Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 578(7795): 409-412, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32076219

RESUMEN

Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era1. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate2,3. Carbon-14 in CH4 (14CH4) can be used to distinguish between fossil (14C-free) CH4 emissions and contemporaneous biogenic sources; however, poorly constrained direct 14CH4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century4,5. Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)2,3 between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year6,7. Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago8, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core 14CH4 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions9,10.


Asunto(s)
Atmósfera/química , Combustibles Fósiles/historia , Combustibles Fósiles/provisión & distribución , Actividades Humanas/historia , Metano/análisis , Metano/historia , Biomasa , Radioisótopos de Carbono , Carbón Mineral/historia , Carbón Mineral/provisión & distribución , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Cubierta de Hielo/química , Metano/química , Gas Natural/historia , Gas Natural/provisión & distribución , Petróleo/historia , Petróleo/provisión & distribución
4.
Sci Rep ; 8(1): 17380, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30478380

RESUMEN

Ocean warming (OW) and acidification (OA) are key features of global change and are predicted to have negative consequences for marine species and ecosystems. At a smaller scale increasing oil and gas activities at northern high latitudes could lead to greater risk of petroleum pollution, potentially exacerbating the effects of such global stressors. However, knowledge of combined effects is limited. This study employed a scenario-based, collapsed design to investigate the impact of one local acute stressor (North Sea crude oil) and two chronic global drivers (pH for OA and temperature for OW), alone or in combination on aspects of the biology of larval stages of two key invertebrates: the northern shrimp (Pandalus borealis) and the green sea urchin (Strongylocentrotus droebachiensis). Both local and global drivers had negative effects on survival, development and growth of the larval stages. These effects were species- and stage-dependent. No statistical interactions were observed between local and global drivers and the combined effects of the two drivers were approximately equal to the sum of their separate effects. This study highlights the importance of adjusting regulation associated with oil spill prevention to maximize the resilience of marine organisms to predicted future global conditions.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Calentamiento Global/prevención & control , Invertebrados/crecimiento & desarrollo , Contaminación por Petróleo/efectos adversos , Animales , Cambio Climático , Ecosistema , Concentración de Iones de Hidrógeno , Larva/crecimiento & desarrollo , Petróleo , Agua de Mar
6.
J Air Waste Manag Assoc ; 66(7): 643-54, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26962673

RESUMEN

UNLABELLED: A series of porous γ-Al2O3 materials was prepared by solution-combustion and ball-milling processes. The as-prepared powders were physicochemically characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 physisorption measurements and their performances in CO2 adsorption at different pressures (0.5 to 1.5 MPa) and temperatures (40 to 60ºC) were investigated. It was found that γ-Al2O3 synthesized by the solution-combustion process and ball milled at 10 hr exhibited the best CO2 adsorption performance at 60ºC and 1.5 MPa, achieving a maximum of 1.94 mmol/g compared to the four studied materials, as a result of their interesting microstructure and surface properties (i.e., nanocrystallinity, specific surface area, narrow pore size distribution, and large total pore volume). Our study shows that the γ-Al2O3 prepared by solution combustion followed by ball milling presents a fairly good potential adsorbent for efficient CO2 capture. IMPLICATIONS: In this work, γ-Al2O3 materials were successfully obtained by solution combustion and modified via ball milling. These improved materials were systematically investigated as solid adsorbents of accessible surface areas, large pore volumes, and narrow pore size distribution for the CO2 capture. These studied solid adsorbents can provide an additional contribution and effort to develop an efficient CO2 capture method as means of alleviating the serious global warning problem.


Asunto(s)
Contaminantes Atmosféricos/química , Óxido de Aluminio/química , Dióxido de Carbono/química , Secuestro de Carbono , Adsorción , Calentamiento Global/prevención & control , Microscopía Electrónica de Rastreo , Porosidad , Polvos , Propiedades de Superficie , Temperatura , Difracción de Rayos X
8.
Nature ; 517(7533): 187-90, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25567285

RESUMEN

Policy makers have generally agreed that the average global temperature rise caused by greenhouse gas emissions should not exceed 2 °C above the average global temperature of pre-industrial times. It has been estimated that to have at least a 50 per cent chance of keeping warming below 2 °C throughout the twenty-first century, the cumulative carbon emissions between 2011 and 2050 need to be limited to around 1,100 gigatonnes of carbon dioxide (Gt CO2). However, the greenhouse gas emissions contained in present estimates of global fossil fuel reserves are around three times higher than this, and so the unabated use of all current fossil fuel reserves is incompatible with a warming limit of 2 °C. Here we use a single integrated assessment model that contains estimates of the quantities, locations and nature of the world's oil, gas and coal reserves and resources, and which is shown to be consistent with a wide variety of modelling approaches with different assumptions, to explore the implications of this emissions limit for fossil fuel production in different regions. Our results suggest that, globally, a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of 2 °C. We show that development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming to 2 °C. Our results show that policy makers' instincts to exploit rapidly and completely their territorial fossil fuels are, in aggregate, inconsistent with their commitments to this temperature limit. Implementation of this policy commitment would also render unnecessary continued substantial expenditure on fossil fuel exploration, because any new discoveries could not lead to increased aggregate production.


Asunto(s)
Combustibles Fósiles/provisión & distribución , Combustibles Fósiles/estadística & datos numéricos , Geografía , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Regiones Árticas , Atmósfera/química , Dióxido de Carbono/análisis , Carbón Mineral/economía , Carbón Mineral/estadística & datos numéricos , Carbón Mineral/provisión & distribución , Bases de Datos Factuales , Combustibles Fósiles/economía , Efecto Invernadero/prevención & control , Efecto Invernadero/estadística & datos numéricos , Modelos Teóricos , Yacimiento de Petróleo y Gas , Factores de Tiempo
15.
Waste Manag ; 29(10): 2759-64, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19560334

RESUMEN

Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH(4)) emission resulting from rice cultivation. In laboratory incubations, CH(4) production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt(-1)), while observed CO(2) production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH(4) emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha(-1)) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha(-1) application level of the amendments, total seasonal CH(4) emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH(4) production rates as well as total seasonal CH(4) flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH(4) emissions as well as sustaining rice productivity.


Asunto(s)
Agricultura/métodos , Calentamiento Global/prevención & control , Metano/química , Oryza/crecimiento & desarrollo , Suelo/análisis , Residuos/análisis , Sulfato de Calcio , Carbono , Ceniza del Carbón , Metano/análisis , Material Particulado , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA