Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 718
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 208: 108522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38493663

RESUMEN

In staple crops, such as rice (Oryza sativa L.), pollen plays a crucial role in seed production. However, the molecular mechanisms underlying rice pollen germination and tube growth remain underexplored. Notably, we recently uncovered the redundant expression and mutual interaction of two rice genes encoding cyclic nucleotide-gated channels (CNGCs), OsCNGC4 and OsCNGC5, in mature pollen. Building on these findings, the current study focused on clarifying the functional roles of these two genes in pollen germination and tube growth. To overcome functional redundancy, we produced gene-edited rice plants with mutations in both genes using the CRISPR-Cas9 system. The resulting homozygous OsCNGC4 and OsCNGC5 gene-edited mutants (oscngc4/5) exhibited significantly lower pollen germination rates than the wild type (WT), along with severely reduced fertility. Transcriptome analysis of the double oscngc4/5 mutant revealed downregulation of genes related to receptor kinases, transporters, and cell wall metabolism. To identify the direct regulators of OsCNGC4, which form a heterodimer with OsCNGC5, we screened a yeast two-hybrid library containing rice cDNAs from mature anthers. Subsequently, we identified two calmodulin isoforms (CaM1-1 and CaM1-2), NETWORKED 2 A (NET2A), and proline-rich extension-like receptor kinase 13 (PERK13) proteins as interactors of OsCNGC4, suggesting its roles in regulating Ca2+ channel activity and F-actin organization. Overall, our results suggest that OsCNGC4 and OsCNGC5 may play critical roles in pollen germination and elongation by regulating the Ca2+ gradient in growing pollen tubes.


Asunto(s)
Oryza , Oryza/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Germinación/genética , Polen/metabolismo , Tubo Polínico/genética , Calmodulina/genética , Calmodulina/metabolismo , Fosfotransferasas , Nucleótidos Cíclicos/metabolismo
2.
Acupunct Med ; 42(1): 23-31, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38126262

RESUMEN

BACKGROUND: This study aimed to investigate the effects of electroacupuncture (EA) on cognitive recovery and synaptic remodeling in a rat model of middle cerebral artery occlusion (MCAO) followed by reperfusion and explore the possible mechanism. METHOD: Focal cerebral ischemia was modeled in healthy adult Sprague-Dawley rats by MCAO. The MCAO rats were classified into four groups: sham, MCAO, MCAO + GB20 (receiving EA at GB20) and MCAO + NA (receiving EA at a "non-acupoint" location not corresponding to any traditional acupuncture point location about 10 mm above the iliac crest). Neurological deficit scores and behavior were assessed before and during the treatment. After intervention for 7 days, the hippocampus was dissected to analyze growth-associated protein (GAP)-43, synaptophysin (SYN) and postsynaptic density protein (PSD)-95 expression levels by Western blotting. Bioinformatic analysis and primary hippocampal neurons with calcium-voltage gated channel subunit alpha 1B (CACNA1B) gene overexpression were used to screen the target genes for EA against MCAO. RESULTS: Significant amelioration of neurological deficits and learning/memory were found in MCAO + GB20 rats compared with MCAO or MCAO + NA rats. Protein levels of GAP-43, SYN and PSD-95 were significantly improved in MCAO + GB20-treated rats together with an increase in the number of synapses in the hippocampal CA1 region. CACNA1B appeared to be a target gene of EA in MCAO. There were increased mRNA levels of CACNA1B, calmodulin (CaM), Ca2+/calmodulin-dependent protein kinase type II (CaMKII) and cyclic adenosine monophosphate response element binding (CREB) and increased phosphorylation of CaM, CaMKII and CREB in the hippocampal region in MCAO + GB20 versus MCAO and MCAO + NA groups. CACNA1B overexpression modulated expression of the CaM-CaMKII-CREB axis. CONCLUSION: EA treatment at GB20 may ameliorate the negative effects of MCAO on cognitive function in rats by enhancing synaptic plasticity. EA treatment at GB20 may exert this neuroprotective effect by regulating the CACNA1B-CaM-CaMKII-CREB axis.


Asunto(s)
Isquemia Encefálica , Electroacupuntura , Daño por Reperfusión , Ratas , Animales , Ratas Sprague-Dawley , Calmodulina/metabolismo , Calmodulina/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/farmacología , Cognición , Transducción de Señal , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/terapia , Plasticidad Neuronal
3.
Planta ; 258(6): 114, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37943407

RESUMEN

MAIN CONCLUSION: Exogenous brassinolide can activate the expression of key genes in the calcium signalling pathway to enhance cold resistance of tea plants. Brassinolide is an endogenous sterol phytohormone containing multiple hydroxyl groups that has the important function of improving plant cold resistance and alleviating freeze damage. To explore the molecular mechanism of how brassinolide improves the cold resistance of tea plants, "Qiancha 1" was used as the material, and the method of spraying brassinolide on the leaves was adopted to explore its effects on the tea plants under 4 °C low-temperature treatment. The results showed that brassinolide can significantly increase the protective enzyme activity of tea plants under cold stress and reduce cold damage. At the transcriptome level, brassinolide significantly enhanced the expression of key genes involved in calcium signal transduction, Calmodulin (CaM), Calcium-dependent protein kinase (CDPK), calcineurin B-like protein (CBL) and calmodulin-binding transcriptional activators (CAMTA), which then activated the downstream key genes transcriptional regulator CBF1 (CBF1) and transcription factor ICE1 (ICE1) during cold induction. Quantitative real-time PCR (qRT‒PCR) results showed that the expression of these genes was significantly induced after treatment with brassinolide, especially CaM and CBF1. When calcium signalling was inhibited, the upregulated expression of CBF1 and ICE1 disappeared, and when CAMTA was knocked down, the expression of other genes under cold stress was also significantly reduced. The above results indicate that brassinolide combined with the calcium signalling pathway can improve the cold resistance of tea plants. This study provides a new theoretical basis for the study of the cold resistance mechanism of brassinolide.


Asunto(s)
Calcio , Camellia sinensis , Camellia sinensis/genética , Calmodulina ,
4.
J Biol Chem ; 299(10): 105243, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690683

RESUMEN

Myosin-7a is an actin-based motor protein essential for vision and hearing. Mutations of myosin-7a cause type 1 Usher syndrome, the most common and severe form of deafblindness in humans. The molecular mechanisms that govern its mechanochemistry remain poorly understood, primarily because of the difficulty of purifying stable intact protein. Here, we recombinantly produce the complete human myosin-7a holoenzyme in insect cells and characterize its biochemical and motile properties. Unlike the Drosophila ortholog that primarily associates with calmodulin (CaM), we found that human myosin-7a utilizes a unique combination of light chains including regulatory light chain, CaM, and CaM-like protein 4. Our results further reveal that CaM-like protein 4 does not function as a Ca2+ sensor but plays a crucial role in maintaining the lever arm's structural-functional integrity. Using our recombinant protein system, we purified two myosin-7a splicing isoforms that have been shown to be differentially expressed along the cochlear tonotopic axis. We show that they possess distinct mechanoenzymatic properties despite differing by only 11 amino acids at their N termini. Using single-molecule in vitro motility assays, we demonstrate that human myosin-7a exists as an autoinhibited monomer and can move processively along actin when artificially dimerized or bound to cargo adaptor proteins. These results suggest that myosin-7a can serve multiple roles in sensory systems such as acting as a transporter or an anchor/force sensor. Furthermore, our research highlights that human myosin-7a has evolved unique regulatory elements that enable precise tuning of its mechanical properties suitable for mammalian auditory functions.


Asunto(s)
Actinas , Trastornos Sordoceguera , Miosina VIIa , Humanos , Actinas/metabolismo , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Miosina VIIa/genética , Miosina VIIa/metabolismo , Calmodulina/metabolismo , Proteínas de Unión al Calcio/metabolismo
5.
Biomolecules ; 13(4)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189425

RESUMEN

An increasing number of plant-based herbal treatments, dietary supplements, medical foods and nutraceuticals and their component phytochemicals are used as alternative treatments to prevent or slow the onset and progression of Alzheimer's disease. Their appeal stems from the fact that no current pharmaceutical or medical treatment can accomplish this. While a handful of pharmaceuticals are approved to treat Alzheimer's, none has been shown to prevent, significantly slow or stop the disease. As a result, many see the appeal of alternative plant-based treatments as an option. Here, we show that many phytochemicals proposed or used as Alzheimer's treatments share a common theme: they work via a calmodulin-mediated mode of action. Some phytochemicals bind to and inhibit calmodulin directly while others bind to and regulate calmodulin-binding proteins, including Aß monomers and BACE1. Phytochemical binding to Aß monomers can prevent the formation of Aß oligomers. A limited number of phytochemicals are also known to stimulate calmodulin gene expression. The significance of these interactions to amyloidogenesis in Alzheimer's disease is reviewed.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Calmodulina/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas de Unión a Calmodulina , Ácido Aspártico Endopeptidasas/genética , Fitoquímicos/farmacología , Péptidos beta-Amiloides/metabolismo
6.
J Biol Chem ; 299(2): 102906, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642185

RESUMEN

Myosin-19 (Myo19) controls the size, morphology, and distribution of mitochondria, but the underlying role of Myo19 motor activity is unknown. Complicating mechanistic in vitro studies, the identity of the light chains (LCs) of Myo19 remains unsettled. Here, we show by coimmunoprecipitation, reconstitution, and proteomics that the three IQ motifs of human Myo19 expressed in Expi293 human cells bind regulatory light chain (RLC12B) and calmodulin (CaM). We demonstrate that overexpression of Myo19 in HeLa cells enhances the recruitment of both Myo19 and RLC12B to mitochondria, suggesting cellular association of RLC12B with the motor. Further experiments revealed that RLC12B binds IQ2 and is flanked by two CaM molecules. In vitro, we observed that the maximal speed (∼350 nm/s) occurs when Myo19 is supplemented with CaM, but not RLC12B, suggesting maximal motility requires binding of CaM to IQ-1 and IQ-3. The addition of calcium slowed actin gliding (∼200 nm/s) without an apparent effect on CaM affinity. Furthermore, we show that small ensembles of Myo19 motors attached to quantum dots can undergo processive runs over several microns, and that calcium reduces the attachment frequency and run length of Myo19. Together, our data are consistent with a model where a few single-headed Myo19 molecules attached to a mitochondrion can sustain prolonged motile associations with actin in a CaM- and calcium-dependent manner. Based on these properties, we propose that Myo19 can function in mitochondria transport along actin filaments, tension generation on multiple randomly oriented filaments, and/or pushing against branched actin networks assembled near the membrane surface.


Asunto(s)
Calmodulina , Miosinas , Humanos , Actinas/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Células HeLa , Miosinas/metabolismo
7.
Phytopathology ; 113(3): 528-538, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36173283

RESUMEN

Hormones play an important role in plant disease resistance and defense. Transcriptome data of late blight-resistant potato genotype SD20 treated by ethylene (ET), jasmonate (JA), salicylic acid (SA), and Phytophthora infestans CN152 was analyzed to assess the role of the ET/JA/SA regulatory network in plant disease resistance and defense and predict key resistant genes. The results show that there was significant crossover of differentially expressed genes among all treatments, and common and specific plant disease interaction genes for the ET, JA, and SA treatments were differentially expressed in the CN152 treatment. The resistance and defense genes of the potato genotype SD20 could be induced to regulate metabolic and hormone signaling pathways by alternative splicing in all treatments. Further analysis found that JA and ET pathways can work together synergistically. JA/ET and SA pathways antagonize each other to initiate the expression of calmodulin-domain protein kinases and calmodulin/calmodulin-like and RPM1-interacting protein 4 genes, and they activate HSP-mediated hypersensitive response and defense-related genes. Meanwhile, nine defense genes, including wound-responsive AP2-like factor, glutathione-s-transferase, serine/threonine-protein kinase BRI1, and Avr9/Cf-9 rapidly elicited protein genes, were obtained using weighted gene coexpression network analysis, which provided reliable targets for functional verification. This study provides a theoretical reference for the comprehensive application of plant hormones to improve resistance to potato late blight disease.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Reguladores del Crecimiento de las Plantas/farmacología , Solanum tuberosum/genética , Resistencia a la Enfermedad/genética , Calmodulina/genética , Calmodulina/metabolismo , Enfermedades de las Plantas/genética , Genotipo , Phytophthora infestans/genética , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo
8.
Inorg Chem ; 61(50): 20480-20492, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36469451

RESUMEN

As an alpha emitter and chemical toxicant, uranium toxicity in living organisms is driven by its molecular interactions. It is therefore essential to identify main determinants of uranium affinity for proteins. Others and we showed that introducing a phosphoryl group in the coordination sphere of uranyl confers a strong affinity of proteins for uranyl. In this work, using calmodulin site 1 as a template, we modulate the structural organization of a metal-binding loop comprising carboxylate and/or carbonyl ligands and reach affinities for uranyl comparable to that provided by introducing a strong phosphoryl ligand. Shortening the metal binding loop of calmodulin site 1 from 12 to 10 amino acids in CaMΔ increases the uranyl-binding affinity by about 2 orders of magnitude to log KpH7 = 9.55 ± 0.11 (KdpH7 = 280 ± 60 pM). Structural analysis by FTIR, XAS, and molecular dynamics simulations suggests an optimized coordination of the CaMΔ-uranyl complex involving bidentate and monodentate carboxylate groups in the uranyl equatorial plane. The main role of this coordination sphere in reaching subnanomolar dissociation constants for uranyl is supported by similar uranyl affinities obtained in a cyclic peptide reproducing CaMΔ binding loop. In addition, CaMΔ presents a uranyl/calcium selectivity of 107 that is even higher in the cyclic peptide.


Asunto(s)
Calmodulina , Uranio , Calmodulina/química , Calmodulina/metabolismo , Uranio/química , Calcio/metabolismo , Ligandos , Ácidos Carboxílicos/química , Péptidos Cíclicos/química
9.
Molecules ; 27(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36363988

RESUMEN

In the present study, we reported the interactions at the molecular level of a series of compounds called Bisindolylmaleimide, as potential inhibitors of the calmodulin protein. Bisindolylmaleimide compounds are drug prototypes derived from Staurosporine, an alkaloid with activity for cancer treatment. Bisindolylmaleimide compounds II, IV, VII, X, and XI, are proposed and reported as possible inhibitors of calmodulin protein for the first time. For the above, a biotechnological device was used (fluorescent biosensor hCaM M124C-mBBr) to directly determine binding parameters experimentally (Kd and stoichiometry) of these compounds, and molecular modeling tools (Docking, Molecular Dynamics, and Chemoinformatic Analysis) to carry out the theoretical studies and complement the experimental data. The results indicate that this compound binds to calmodulin with a Kd between 193-248 nM, an order of magnitude lower than most classic inhibitors. On the other hand, the theoretical studies support the experimental results, obtaining an acceptable correlation between the ΔGExperimental and ΔGTheoretical (r2 = 0.703) and providing us with complementary molecular details of the interaction between the calmodulin protein and the Bisindolylmaleimide series. Chemoinformatic analyzes bring certainty to Bisindolylmaleimide compounds to address clinical steps in drug development. Thus, these results make these compounds attractive to be considered as possible prototypes of new calmodulin protein inhibitors.


Asunto(s)
Biopelículas , Calmodulina , Calmodulina/química , Ligandos , Reactores Biológicos , Simulación de Dinámica Molecular , Unión Proteica
10.
Front Immunol ; 13: 996427, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248805

RESUMEN

Artemisia pollen is the major cause of seasonal allergic respiratory diseases in the northern hemisphere. About 28.57% of Artemisia allergic patients' IgE can recognize ArtCaM, a novel allergenic calmodulin from Artemisia identified in this study. These patients exhibited stronger allergic reactions and a longer duration of allergic symptoms. However, the signaling mechanism that triggers these allergic reactions is not fully understood. In this study, we found that extracellular ArtCaM directly induces the maturation of human dendritic cells (DCs), which is attributed to a series of Ca2+ relevant cascades, including Ca2+/NFAT/CaMKs. ArtCaM alone induces inflammatory response toward Th1, Th17, and Treg. Interestingly, a combination of ArtCaM and anti-ArtCaM IgE led to Th2 polarization. The putative mechanism is that anti-ArtCaM IgE partially blocks the ArtCaM-induced ERK signal, but does not affect Ca2+-dependent cascades. The crosstalk between ERK and Ca2+ signal primes DCs maturation and Th2 polarization. In summary, ArtCaM related to clinical symptoms when combined with anti-ArtCaM IgE, could be a novel allergen to activate DCs and promote Th2 polarization. Such findings provide mechanistic insights into Th2 polarization in allergic sensitization and pave the way for novel preventive and therapeutic strategies for efficient management of such pollen allergic disease.


Asunto(s)
Artemisia , Células Dendríticas , Hipersensibilidad , Células Th2 , Alérgenos , Calmodulina , Humanos , Inmunoglobulina E , Plantas , Polen
11.
Cell Physiol Biochem ; 56: 484-499, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36126285

RESUMEN

BACKGROUND/AIMS: In kidney, extracellular [Ca2+] can modulate intracellular [Ca2+] to control key cellular processes. Hence, extracellular [Ca2+] is normally maintained within narrow range. We tested effect of extracellular ATP on viability of human proximal (HK-2) cells at high calcium. Modulation of intracellular calcium was assessed by imaging cytosolic [Ca2+], and expression of calcium-binding proteins (CaBPs). We present an artificial intelligence enabled deep learning model for prediction of injury and protection against extracellular [Ca2+] in HK-2 cells. METHODS: HK-2 cells were cultured in calcium-free DMEM supplemented with CaCl2. Morphological changes were detected using light microscopy. Cell viability was determined using MTT Assay. Intracellular [Ca2+] was detected using fluorescence microscopy. For easy detection of HK-2 cells injury, we performed light microscopy image classification based on Convolutional Neural Network. Expression of CaBPs, p21, and Mcl-1 was measured using real-time PCR. RESULTS: We show decreased viability of HK-2 cells cultured in elevated calcium levels, which was prevented by adenosine triphosphate (ATP). Exposure of cells to elevated extracellular [Ca2+] correlated with increasing fluorescence of intracellular calcium indicator, which was attenuated in presence of ATP. Since features cannot be detected easily by human eyes, we propose a customized deep learning-based CNN model for classification of HK-2 cells injury by extracellular calcium with high accuracy of 98%. Our data demonstrated significant increase in mRNA levels of calmodulin, S100A8, S100A14 and CaBP28k, with elevated extracellular [Ca2+]. Expression of these genes was enhanced with ATP. CONCLUSION: The results suggest that ATP protects human proximal (HK-2) cells against elevated extracellular calcium levels. We present a CNN model as user friendly tool to study calcium dependent injury in (HK-2) cells. Finally, we show that ATP-mediated protection is correlated with enhanced expression of calcium-binding proteins.


Asunto(s)
Calcio , Aprendizaje Profundo , Adenosina Trifosfato/metabolismo , Inteligencia Artificial , Calcio/metabolismo , Cloruro de Calcio/metabolismo , Calmodulina/metabolismo , Humanos , Riñón/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , ARN Mensajero
12.
BMC Genomics ; 23(1): 667, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138347

RESUMEN

BACKGROUND: As a type of calmodulin binding protein, CAMTAs are widely involved in vegetative and reproductive processes as well as various hormonal and stress responses in plants. To study the functions of CAMTA genes in tea plants, we investigated bioinformatics analysis and performed qRT-PCR analysis of the CAMTA gene family by using the genomes of 'ShuChaZao' tea plant cultivar. RESULTS: In this study, 6 CsCAMTAs were identified from tea plant genome. Bioinformatics analysis results showed that all CsCAMTAs contained six highly conserved functional domains. Tissue-specific analysis results found that CsCAMTAs played great roles in mediating tea plant aging and flowering periods. Under hormone and abiotic stress conditions, most CsCAMTAs were upregulated at different time points under different treatment conditions. In addition, the expression levels of CsCAMTA1/3/4/6 were higher in cold-resistant cultivar 'LongJing43' than in the cold-susceptible cultivar 'DaMianBai' at cold acclimation stage, while CsCAMTA2/5 showed higher expression levels in 'DaMianBai' than in 'LongJing43' during entire cold acclimation periods. CONCLUSIONS: In brief, the present results revealed that CsCAMTAs played great roles in tea plant growth, development and stress responses, which laid the foundation for deeply exploring their molecular regulation mechanisms.


Asunto(s)
Camellia sinensis , Regulación de la Expresión Génica de las Plantas , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Camellia sinensis/metabolismo , Hormonas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Té/metabolismo
13.
BMC Plant Biol ; 22(1): 445, 2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36114467

RESUMEN

BACKGROUND: Drought is a significant condition that restricts vegetation growth on the Tibetan Plateau. Artemisia wellbyi is a unique semi-shrub-like herb in the family Compositae, which distributed in northern and northwest of Tibetan Plateau. It is a dominant species in the community that can well adapt to virous environment stress, such as drought and low temperature. Therefore, A. wellbyi. has a potential ecological value for soil and water conservation of drought areas. Understanding the molecular mechanisms of A. wellbyi. that defense drought stress can acquire the key genes for drought resistance breeding of A. wellbyi. and provide a theoretical basis for vegetation restoration of desertification area. However, they remain unclear. Thus, our study compared the transcriptomic characteristics of drought-tolerant "11" and drought-sensitive "6" material of A. wellbyi under drought stress. RESULTS: A total of 4875 upregulated and 4381 downregulated differentially expressed genes (DEGs) were induced by drought in the tolerant material; however, only 1931 upregulated and 4174 downregulated DEGs were induced by drought in the sensitive material. The photosynthesis and transcriptional regulation differed significantly with respect to the DEGs number and expression level. We found that CDPKs (calmodulin-like domain protein kinases), SOS3 (salt overly sensitive3), MAPKs (mitogen-activated protein kinase cascades), RLKs (receptor like kinase), and LRR-RLKs (repeat leucine-rich receptor kinase) were firstly involved in response to drought stress in drought tolerant A. wellbyi. Positive regulation of genes associated with the metabolism of ABA (abscisic acid), ET (ethylene), and IAA (indole acetic acid) could play a crucial role in the interaction with other transcriptional regulatory factors, such as MYBs (v-myb avian myeloblastosis viral oncogene homolog), AP2/EREBPs (APETALA2/ethylene-responsive element binding protein family), WRKYs, and bHLHs (basic helix-loop-helix family members) and receptor kinases, and regulate downstream genes for defense against drought stress. In addition, HSP70 (heat shock protein70) and MYB73 were considered as the hub genes because of their strong association with other DEGs. CONCLUSIONS: Positive transcriptional regulation and negative regulation of photosynthesis could be associated with better growth performance under drought stress in the drought-tolerant material. In addition, the degradation of sucrose and starch in the tolerant A. wellbyi to alleviate osmotic stress and balance excess ROS. These results highlight the candidate genes that are involved in enhancing the performance of drought-tolerant A. wellbyi and provide a theoretical basis for improving the performance of drought-resistant A. wellbyi.


Asunto(s)
Artemisia , Transcriptoma , Ácido Abscísico , Artemisia/genética , Calmodulina/genética , Medios de Contraste , Sequías , Etilenos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Leucina/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Fitomejoramiento , Proteínas Quinasas/genética , Especies Reactivas de Oxígeno , Suelo , Almidón , Sacarosa
14.
J Appl Microbiol ; 133(4): 2631-2641, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35870147

RESUMEN

AIMS: Calmodulin (CaM), acts as a kind of multifunctional Ca2+ sensing protein, which is ubiquitous in fungi, is highly conserved across eukaryotes and is involved in the regulation of a range of physiological processes, including morphogenesis, reproduction and secondary metabolites biosynthesis. Our aim was to understand the characteristics and functions of AaCaM in Alternaria alternata, the causal agent of pear black spot. METHODS AND RESULTS: A 450 bp cDNA sequence of AaCaM gene of A. alternata was cloned by the PCR homology method. Sequence analysis showed that this protein encoded by AaCaM was a stable hydrophilic protein and had a high similarity to Neurospora crassa (CAA50271.1) and other fungi. RT-qPCR analysis determined that AaCaM was differentially upregulated during infection structural differentiation of A. alternata both on hydrophobic and pear wax extract-coated surface, with a 3.37-fold upregulation during the hydrophobic induced appressorium formation period (6 h) and a 1.46-fold upregulation during the infection hyphae formation period (8 h) following pear wax induction. Pharmaceutical analysis showed that the CaM-specific inhibitor, trifluoperazine (TFP), inhibited spore germination and appressorium formation, and affected toxins and melanin biosynthesis in A. alternata. CONCLUSIONS: AaCaM plays an important role in regulating infection structure differentiation and secondary metabolism of A. alternata. SIGNIFICANCE AND IMPACT OF STUDY: Our study provides a theoretical basis for further in-depth investigation of the specific role of AaCaM in the calcium signalling pathway underlying hydrophobic and pear wax-induced infection structure differentiation and pathogenicity of A. alternata.


Asunto(s)
Pyrus , Alternaria/metabolismo , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , ADN Complementario/metabolismo , Melaninas/metabolismo , Preparaciones Farmacéuticas , Enfermedades de las Plantas/microbiología , Pyrus/genética , Pyrus/metabolismo , Pyrus/microbiología , Trifluoperazina/metabolismo
15.
Parasite Immunol ; 44(8): e12937, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35652261

RESUMEN

Until now, no completely effective parasite-specific drugs or vaccines have been approved for the treatment of cryptosporidiosis. Through the separation and identification of the sporozoite membrane protein of Cryptosporidium parvum (C. parvum), 20 related proteins were obtained. Among them, a calmodulin-like protein (CML) has a similar functional domain-exchange factor hand (EF-hand) motif as calmodulin proteins (CaMs), so it may play a similarly important role in the invasion process. A 663 bp full gene encoding the C. parvum calmodulin-like protein (CpCML) was inserted in pET28a vector and expressed in Escherichia coli. An immunofluorescence assay showed that CpCML was mainly located on the surface of the sporozoites. Three-week-old female BALB/c mice were used for modelling the immunoreactions and immunoprotection of recombinant CpCML (rCpCML) against artificial Cryptosporidium tyzzeri infections. The results indicated a significantly increased in anti-CpCML antibody response, which was induced by the immunized recombinant protein. Compared to rP23 (recombinant P23), GST6P-1 (expressed by pGEX-6P-1 transfected E. coli), GST4T-1 (expressed by pGEX-4T-1 transfected E. coli), glutathione (GSH), adjuvant and blank control groups, rCpCML-immunized mice produced specific spleen cell proliferation in addition to different production levels of IL-2, IFN-γ, TNF-α, IL-4 and IL-5. Additionally, immunization with rCpCML led to 34.08% reduction of oocyst shedding in C. tyzzeri infected mice faeces which was similar to rP23. These results suggest that CpCML may be developed as a potential vaccine candidate antigen against cryptosporidiosis.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Proteínas de la Membrana , Proteínas Protozoarias , Animales , Anticuerpos Antiprotozoarios , Calmodulina , Criptosporidiosis/prevención & control , Cryptosporidium parvum/genética , Escherichia coli/genética , Femenino , Proteínas de la Membrana/genética , Ratones , Proteínas Protozoarias/genética , Esporozoítos
16.
J Mol Cell Cardiol ; 168: 13-23, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35405106

RESUMEN

A key therapeutic target for heart failure and arrhythmia is the deleterious leak through sarcoplasmic reticulum (SR) ryanodine receptor 2 (RyR2) calcium release channels. We have previously developed methods to detect the pathologically leaky state of RyR2 in adult cardiomyocytes by monitoring RyR2 binding to either calmodulin (CaM) or a biosensor peptide (DPc10). Here, we test whether these complementary binding measurements are effective as high-throughput screening (HTS) assays to discover small molecules that target leaky RyR2. Using FRET, we developed and validated HTS procedures under conditions that mimic a pathological state, to screen the library of 1280 pharmaceutically active compounds (LOPAC) for modulators of RyR2 in cardiac SR membrane preparations. Complementary FRET assays with acceptor-labeled CaM and DPc10 were used for Hit prioritization based on the opposing binding properties of CaM vs. DPc10. This approach narrowed the Hit list to one compound, Ro 90-7501, which altered FRET to suggest increased RyR2-CaM binding and decreased DPc10 binding. Follow-up studies revealed that Ro 90-7501 does not detrimentally affect myocyte Ca2+ transients. Moreover, Ro 90-7501 partially inhibits overall Ca2+ leak, as assessed by Ca2+ sparks in permeabilized rat cardiomyocytes. Together, these results demonstrate (1) the effectiveness of our HTS approach where two complementary assays synergize for Hit ranking and (2) a drug discovery process that combines high-throughput, high-precision in vitro structural assays with in situ myocyte assays of the pathologic RyR2 leak. These provide a drug discovery platform compatible with large-scale HTS campaigns, to identify agents that inhibit RyR2 for therapeutic development.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Canal Liberador de Calcio Receptor de Rianodina , Animales , Calcio/metabolismo , Calmodulina/metabolismo , Descubrimiento de Drogas , Transferencia Resonante de Energía de Fluorescencia/métodos , Miocitos Cardíacos/metabolismo , Ratas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo
17.
J Biochem Mol Toxicol ; 36(5): e23017, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35194871

RESUMEN

Lead (Pb) is one of the most common toxic heavy metals. It is a well-known testicular toxicant. Selenium nanoparticles (SeNPs) are a more effective form of elemental selenium that reduces drug-induced toxicities. This study aimed to study the possible ameliorating effect of SeNPs on the toxicological and morphological changes in testes of lead acetate intoxicated rats. The study was conducted on 40 adult male albino rats divided into four groups; control, SeNPs-treated, lead acetate-treated, lead acetate and SeNPS treated groups. The concurrent treatment of lead acetate-exposed rats with SeNPs (0.1 mg/kg/day) for 12 weeks significantly lowered the blood and testicular lead levels, increased serum testosterone, and decreased luteinizing hormone and follicle-stimulating hormone to approach control values. In addition, it improved the histopathological, and ultrastructural alterations of the testes and improved the immunohistochemical expression of the c-kit. This was accompanied by maintenance of the testicular oxidant/antioxidant balance and reversing the lead-induced disrupted calmodulin-related genes expression in testicular tissue in the form of downregulation of CAMMK2 and MAP2K6 and upregulation of CXCR4 genes. There was a strong positive correlation between testicular malondialdehyde and MAP2K6 expression level as well as a strong positive correlation between CXCR4 gene expression and the C-kit area %. In conclusion, SeNPs can be considered as a potential therapy for a lead-induced testicular injury.


Asunto(s)
Nanopartículas , Selenio , Acetatos/farmacología , Animales , Antioxidantes , Calmodulina/metabolismo , Calmodulina/farmacología , Plomo/toxicidad , Masculino , Nanopartículas/química , Estrés Oxidativo , Ratas , Selenio/farmacología , Testículo/metabolismo
18.
Elife ; 102021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499028

RESUMEN

The ubiquitous Ca2+ sensor calmodulin (CaM) binds and regulates many proteins, including ion channels, CaM kinases, and calcineurin, according to Ca2+-CaM levels. What regulates neuronal CaM levels, is, however, unclear. CaM-binding transcription activators (CAMTAs) are ancient proteins expressed broadly in nervous systems and whose loss confers pleiotropic behavioral defects in flies, mice, and humans. Using Caenorhabditis elegans and Drosophila, we show that CAMTAs control neuronal CaM levels. The behavioral and neuronal Ca2+ signaling defects in mutants lacking camt-1, the sole C. elegans CAMTA, can be rescued by supplementing neuronal CaM. CAMT-1 binds multiple sites in the CaM promoter and deleting these sites phenocopies camt-1. Our data suggest CAMTAs mediate a conserved and general mechanism that controls neuronal CaM levels, thereby regulating Ca2+ signaling, physiology, and behavior.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Calcineurina/metabolismo , Calcio/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Edición Génica , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Unión Proteica , Transducción de Señal , Transactivadores/genética , Transcriptoma
19.
Mol Pharmacol ; 100(3): 237-257, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34127538

RESUMEN

Ion channels are attractive drug targets for many therapeutic applications. However, high-throughput screening (HTS) of drug candidates is difficult and remains very expensive. We thus assessed the suitability of the bioluminescence resonance energy transfer (BRET) technique as a new HTS method for ion-channel studies by taking advantage of our recently characterized intra- and intermolecular BRET probes targeting the transient receptor potential vanilloid type 1 (TRPV1) ion channel. These BRET probes monitor conformational changes during TRPV1 gating and subsequent coupling with calmodulin, two molecular events that are intractable using reference techniques such as automated calcium assay (ACA) and automated patch-clamp (APC). We screened the small-sized Prestwick chemical library, encompassing 1200 compounds with high structural diversity, using either intra- and intermolecular BRET probes or ACA. Secondary screening of the detected hits was done using APC. Multiparametric analysis of our results shed light on the capability of calmodulin inhibitors included in the Prestwick library to inhibit TRPV1 activation by capsaicin. BRET was the lead technique for this identification process. Finally, we present data exemplifying the use of intramolecular BRET probes to study other transient receptor potential (TRP) channels and non-TRPs ion channels. Knowing the ease of use of BRET biosensors and the low cost of the BRET technique, these assays may advantageously be included for extending ion-channel drug screening. SIGNIFICANCE STATEMENT: This study screened a chemical library against TRPV1 ion channel using bioluminescence resonance energy transfer (BRET) molecular probes and compared the results with the ones obtained using reference techniques such as automated calcium assay and automated patch-clamp. Multiparametric analysis of our results shed light on the capability of calmodulin antagonists to inhibit chemical activation of TRPV1 and indicates that BRET probes may advantageously be included in ion channel drug screening campaigns.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Canales Catiónicos TRPV/metabolismo , Bioensayo/métodos , Calcio/química , Calmodulina/antagonistas & inhibidores , Células HEK293 , Humanos , Ligandos , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Bibliotecas de Moléculas Pequeñas , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores
20.
Plant Physiol Biochem ; 162: 716-729, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33799183

RESUMEN

Four members of the potato (Solanum tuberosum L.) calcium-dependent protein kinase (CDPK) family StCDPK22/23/24 and StCDPK27, present three functional EF-hands motifs in their calmodulin-like domain (CLD). StCDPK22/23/24 are clustered in clade III-b1 with tomato and Arabidopsis CDPKs that lack the first EF-hand motif, while StCDPK27 is clustered in clade III-b3 with CDPKs that lack EF-hand 2. Members of each clade share similar intron-exon structures and acylation profiles. 3D model predictions suggested that StCDPK22 and StCDPK24 are active kinases that undergo a conformational switch in the presence of Ca2+ even when lacking one functional EF-hand motif; however, assays performed with recombinant proteins indicated that StCDPK24:6xHis was active in all the conditions tested, and its activity was enhanced in the presence of Ca2+, but StCDPK22:6xHis had scarce or null activity. Both kinases share with AtCPK8 the same autophosphorylation pattern in the autoinhibitory (AD) and C-terminal variable (CTV) domains, suggesting that it could be a characteristic of clade III-b1. RT-qPCR analysis revealed that StCDPK22 is mainly expressed in early stages of tuberization, but not limited to, while StCDPK24 expression is more ubiquitous. In silico analysis predicted several abiotic stress-responsive elements in its promoters. Accordingly, StCDPK24 expression peaked at 10 h in in vitro plants exposed to salt shock and then declined. Moreover, a significant increase was observed at 2 h in stems of salt-treated greenhouse plants, suggesting that this CDPK could participate in the early events of the signaling cascade triggered in response to salt.


Asunto(s)
Arabidopsis , Solanum tuberosum , Arabidopsis/genética , Arabidopsis/metabolismo , Calmodulina/metabolismo , Clonidina/análogos & derivados , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA