Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Calcif Tissue Int ; 103(2): 111-124, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29445837

RESUMEN

Alkaline phosphatases (APs) remove the phosphate (dephosphorylation) needed in multiple metabolic processes (from many molecules such as proteins, nucleotides, or pyrophosphate). Therefore, APs are important for bone mineralization but paradoxically they can also be deleterious for other processes, such as vascular calcification and the increasingly known cross-talk between bone and vessels. A proper balance between beneficial and harmful activities is further complicated in the context of chronic kidney disease (CKD). In this narrative review, we will briefly update the complexity of the enzyme, including its different isoforms such as the bone-specific alkaline phosphatase or the most recently discovered B1x. We will also analyze the correlations and potential discrepancies with parathyroid hormone and bone turnover and, most importantly, the valuable recent associations of AP's with cardiovascular disease and/or vascular calcification, and survival. Finally, a basic knowledge of the synthetic and degradation pathways of APs promises to open new therapeutic strategies for the treatment of the CKD-Mineral and Bone Disorder (CKD-MBD) in the near future, as well as for other processes such as sepsis, acute kidney injury, inflammation, endothelial dysfunction, metabolic syndrome or, in diabetes, cardiovascular complications. However, no studies have been done using APs as a primary therapeutic target for clinical outcomes, and therefore, AP's levels cannot yet be used alone as an isolated primary target in the treatment of CKD-MBD. Nonetheless, its diagnostic and prognostic potential should be underlined.


Asunto(s)
Fosfatasa Alcalina/fisiología , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/enzimología , Animales , Remodelación Ósea , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/complicaciones , Difosfatos/metabolismo , Humanos , Inflamación , Isoenzimas , Glándulas Paratiroides/fisiología , Hormona Paratiroidea/metabolismo , Fosfatos , Fósforo/metabolismo , Modelos de Riesgos Proporcionales , Resultado del Tratamiento , Calcificación Vascular/complicaciones , Calcificación Vascular/enzimología
2.
J Biol Inorg Chem ; 19(3): 375-88, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24390545

RESUMEN

Vascular calcification is a prominent feature of many diseases, including atherosclerosis, and it has emerged as a powerful predictor of cardiovascular morbidity and mortality. A number of studies have examined the association between selenium and risk of cardiovascular diseases, but little is known about the role of selenium in vascular calcification. To determine the role of selenium in regulating vascular calcification, we assessed the effect of sodium selenite on oxidative-stress-enhanced vascular smooth muscle cell (VSMC) calcification and the underlying mechanism. Oxidative stress induced by xanthine/xanthine oxidase increased apoptosis, as determined by Hoechst 33342 staining and annexin V/propidium iodide staining, and it enhanced osteoblastic differentiation and calcification of VSMCs, on the basis of alkaline phosphatase activity, the expression of Runx2 and type I collagen, and calcium deposition. These effects of oxidative stress were significantly inhibited by selenite. The following processes may explain the inhibitory effects of selenite: (1) selenite significantly suppressed oxidative stress, as evidenced by the decrease of the oxidative status of the cell and lipid peroxidation levels, as well as by the increase of the total protein thiol content and the activity of the antioxidant selenoenzyme glutathione peroxidase; (2) selenite significantly attenuated oxidative-stress-induced activation of the phosphatidylinositol 3-kinase/AKT and extracellular-signal-regulated kinase signaling pathways, resulting in decreased osteoblastic differentiation of VSMCs; (3) selenite significantly inhibited oxidative-stress-activated endoplasmic reticulum stress, thereby leading to decreased apoptosis. Our results suggest a potential role of selenium in the prevention of vascular calcification, which may provide more mechanistic insights into the relationship between selenium and cardiovascular diseases.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Selenio/farmacología , Calcificación Vascular/enzimología , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Estrés del Retículo Endoplásmico/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/enzimología , Proteína Oncogénica v-akt/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Ratas , Ratas Sprague-Dawley , Selenio/uso terapéutico , Calcificación Vascular/prevención & control
3.
Methods Mol Biol ; 1053: 125-34, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23860651

RESUMEN

Here, we describe methods to evaluate the ability of small molecules inhibitors of TNAP and PHOSPHO1 in preventing mineralization of primary cultures of murine vascular smooth muscle cells. The procedures are also applicable to primary cultures of calvarial osteoblasts. These cell-based assays are used to complement kinetic testing during structure-activity relationship studies aimed at improving scaffolds in the generation of pharmaceuticals for the treatment for medial vascular calcification.


Asunto(s)
Fosfatasa Alcalina/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Calcificación Vascular/enzimología , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Ratones , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Cráneo/citología , Relación Estructura-Actividad
4.
Dis Model Mech ; 6(5): 1227-35, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23798568

RESUMEN

Generalized arterial calcification of infancy (GACI), an autosomal recessive disorder, is characterized by early mineralization of blood vessels, often diagnosed by prenatal ultrasound and usually resulting in demise during the first year of life. It is caused in most cases by mutations in the ENPP1 gene, encoding an enzyme that hydrolyzes ATP to AMP and inorganic pyrophosphate, the latter being a powerful anti-mineralization factor. Recently, a novel mouse phenotype was recognized as a result of ENU mutagenesis - those mice developed stiffening of the joints, hence the mutant mouse was named 'ages with stiffened joints' (asj). These mice harbor a missense mutation, p.V246D, in the Enpp1 gene. Here we demonstrate that the mutant ENPP1 protein is largely absent in the liver of asj mice, and the lack of enzymatic activity results in reduced inorganic pyrophosphate (PPi) levels in the plasma, accompanied by extensive mineralization of a number of tissues, including arterial blood vessels. The progress of mineralization is highly dependent on the mineral composition of the diet, with significant shortening of the lifespan on a diet enriched in phosphorus and low in magnesium. These results suggest that the asj mouse can serve as an animal model for GACI.


Asunto(s)
Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Calcificación Vascular/enzimología , Calcificación Vascular/patología , Animales , Secuencia de Bases , Calcificación Fisiológica , Calcio/sangre , Calcio/metabolismo , Análisis Mutacional de ADN , Dieta , Difosfatos/sangre , Modelos Animales de Enfermedad , Técnicas de Genotipaje , Estimación de Kaplan-Meier , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Mutantes , Datos de Secuencia Molecular , Fenotipo , Hidrolasas Diéster Fosfóricas/genética , Fósforo/sangre , Pirofosfatasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espectrometría por Rayos X , Tomografía Computarizada por Rayos X , Calcificación Vascular/fisiopatología , Vibrisas/diagnóstico por imagen
5.
Arterioscler Thromb Vasc Biol ; 33(1): 43-51, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23117658

RESUMEN

OBJECTIVE: In vitro, transglutaminase-2 (TG2)-mediated activation of the ß-catenin signaling pathway is central in warfarin-induced calcification, warranting inquiry into the importance of this signaling axis as a target for preventive therapy of vascular calcification in vivo. METHODS AND RESULTS: The adverse effects of warfarin-induced elastocalcinosis in a rat model include calcification of the aortic media, loss of the cellular component in the vessel wall, and isolated systolic hypertension, associated with accumulation and activation of TG2 and activation of ß-catenin signaling. These effects of warfarin can be completely reversed by intraperitoneal administration of the TG2-specific inhibitor KCC-009 or dietary supplementation with the bioflavonoid quercetin, known to inhibit ß-catenin signaling. Our study also uncovers a previously uncharacterized ability of quercetin to inhibit TG2. Quercetin reversed the warfarin-induced increase in systolic pressure, underlying the functional consequence of this treatment. Molecular analysis shows that quercetin diet stabilizes the phenotype of smooth muscle and prevents its transformation into osteoblastic cells. CONCLUSIONS: Inhibition of the TG2/ß-catenin signaling axis seems to prevent warfarin-induced elastocalcinosis and to control isolated systolic hypertension.


Asunto(s)
Enfermedades de la Aorta/prevención & control , Inhibidores Enzimáticos/farmacología , Proteínas de Unión al GTP/antagonistas & inhibidores , Isoxazoles/farmacología , Músculo Liso Vascular/efectos de los fármacos , Quercetina/farmacología , Transglutaminasas/antagonistas & inhibidores , Calcificación Vascular/prevención & control , Animales , Aorta/efectos de los fármacos , Aorta/enzimología , Aorta/patología , Enfermedades de la Aorta/inducido químicamente , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/fisiopatología , Presión Sanguínea/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Activación Enzimática , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Osteogénesis/efectos de los fármacos , Fosforilación , Proteína Glutamina Gamma Glutamiltransferasa 2 , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transglutaminasas/genética , Transglutaminasas/metabolismo , Calcificación Vascular/inducido químicamente , Calcificación Vascular/enzimología , Calcificación Vascular/genética , Calcificación Vascular/patología , Calcificación Vascular/fisiopatología , Warfarina , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA