Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 26(8): 7821-7839, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30680683

RESUMEN

Arsenic (As) is the most hazardous soil contaminant, which inactivates metabolic enzymes and restrains plant growth. To withstand As stress conditions, use of some alleviative tools, such as arbuscular mycorrhizal (AM) fungi and silicon (Si), has gained importance. Therefore, the present study evaluated comparative and interactive effects of Si and arbuscular mycorrhiza-Rhizophagus irregularis on phytotoxicity of arsenate (As V) and arsenite (As III) on plant growth, ROS generation, and antioxidant defense responses in pigeonpea genotypes (Tolerant-Pusa 2002; Sensitive-Pusa 991). Roots of As III treated plants accumulated significantly higher total As than As V supplemented plants, more in Pusa 991 than Pusa 2002, which corresponded to proportionately decreased plant growth, root to biomass ratio, and oxidative burst. Although Si nutrition and AM inoculations improved plant growth by significantly reducing As uptake and the resultant oxidative burst, AM was relatively more efficient in upregulating enzymatic and non-enzymatic antioxidant defense responses as well as ascorbate-glutathione pathway when compared with Si. Pusa 2002 was more receptive to Si nourishment due to its ability to establish more efficient mycorrhizal symbiosis, which led to higher Si uptake and lower As concentrations. Moreover, +Si+AM bestowed better metalloid resistance by further reducing ROS and strengthening antioxidants. Results demonstrated that the genotype with more efficient AM symbiosis in As-contaminated soils could accrue higher benefits of Si fertilization in terms of metalloid tolerance in pigeonpea.


Asunto(s)
Arsénico/toxicidad , Cajanus/fisiología , Micorrizas/fisiología , Silicio/metabolismo , Contaminantes del Suelo/toxicidad , Vanadio/toxicidad , Antioxidantes/metabolismo , Arseniatos , Arsenitos , Ácido Ascórbico , Biomasa , Genotipo , Glomeromycota , Glutatión , Desarrollo de la Planta , Raíces de Plantas , Simbiosis
2.
Theor Appl Genet ; 131(8): 1605-1614, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29705915

RESUMEN

KEY MESSAGE: We report molecular mapping and inheritance of restoration of fertility (Rf) in A4 hybrid system in pigeonpea. We have also developed PCR-based markers amenable to low-cost genotyping to identify fertility restorer lines. Commercial hybrids in pigeonpea are based on A4 cytoplasmic male sterility (CMS) system, and their fertility restoration is one of the key prerequisites for breeding. In this context, an effort has been made to understand the genetics and identify quantitative trait loci (QTL) associated with restoration of fertility (Rf). One F2 population was developed by crossing CMS line (ICPA 2039) with fertility restorer line (ICPL 87119). Genetic analysis has shown involvement of two dominant genes in regulation of restoration of fertility. In parallel, the genotyping-by-sequencing (GBS) approach has generated ~ 33 Gb data on the F2 population. GBS data have provided 2457 single nucleotide polymorphism (SNPs) segregating across the mapping population. Based on these genotyping data, a genetic map has been developed with 306 SNPs covering a total length 981.9 cM. Further QTL analysis has provided the region flanked by S8_7664779 and S8_6474381 on CcLG08 harboured major QTL explained up to 28.5% phenotypic variation. Subsequently, sequence information within the major QTLs was compared between the maintainer and the restorer lines. From this sequence information, we have developed two PCR-based markers for identification of restorer lines from non-restorer lines and validated them on parental lines of hybrids as well as on another F2 mapping population. The results obtained in this study are expected to enhance the efficiency of selection for the identification of restorer lines in hybrid breeding and may reduce traditional time-consuming phenotyping activities.


Asunto(s)
Cajanus/genética , Mapeo Cromosómico , Genes Dominantes , Genes de Plantas , Infertilidad Vegetal/genética , Sitios de Carácter Cuantitativo , Cajanus/fisiología , Marcadores Genéticos , Genotipo , Patrón de Herencia , Fitomejoramiento , Polen/genética , Polen/fisiología , Polimorfismo de Nucleótido Simple
3.
Int J Phytoremediation ; 14(1): 62-74, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22567695

RESUMEN

Cadmium (Cd) causes oxidative damage and affects nodulation and nitrogen fixation process of legumes. Arbuscular mycorrhizal (AM) fungi have been demonstrated to alleviate heavy metal stress of plants. The present study was conducted to assess role of AM in alleviating negative effects of Cd on nodule senescence in Cajanus cajan genotypes differing in their metal tolerance. Fifteen day-old plants were subjected to Cd treatments--25 mg and 50 mg Cd per kg dry soil and were grown with and without Glomus mosseae. Cd treatments led to a decline in mycorrhizal infection (MI), nodule number and dry weights which was accompanied by reductions in leghemoglobin content, nitrogenase activity, organic acid contents. Cd supply caused a marked decrease in nitrogen (N), phosphorus (P), and iron (Fe) contents. Conversely, Cd increased membrane permeability, thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and Cd contents in nodules. AM inoculations were beneficial in reducing the above mentioned harmful effects of Cd and significantly improved nodule functioning. Activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) increased markedly in nodules of mycorrhizal-stressed plants. The negative effects of Cd were genotype and concentration dependent.


Asunto(s)
Cadmio/toxicidad , Cajanus/efectos de los fármacos , Glomeromycota/efectos de los fármacos , Micorrizas/efectos de los fármacos , Antioxidantes/metabolismo , Cadmio/metabolismo , Cajanus/enzimología , Cajanus/microbiología , Cajanus/fisiología , Catalasa/efectos de los fármacos , Catalasa/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Senescencia Celular/fisiología , Glomeromycota/enzimología , Glomeromycota/fisiología , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Hierro/análisis , Hierro/metabolismo , Malatos/análisis , Malatos/metabolismo , Micorrizas/enzimología , Micorrizas/fisiología , Nitrógeno/análisis , Nitrógeno/metabolismo , Fijación del Nitrógeno , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/efectos de los fármacos , Peroxidasa/metabolismo , Fósforo/análisis , Fósforo/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/microbiología , Brotes de la Planta/fisiología , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Semillas/efectos de los fármacos , Semillas/microbiología , Semillas/fisiología , Superóxido Dismutasa/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA