Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Molecules ; 27(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35209006

RESUMEN

Two rare 2-phenoxychromone derivatives, 6-demethoxy-4`-O-capillarsine (1) and tenuflorin C (2), were isolated from the areal parts of Artemisia commutata and A. glauca, respectively, for the first time. Being rare in nature, the inhibition potentialities of 1 and 2 against SARS-CoV-2 was investigated using multistage in silico techniques. At first, molecular similarity and fingerprint studies were conducted for 1 and 2 against co-crystallized ligands of eight different COVID-19 enzymes. The carried-out studies indicated the similarity of 1 and 2 with TTT, the co-crystallized ligand of COVID-19 Papain-Like Protease (PLP), (PDB ID: 3E9S). Therefore, molecular docking studies of 1 and 2 against the PLP were carried out and revealed correct binding inside the active site exhibiting binding energies of -18.86 and -18.37 Kcal/mol, respectively. Further, in silico ADMET in addition to toxicity evaluation of 1 and 2 against seven models indicated the general safety and the likeness of 1 and 2 to be drugs. Lastly, to authenticate the binding and to investigate the thermodynamic characters, molecular dynamics (MD) simulation studies were conducted on 1 and PLP.


Asunto(s)
Artemisia/química , COVID-19/enzimología , Cromonas/química , Proteasas Similares a la Papaína de Coronavirus , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/química , Humanos , Tratamiento Farmacológico de COVID-19
2.
Oxid Med Cell Longev ; 2022: 5397733, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35047106

RESUMEN

The infection of coronavirus disease (COVID-19) seriously threatens human life. It is urgent to generate effective and safe specific antibodies (Abs) against the pathogenic elements of COVID-19. Mice were immunized with SARS-CoV-2 spike protein antigens: S ectodomain-1 (CoV, in short) mixed in Alum adjuvant for 2 times and boosted with CoV weekly for 6 times. A portion of mice were treated with Maotai liquor (MTL, in short) or/and heat stress (HS) together with CoV boosting. We observed that the anti-CoV Ab was successfully induced in mice that received the CoV/Alum immunization for 2 times. However, upon boosting with CoV, the CoV Ab production diminished progressively; spleen CoV Ab-producing plasma cell counts reduced, in which substantial CoV-specific Ab-producing plasma cells (sPC) were apoptotic. Apparent oxidative stress signs were observed in sPCs; the results were reproduced by exposing sPCs to CoV in the culture. The presence of MTL or/and HS prevented the CoV-induced oxidative stress in sPCs and promoted and stabilized the CoV Ab production in mice in re-exposure to CoV. In summary, CoV/Alum immunization can successfully induce CoV Ab production in mice that declines upon reexposure to CoV. Concurrent administration of MTL/HS stabilizes and promotes the CoV Ab production in mice.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Apoptosis , COVID-19/inmunología , Células Plasmáticas/inmunología , SARS-CoV-2/fisiología , Superóxido Dismutasa-1/fisiología , Adyuvantes Inmunológicos , Bebidas Alcohólicas , Compuestos de Alumbre , Enzima Convertidora de Angiotensina 2/fisiología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/enzimología , Vacunas contra la COVID-19/inmunología , Respuesta al Choque Térmico , Inmunización Secundaria , Inmunogenicidad Vacunal , Janus Quinasa 2/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/patología , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT1/fisiología , Transducción de Señal , Organismos Libres de Patógenos Específicos , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación
3.
J Gen Virol ; 102(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34319869

RESUMEN

Rapid repurposing of existing drugs as new therapeutics for COVID-19 has been an important strategy in the management of disease severity during the ongoing SARS-CoV-2 pandemic. Here, we used high-throughput docking to screen 6000 compounds within the DrugBank library for their potential to bind and inhibit the SARS-CoV-2 3 CL main protease, a chymotrypsin-like enzyme that is essential for viral replication. For 19 candidate hits, parallel in vitro fluorescence-based protease-inhibition assays and Vero-CCL81 cell-based SARS-CoV-2 replication-inhibition assays were performed. One hit, diclazuril (an investigational anti-protozoal compound), was validated as a SARS-CoV-2 3 CL main protease inhibitor in vitro (IC50 value of 29 µM) and modestly inhibited SARS-CoV-2 replication in Vero-CCL81 cells. Another hit, lenvatinib (approved for use in humans as an anti-cancer treatment), could not be validated as a SARS-CoV-2 3 CL main protease inhibitor in vitro, but serendipitously exhibited a striking functional synergy with the approved nucleoside analogue remdesivir to inhibit SARS-CoV-2 replication, albeit this was specific to Vero-CCL81 cells. Lenvatinib is a broadly-acting host receptor tyrosine kinase (RTK) inhibitor, but the synergistic effect with remdesivir was not observed with other approved RTK inhibitors (such as pazopanib or sunitinib), suggesting that the mechanism-of-action is independent of host RTKs. Furthermore, time-of-addition studies revealed that lenvatinib/remdesivir synergy probably targets SARS-CoV-2 replication subsequent to host-cell entry. Our work shows that combining computational and cellular screening is a means to identify existing drugs with repurposing potential as antiviral compounds. Future studies could be aimed at understanding and optimizing the lenvatinib/remdesivir synergistic mechanism as a therapeutic option.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Quimasas/antagonistas & inhibidores , Compuestos de Fenilurea/farmacología , Quinolinas/farmacología , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/farmacología , Alanina/farmacología , Animales , Antivirales/farmacología , COVID-19/enzimología , Células Cultivadas , Evaluación Preclínica de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/patogenicidad
4.
Endokrynol Pol ; 72(3): 256-260, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34010445

RESUMEN

The paper presents the theoretical considerations on the role of endocrine and metabolic alterations accompanying COVID-19 infection. These alterations may be presumed on the basis of the following two observations. Firstly, the virus SARS-CoV-2 responsible for the COVID-19 infection uses an important renin-angiotensin system (RAS) element - angiotensin-converting enzyme 2 (ACE2) - as a receptor protein for entry into target cells and, in consequence, disturbs the function of the main (circulating) renin-angiotensin-aldosterone system (RAAS) and of the local renin-angiotensin system localized in different tissues and organs. The binding of SARS-CoV-2 to ACE2 leads to the downregulation of this enzyme and, in the aftermath, to the excess of angiotensin II and aldosterone. Thus, in the later stage of COVID-19 infection, the beneficial effects of ACEI and ARB could be presumed. It is hypothesized that the local RAS dysregulation in the adipose tissue is the main cause of the negative role of obesity as a risk factor of severe outcome of the COVID-19 infection. Secondly, the outcome of COVID-19 strongly depends on the age of the patient. Age-related hormonal deficiencies, especially those of melatonin and dehydroepiandrosterone, may contribute to morbidity/mortality in older people. The usefulness of melatonin and angiotensin converting enzyme inhibitors/angiotensin receptor 1 blockers (the latter only in later phases of the infection) as adjuvant drugs is probable but needs thorough clinical trials.


Asunto(s)
COVID-19/metabolismo , Sistema Renina-Angiotensina , Envejecimiento , Aldosterona , Angiotensina II , Enzima Convertidora de Angiotensina 2 , COVID-19/enzimología , COVID-19/fisiopatología , Diabetes Mellitus , Humanos , Melatonina , Obesidad
5.
Molecules ; 26(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672721

RESUMEN

The ongoing coronavirus pandemic has been a burden on the worldwide population, with mass fatalities and devastating socioeconomic consequences. It has particularly drawn attention to the lack of approved small-molecule drugs to inhibit SARS coronaviruses. Importantly, lessons learned from the SARS outbreak of 2002-2004, caused by severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), can be applied to current drug discovery ventures. SARS-CoV-1 and SARS-CoV-2 both possess two cysteine proteases, the main protease (Mpro) and the papain-like protease (PLpro), which play a significant role in facilitating viral replication, and are important drug targets. The non-covalent inhibitor, GRL-0617, which was found to inhibit replication of SARS-CoV-1, and more recently SARS-CoV-2, is the only PLpro inhibitor co-crystallised with the recently solved SARS-CoV-2 PLpro crystal structure. Therefore, the GRL-0617 structural template and pharmacophore features are instrumental in the design and development of more potent PLpro inhibitors. In this work, we conducted scaffold hopping using GRL-0617 as a reference to screen over 339,000 ligands in the chemical space using the ChemDiv, MayBridge, and Enamine screening libraries. Twenty-four distinct scaffolds with structural and electrostatic similarity to GRL-0617 were obtained. These proceeded to molecular docking against PLpro using the AutoDock tools. Of two compounds that showed the most favourable predicted binding affinities to the target site, as well as comparable protein-ligand interactions to GRL-0617, one was chosen for further analogue-based work. Twenty-seven analogues of this compound were further docked against the PLpro, which resulted in two additional hits with promising docking profiles. Our in silico pipeline consisted of an integrative four-step approach: (1) ligand-based virtual screening (scaffold-hopping), (2) molecular docking, (3) an analogue search, and, (4) evaluation of scaffold drug-likeness, to identify promising scaffolds and eliminate those with undesirable properties. Overall, we present four novel, and lipophilic, scaffolds obtained from an exhaustive search of diverse and uncharted regions of chemical space, which may be further explored in vitro through structure-activity relationship (SAR) studies in the search for more potent inhibitors. Furthermore, these scaffolds were predicted to have fewer off-target interactions than GRL-0617. Lastly, to our knowledge, this work contains the largest ligand-based virtual screen performed against GRL-0617.


Asunto(s)
Antivirales/química , COVID-19/enzimología , Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa/química , Simulación del Acoplamiento Molecular , SARS-CoV-2/enzimología , Antivirales/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Cristalografía por Rayos X , Inhibidores de Cisteína Proteinasa/uso terapéutico , Evaluación Preclínica de Medicamentos , Humanos , Tratamiento Farmacológico de COVID-19
6.
Molecules ; 26(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668085

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged to be the greatest threat to humanity in the modern world and has claimed nearly 2.2 million lives worldwide. The United States alone accounts for more than one fourth of 100 million COVID-19 cases across the globe. Although vaccination against SARS-CoV-2 has begun, its efficacy in preventing a new or repeat COVID-19 infection in immunized individuals is yet to be determined. Calls for repurposing of existing, approved, drugs that target the inflammatory condition in COVID-19 are growing. Our initial gene ontology analysis predicts a similarity between SARS-CoV-2 induced inflammatory and immune dysregulation and the pathophysiology of rheumatoid arthritis. Interestingly, many of the drugs related to rheumatoid arthritis have been found to be lifesaving and contribute to lower COVID-19 morbidity. We also performed in silico investigation of binding of epigallocatechin gallate (EGCG), a well-known catechin, and other catechins on viral proteins and identified papain-like protease protein (PLPro) as a binding partner. Catechins bind to the S1 ubiquitin-binding site of PLPro, which might inhibit its protease function and abrogate SARS-CoV-2 inhibitory function on ubiquitin proteasome system and interferon stimulated gene system. In the realms of addressing inflammation and how to effectively target SARS-CoV-2 mediated respiratory distress syndrome, we review in this article the available knowledge on the strategic placement of EGCG in curbing inflammatory signals and how it may serve as a broad spectrum therapeutic in asymptomatic and symptomatic COVID-19 patients.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Catequina/análogos & derivados , Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa , SARS-CoV-2/enzimología , Té/química , Antivirales/química , Antivirales/uso terapéutico , Sitios de Unión , COVID-19/enzimología , COVID-19/epidemiología , Catequina/química , Catequina/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/uso terapéutico , Humanos
7.
Molecules ; 26(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669720

RESUMEN

Coronavirus desease 2019 (COVID-19) is responsible for more than 1.80 M deaths worldwide. A Quantitative Structure-Activity Relationships (QSAR) model is developed based on experimental pIC50 values reported for a structurally diverse dataset. A robust model with only five descriptors is found, with values of R2 = 0.897, Q2LOO = 0.854, and Q2ext = 0.876 and complying with all the parameters established in the validation Tropsha's test. The analysis of the applicability domain (AD) reveals coverage of about 90% for the external test set. Docking and molecular dynamic analysis are performed on the three most relevant biological targets for SARS-CoV-2: main protease, papain-like protease, and RNA-dependent RNA polymerase. A screening of the DrugBank database is executed, predicting the pIC50 value of 6664 drugs, which are IN the AD of the model (coverage = 79%). Fifty-seven possible potent anti-COVID-19 candidates with pIC50 values > 6.6 are identified, and based on a pharmacophore modelling analysis, four compounds of this set can be suggested as potent candidates to be potential inhibitors of SARS-CoV-2. Finally, the biological activity of the compounds was related to the frontier molecular orbitals shapes.


Asunto(s)
Antivirales/química , COVID-19/enzimología , Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa/química , Bases de Datos de Compuestos Químicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , ARN Polimerasa Dependiente del ARN , SARS-CoV-2/enzimología , Antivirales/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Inhibidores de Cisteína Proteinasa/uso terapéutico , Evaluación Preclínica de Medicamentos , Relación Estructura-Actividad Cuantitativa , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/química , Tratamiento Farmacológico de COVID-19
8.
J Enzyme Inhib Med Chem ; 36(1): 497-503, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33491508

RESUMEN

COVID-19 has become a global pandemic and there is an urgent call for developing drugs against the virus (SARS-CoV-2). The 3C-like protease (3CLpro) of SARS-CoV-2 is a preferred target for broad spectrum anti-coronavirus drug discovery. We studied the anti-SARS-CoV-2 activity of S. baicalensis and its ingredients. We found that the ethanol extract of S. baicalensis and its major component, baicalein, inhibit SARS-CoV-2 3CLpro activity in vitro with IC50's of 8.52 µg/ml and 0.39 µM, respectively. Both of them inhibit the replication of SARS-CoV-2 in Vero cells with EC50's of 0.74 µg/ml and 2.9 µM, respectively. While baicalein is mainly active at the viral post-entry stage, the ethanol extract also inhibits viral entry. We further identified four baicalein analogues from other herbs that inhibit SARS-CoV-2 3CLpro activity at µM concentration. All the active compounds and the S. baicalensis extract also inhibit the SARS-CoV 3CLpro, demonstrating their potential as broad-spectrum anti-coronavirus drugs.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Flavanonas/farmacología , Extractos Vegetales/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , COVID-19/enzimología , COVID-19/virología , Chlorocebus aethiops , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Humanos , Técnicas In Vitro , Modelos Moleculares , SARS-CoV-2/enzimología , Scutellaria baicalensis , Células Vero
9.
Drug Dev Res ; 82(4): 469-473, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33496060

RESUMEN

Despite vigorous efforts, the COVID-19 pandemic continues to take a toll on the global health. The contemporary therapeutic regime focused on the viral spike proteins, viral 3CL protease enzyme, immunomodulation, inhibition of viral replication, and providing a symptomatic relief encouraged the repurposing of drugs to meet the urgency of treatment. Similarly, the representative drugs that proved beneficial to alleviate SARS-CoV-1, MERS-CoV, HIV, ZIKV, H1N1, and malarial infection in the past presented a sturdy candidature for ameliorating the COVID-19 therapeutic doctrine. However, most of the deliberations for developing effective pharmaceuticals proved inconsequential, thereby encouraging the identification of new pathways, and novel pharmaceuticals for capping the COVID-19 infection. The COVID-19 contagion encompasses a burst release of the cytokines that increase the severity of the infection mainly due to heightened immunopathogenicity. The pro-inflammatory metabolites, COX-2, cPLA2, and 5-LOX enzymes involved in their generation, and the substrates that instigate the origination of the innate inflammatory response therefore play an important role in intensifying and worsening of the tissue morbidity related to the coronavirus infection. The deployment of representative drugs for inhibiting these overexpressed immunogenic pathways in the tissues invaded by coronaviruses has been a matter of debate since the inception of the pandemic. The effectiveness of NSAIDs such as Aspirin, Indomethacin, Diclofenac, and Celecoxib in COVID-19 coagulopathy, discouraging the SARS viral replication, the inflammasome deactivation, and synergistic inhibition of H5N1 viral infection with representative antiviral drugs respectively, have provided a silver lining in adjuvant COVID-19 therapy. Since the anti-inflammatory NSAIDs and COXIBs mainly function by reversing the COX-2 overexpression to modulate the overproduction of pro-inflammatory cytokines and chemokines, these drugs present a robust treatment option for COVID-19 infection. This commentary succinctly highlights the various claims that support the status of immunomodulatory NSAIDs, and COXIBs in the adjuvant COVID-19 therapy.


Asunto(s)
COVID-19/enzimología , Factores Inmunológicos/uso terapéutico , Prostaglandina-Endoperóxido Sintasas/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Quimioterapia Adyuvante/métodos , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Humanos , Factores Inmunológicos/farmacología , Prostaglandina-Endoperóxido Sintasas/efectos de los fármacos , Prostaglandina-Endoperóxido Sintasas/fisiología , Tratamiento Farmacológico de COVID-19
10.
Curr Top Med Chem ; 21(7): 571-596, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33463470

RESUMEN

Even after one year of its first outbreak reported in China, the coronavirus disease 2019 (COVID-19) pandemic is still sweeping the World, causing serious infections and claiming more fatalities. COVID-19 is caused by the novel coronavirus SARS-CoV-2, which belongs to the genus Betacoronavirus (ß-CoVs), which is of greatest clinical importance since it contains many other viruses that cause respiratory disease in humans, including OC43, HKU1, SARS-CoV, and MERS. The spike (S) glycoprotein of ß-CoVs is a key virulence factor in determining disease pathogenesis and host tropism, and it also mediates virus binding to the host's receptors to allow viral entry into host cells, i.e., the first step in virus lifecycle. Viral entry inhibitors are considered promising putative drugs for COVID-19. Herein, we mined the biomedical literature for viral entry inhibitors of other coronaviruses, with special emphasis on ß-CoVs entry inhibitors. We also outlined the structural features of SARS-CoV-2 S protein and how it differs from other ß-CoVs to better understand the structural determinants of S protein binding to its human receptor (ACE2). This review highlighted several promising viral entry inhibitors as potential treatments for COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Antivirales/química , Inhibidores de Proteasas/química , Receptores Virales/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/aislamiento & purificación , Antivirales/farmacología , COVID-19/enzimología , COVID-19/virología , Catepsina L/antagonistas & inhibidores , Catepsina L/química , Catepsina L/genética , Catepsina L/metabolismo , Expresión Génica , Humanos , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Plantas Medicinales/química , Inhibidores de Proteasas/aislamiento & purificación , Inhibidores de Proteasas/farmacología , Unión Proteica , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/farmacología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Relación Estructura-Actividad , Tratamiento Farmacológico de COVID-19
11.
J Med Chem ; 63(22): 13258-13265, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32692176

RESUMEN

Cathepsin C (CatC) is a cysteine dipeptidyl aminopeptidase that activates most of tissue-degrading elastase-related serine proteases. Thus, CatC appears as a potential therapeutic target to impair protease-driven tissue degradation in chronic inflammatory and autoimmune diseases. A depletion of proinflammatory elastase-related proteases in neutrophils is observed in patients with CatC deficiency (Papillon-Lefèvre syndrome). To address and counterbalance unwanted effects of elastase-related proteases, chemical inhibitors of CatC are being evaluated in preclinical and clinical trials. Neutrophils may contribute to the diffuse alveolar inflammation seen in acute respiratory distress syndrome (ARDS) which is currently a growing challenge for intensive care units due to the outbreak of the COVID-19 pandemic. Elimination of elastase-related neutrophil proteases may reduce the progression of lung injury in these patients. Pharmacological CatC inhibition could be a potential therapeutic strategy to prevent the irreversible pulmonary failure threatening the life of COVID-19 patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Catepsina C/antagonistas & inhibidores , Pulmón/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Animales , COVID-19/enzimología , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos , Pulmón/inmunología , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/enzimología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/uso terapéutico , Síndrome de Dificultad Respiratoria/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA