trnH-psbA was the best fragment for identifying the germplasm resources of commercial S. baicalensis samples. We then analyzed the haplotypes(THap1-THap5) of commercial S. baicalensis samples based on trnH-psbA and found that THap2 was the main circulating haplotype of the commercial samples, accounting for 86.55% of the total samples, which indicated the scarce germplasm resources of commercial S. baicalensis samples. The content of baicalin in all the collected commercial S. baicalensis samples exceeded the standard in Chinese Pharmacopoeia and had significant differences(maximum of 12.21%) among samples, suggesting that the quality of commercial S. baicalensis samples varied considerably. However, there was no significant difference in baicalin content between different provinces or between different haplotypes. This study facilitates the establishment of the standard identification system for S. baicalensis, and can guide the commercial circulation and reasonable medication of S. baicalensis.


Asunto(s)
Código de Barras del ADN Taxonómico , Scutellaria baicalensis , Cromatografía Líquida de Alta Presión , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Filogenia , Scutellaria baicalensis/genética
16.
Planta Med ; 88(12): 985-993, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34544191

RESUMEN

Morphological similarity within species makes the identification and authentication of Salvia species challenging, especially in dietary supplements that contain processed root or leaf powder of different sage species. In the present study, the species discriminatory power of 2 potential DNA barcode regions from the nuclear genome was evaluated in 7 medicinally important Salvia species from the family Lamiaceae. The nuclear internal transcribed spacer 2 and the exon 9 - 14 region of low copy nuclear gene WAXY coding for granule-bound starch synthase 1 were tested for their species discrimination ability using distance, phylogenetic, and BLAST-based methods. A novel 2-step PCR method with 2 different annealing temperatures was developed to achieve maximum amplification from genomic DNA. The granule-bound starch synthase 1 region showed higher amplification and sequencing success rates, higher interspecific distances, and a perfect barcode gap for the tested species compared to the nuclear internal transcribed spacer 2. Hence, these novel mini-barcodes generated from low copy nuclear gene regions (granule-bound starch synthase) that were proven to be effective barcodes for identifying 7 Salvia species have potential for identification and authentication of other Salvia species.


Asunto(s)
Salvia , Almidón Sintasa , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Filogenia , Polvos , Salvia/genética , Almidón Sintasa/genética
17.
Artículo en Chino | WPRIM | ID: wpr-928177

RESUMEN

Scutellaria baicalensis is a commonly used Chinese medicinal herb. In this study, we identified the germplasm resources of commercial S. baicalensis samples based on trnH-psbA, petA-psbJ, and ycf4-cemA sequences according to the available chloroplast genome sequencing results, and measured the content of baicalin by HPLC. Through the above means we determined the best DNA barcode that can be used to detect the germplasm resources and evaluate the quality of commercial S. baicalensis samples. A total of 104 samples were collected from 24 provinces, from which DNA was extracted for PCR amplification. The amplification efficiencies of trnH-psbA, petA-psbJ, and ycf4-cemA sequences were 100%, 59.62%, and 25.96%, respectively. The results of sequence analysis showed that 5, 4, and 2 haplotypes were identified based on trnH-psbA, petA-psbJ, and ycf4-cemA sequences, respectively. However, the sequences of haplotypes in commercial samples were different from that of the wild type, and the joint analysis of three fragments of S. baicalensis only identified 6 haplotypes. Furthermore, the phylogenetic analysis and genetic distance analysis indicated that trnH-psbA could be used to identify S. baicalensis from adulterants. The above analysis showed that trnH-psbA was the best fragment for identifying the germplasm resources of commercial S. baicalensis samples. We then analyzed the haplotypes(THap1-THap5) of commercial S. baicalensis samples based on trnH-psbA and found that THap2 was the main circulating haplotype of the commercial samples, accounting for 86.55% of the total samples, which indicated the scarce germplasm resources of commercial S. baicalensis samples. The content of baicalin in all the collected commercial S. baicalensis samples exceeded the standard in Chinese Pharmacopoeia and had significant differences(maximum of 12.21%) among samples, suggesting that the quality of commercial S. baicalensis samples varied considerably. However, there was no significant difference in baicalin content between different provinces or between different haplotypes. This study facilitates the establishment of the standard identification system for S. baicalensis, and can guide the commercial circulation and reasonable medication of S. baicalensis.


Asunto(s)
Cromatografía Líquida de Alta Presión , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Filogenia , Scutellaria baicalensis/genética
18.
PLoS Biol ; 19(12): e3001426, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928952

RESUMEN

This work addresses the need for new chemical matter in product development for control of pest insects and vector-borne diseases. We present a barcoding strategy that enables phenotypic screens of blood-feeding insects against small molecules in microtiter plate-based arrays and apply this to discovery of novel systemic insecticides and compounds that block malaria parasite development in the mosquito vector. Encoding of the blood meals was achieved through recombinant DNA-tagged Asaia bacteria that successfully colonised Aedes and Anopheles mosquitoes. An arrayed screen of a collection of pesticides showed that chemical classes of avermectins, phenylpyrazoles, and neonicotinoids were enriched for compounds with systemic adulticide activity against Anopheles. Using a luminescent Plasmodium falciparum reporter strain, barcoded screens identified 48 drug-like transmission-blocking compounds from a 400-compound antimicrobial library. The approach significantly increases the throughput in phenotypic screening campaigns using adult insects and identifies novel candidate small molecules for disease control.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Evaluación Preclínica de Medicamentos/métodos , Malaria/prevención & control , Acetobacteraceae/genética , Animales , Anopheles/genética , Anopheles/microbiología , Antimaláricos/farmacología , Insecticidas , Malaria/parasitología , Malaria/transmisión , Mosquitos Vectores/microbiología , ARN Ribosómico 16S/genética
19.
Genes (Basel) ; 12(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34828370

RESUMEN

Sanguisorba, commonly known as burnet, is a genus in the family Rosaceae native to the temperate regions of the Northern hemisphere. Five of its thirty species are distributed in Korea: Sanguisorba officinalis, S. stipulata, S. hakusanensis, S. longifolia, and S. tenuifolia. S. officinalis has been designated as a medicinal remedy in the Chinese and Korean Herbal Pharmacopeias. Despite being a valuable medicinal resource, the morphological and genomic information, as well as the genetic characteristics of Sanguisorba, are still elusive. Therefore, we carried out the first comprehensive study on the floral micromorphology, palynology, and complete chloroplast (cp) genome of the Sanguisorba species. The outer sepal waxes and hypanthium characters showed diagnostic value, despite a similar floral micromorphology across different species. All the studied Sanguisorba pollen were small to medium, oblate to prolate-spheroidal, and their exine ornamentation was microechinate. The orbicules, which are possibly synapomorphic, were consistently absent in this genus. Additionally, the cp genomes of S. officinalis, S. stipulata, and S. hakusanensis have been completely sequenced. The comparative analysis of the reported Sanguisorba cp genomes revealed local divergence regions. The nucleotide diversity of trnH-psbA and rps2-rpoC2, referred to as hotspot regions, revealed the highest pi values in six Sanguisorba. The ndhG indicated positive selection pressures as a species-specific variation in S. filiformis. The S. stipulata and S. tenuifolia species had psbK genes at the selected pressures. We developed new DNA barcodes that distinguish the typical S. officinalis and S. officinalis var. longifolia, important herbal medicinal plants, from other similar Sanguisorba species with species-specific distinctive markers. The phylogenetic trees showed the positions of the reported Sanguisorba species; S. officinalis, S. tenuifolia, and S. stipulata showed the nearest genetic distance. The results of our comprehensive study on micromorphology, pollen chemistry, cp genome analysis, and the development of species identification markers can provide valuable information for future studies on S. officinalis, including those highlighting it as an important medicinal resource.


Asunto(s)
Cloroplastos/genética , Código de Barras del ADN Taxonómico/métodos , Flores/anatomía & histología , Sanguisorba/clasificación , Flores/clasificación , Flores/genética , Marcadores Genéticos , Tamaño del Genoma , Genoma del Cloroplasto , Filogenia , Polen/anatomía & histología , Polen/clasificación , Polen/genética , Sanguisorba/anatomía & histología , Sanguisorba/genética , Selección Genética , Análisis de Secuencia de ADN , Especificidad de la Especie
20.
BMC Plant Biol ; 21(1): 465, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645404

RESUMEN

BACKGROUND: Lilium is an important ornamental bulb, possesses medicinal properties, and is also edible. Species within the Lilium genus share very similar morphology and macroscopic characteristics, thus they cannot be easily and clearly distinguished from one another. To date, no efficient species-specific markers have been developed for classifying wild lily species, which poses an issue with further characterizing its medicinal properties. RESULTS: To develop a simple and reliable identification system for Lilium, 45 representative species from 6 sections were used to develop a DNA barcoding system, which was based on DNA sequence polymorphisms. In this study, we assessed five commonly used DNA barcode candidates (ITS, rbcL, ycf1b, matK and psbA-trnH) and five novel barcode candidates obtained from highly variable chloroplast genomic regions (trnL-trnF, trnS-trnG, trnF-ndhJ, trnP-psaJ-rpI33 and psbB-psbH). We showed that a set of three novel DNA barcodes (ITS + trnP-psaJ-rpI33 + psbB-psbH) could be efficiently used as a genetic marker to distinguish between lily species, as assessed by methods including DNAsp, BI and ML tree, and Pair Wise Group (PWG). CONCLUSIONS: A rapid and reliable DNA barcoding method was developed for all 45 wild Lilium species by using ITS, trnP-psaJ-rpI33, and psbB-psbH as DNA barcoding markers. The method can be used in the classification of wild Lilium species, especially endangered species, and also provides an effective method for selective lily breeding.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Especies en Peligro de Extinción , Marcadores Genéticos , Genoma del Cloroplasto , Lilium/clasificación , Lilium/genética , Plantas Medicinales/genética , Análisis de Secuencia de ADN , Variación Genética , Filogenia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA