Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8920, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637588

RESUMEN

Land transportation is a major source of heavy metal contamination along the roadside, posing significant risks to human health through inhalation, oral ingestion, and dermal contact. Therefore, this study has been designed to determine the concentrations of vehicular released heavy metals (Cd, Pb, Ni, and Cu) in roadside soil and leaves of two commonly growing native plant species (Calotropis procera and Nerium oleander).Two busy roads i.e., Lahore-Okara road (N-5) and Okara-Faisalabad roads (OFR) in Punjab, Pakistan, were selected for the study. The data were collected from five sites along each road during four seasons. Control samples were collected ~ 50 m away from road. The metal content i.e. lead (Pb), cadmium (Cd) nickel (Ni) and copper (Cu) were determined in the plant leaves and soil by using Atomic Absorption Spectrophotometer (AAS). Significantly high amount of all studied heavy metals were observed in soil and plant leaves along both roads in contrast to control ones. The mean concentration of metals in soil ranged as Cd (2.20-6.83 mg/kg), Pb (4.53-15.29 mg/kg), Ni (29.78-101.26 mg/kg), and Cu (61.68-138.46 mg/kg) and in plant leaves Cd (0.093-0.53 mg/kg), Pb (4.31-16.34 mg/kg), Ni (4.13-16.34 mg/kg) and Cu (2.98-32.74 mg/kg). Among roads, higher metal contamination was noted along N-5 road. Significant temporal variations were also noted in metal contamination along both roads. The order of metal contamination in soil and plant leaves in different seasons was summer > autumn > spring > winter. Furthermore, the metal accumulation potential of Calotropis procera was higher than that of Nerium oleander. Therefore, for sustainable management of metal contamination, the plantation of Calotropis procera is recommended along roadsides.


Asunto(s)
Calotropis , Metales Pesados , Nerium , Contaminantes del Suelo , Humanos , Cadmio/análisis , Suelo , Biodegradación Ambiental , Plomo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Níquel , Plantas , Monitoreo del Ambiente
2.
J Cell Mol Med ; 28(6): e18050, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38400579

RESUMEN

Current treatment options available for prostate cancer (PCa) patients have many adverse side effects and hence, new alternative therapies need to be explored. Anticancer potential of various phytochemicals derived from Calotropis procera has been studied in many cancers but no study has investigated the effect of leaf extract of C. procera on PCa cells. Hence, we investigated the effect of C. procera leaf extract (CPE) on cellular properties of androgen-independent PC-3 and androgen-sensitive 22Rv1 cells. A hydroalcoholic extract of C. procera was prepared and MTT assay was performed to study the effect of CPE on viability of PCa cells. The effect of CPE on cell division ability, migration capability and reactive oxygen species (ROS) production was studied using colony formation assay, wound-healing assay and 2',7'-dichlorodihydrofluorescein diacetate assay, respectively. Caspase activity assay and LDH assay were performed to study the involvement of apoptosis and necrosis in CPE-mediated cell death. Protein levels of cell cycle, antioxidant, autophagy and apoptosis markers were measured by western blot. The composition of CPE was identified using untargeted LC-MS analysis. Results showed that CPE decreased the viability of both the PCa cells, PC-3 and 22Rv1, in a dose- and time-dependent manner. Also, CPE significantly inhibited the colony-forming ability, migration and endogenous ROS production in both the cell lines. Furthermore, CPE significantly decreased NF-κB protein levels and increased the protein levels of the cell cycle inhibitor p27. A significant increase in expression of autophagy markers was observed in CPE-treated PC-3 cells while autophagy markers were downregulated in 22Rv1 cells after CPE exposure. Hence, it can be concluded that CPE inhibits PCa cell viability possibly by regulating the autophagy pathway and/or altering the ROS levels. Thus, CPE can be explored as a possible alternative therapeutic agent for PCa.


Asunto(s)
Calotropis , Porcelana Dental , Aleaciones de Cerámica y Metal , Neoplasias de la Próstata , Titanio , Masculino , Humanos , Línea Celular Tumoral , Calotropis/química , Calotropis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Andrógenos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Apoptosis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Autofagia , Proliferación Celular
3.
Biol Trace Elem Res ; 202(1): 210-220, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37088826

RESUMEN

In leishmaniasis, the protective immunity is largely mediated by proinflammatory cytokine producing abilities of T cells and an efficient parasite killing by phagocytic cells. Notwithstanding a substantial progress that has been made during last decades, the mechanisms or factors involved in establishing protective immunity against Leishmania are not identified. In ancient Indian literature, metallic "bhasma," particularly that of "swarna" or gold (fine gold particles), is indicated as one of the most prominent metal-based therapeutic medicine, which is known to impart protective and curative properties in various health issues. In this work, we elucidated the potential of swarna bhasma (SB) on the effector properties of phagocytes and antigen-activated CD4+ T cells in augmenting the immunogenicity of L. donovani antigens. The characterization of SB revealing its shape, size, composition, and measurement of cytotoxicity established the physiochemical potential for its utilization as an immunomodulator. The activation of macrophages with SB enhanced their capacity to produce nitric oxide and proinflammatory cytokines, which eventually resulted in reduced uptake of parasites and their proliferation in infected cells. Further, in Leishmania-infected animals, SB administration reduced the generation of IL-10, an anti-inflammatory cytokine, and enhanced pro-inflammatory cytokine generation by antigen activated CD4+ T cells with increased frequency of double (IFNγ+/TNFα+) and triple (IFNγ+TNFα+IL-2+) positive cells and abrogated disease pathogeneses at the early days of infection. Our results also suggested that cow-ghee (A2) emulsified preparation of SB, either alone or with yashtimadhu, a known natural immune modulator which enhances the SB's potential in enhancing the immunogenicity of parasitic antigens. These findings suggested a definite potential of SB in enhancing the effector functions of phagocytes and CD4+ T cells against L. donovani antigens. Therefore, more studies are needed to elucidate the mechanistic details of SB and its potential in enhancing vaccine-induced immunity.


Asunto(s)
Presentación de Antígeno , Antígenos de Protozoos , Linfocitos T CD4-Positivos , Calotropis , Oro , Látex , Leishmania donovani , Macrófagos , Medicina Ayurvédica , Células TH1 , Arsénico , Combinación de Medicamentos , Oro/administración & dosificación , Oro/farmacología , Látex/administración & dosificación , Látex/farmacología , Plomo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Linfocitos T CD4-Positivos/inmunología , Fagocitos/efectos de los fármacos , Fagocitos/inmunología , Leishmaniasis/inmunología , Leishmaniasis/parasitología , Leishmania donovani/efectos de los fármacos , Leishmania donovani/crecimiento & desarrollo , Leishmania donovani/inmunología , Antígenos de Protozoos/inmunología , Células TH1/inmunología , Animales , Ratones , Células RAW 264.7 , Femenino , Ratones Endogámicos BALB C
4.
Sci Rep ; 13(1): 13474, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596340

RESUMEN

The encapsulation of plant extract in nanomatrices has limitations due to its adhesion to walls, size control, high cost and long durations that results in low yield. Macroscale and microscale level techniques for development of micro/nanoparticles may impact the encapsulation of plant extract. This study aimed to evaluate the relative efficiency of microscale and macroscale techniques for encapsulation of plant extract, which is not compared yet. Keeping this in view, encapsulation of Calotropis gigantea leaves extract (CaG) was attained in silver-conjugated poliglusam nanomatrices (POL/Ag) to induce apoptosis in invasive ductal carcinoma (IDC) cells. The ethanolic CaG extract was prepared using percolation method and characterized by chemical tests for its active phytochemical compounds. The droplet-based microfluidic system was utilized as microscale encapsulation technique for CaG in nanomatrices at two different aqueous to oil flow rate ratios 1.0:1.5, and 1.0:3.0. Moreover, conventional batch system was utilized as macroscale encapsulation technique consisted of hot plate magnetic stirrer. The prepared nanomatrices were analysed for antioxidant activity using DPPH test and for cytotoxicity analysis using MCF-7 cells. The characteristic peaks of UV-Vis, FTIR and XRD spectrum confirmed the synthesis of CaG(POL/Ag) by both the encapsulation methods. However, microfluidic system was found to be more expedient because of attaining small and uniform sized silver nanoparticles (92 ± 19 nm) at high flow rate and achieving high encapsulation efficiency (80.25%) as compared to the conventional batch method (52.5%). CaG(POL/Ag) nanomatrices found to have significant antioxidant activity (p = 0.0014) against DPPH radical scavenging activity. The CaG(POL/Ag) of the smallest sized formulated by the microfluidic system has also shown the highest cytotoxicity (90%) as compared to batch method (70%) at 80 µg/mL. Our results indicate that the microscale technique using microfluidic system is a more efficient method to formulate size-controlled CaG(POL/Ag) nanomatrices and achieve high encapsulation of plant extract. Additionally, CaG(Pol/Ag) was found to be an efficient new combination for inducing potent (p < 0.0001) apoptosis in IDC cells. Therefore, CaG(Pol/Ag) can be further tested as an anti-cancer agent for in-vivo experiments.


Asunto(s)
Calotropis , Carcinoma Ductal , Nanopartículas del Metal , Plata , Antioxidantes/farmacología , Extractos Vegetales/farmacología
5.
Curr Top Med Chem ; 23(23): 2197-2213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37282633

RESUMEN

Calotropis procera (Aiton) Dryand (Apocynaceae), popularly known as milkweed, has been traditionally used to treat diseases particularly associated with gastric disorders, skin disease and inflammatory processes. The present study aimed to review the current scientific evidence regarding the pharmacological effects of C. procera extracted phytochemicals and possible research opportunities as complementary and alternative medicine. Scientific publications were searched in various electronic databases (PubMed, Scopus, Web of Science, Google Scholar, Springer, Wiley, and Mendeley) using the following search terms: Calotropis procera, medicinal plants, toxicity, phytochemical characterization, and biological effects. Collected data showed that cardenolides, steroid glycoside and flavonoids are the main classes of phytochemicals identified in C. procera latex and leaves. In addition, lignans, terpenes, coumarins, and phenolic acids have been reported. These metabolites have been correlated with their biological activities, including mainly antioxidant, anti-inflammatory, antitumoral, hypoglycemic, gastric protective, anti-microbial, insecticide, anti-fungal, anti-parasitic, among others. However, some of the studies were carried out with only a single dose or with a high dose not achievable under physiological conditions. Therefore, the validity of C. procera biological activity may be questionable. Not less important to highlight are the risks associated with its use and the possibility of accumulation of heavy metals that can be toxic. Furthermore, there are no clinical trials with C. procera to date. In conclusion, the need of bioassayguided isolation of bioactive compounds, bioavailability and efficacy, as well as pharmacological and toxicity studies, are needed using in vivo models and clinical trials in order to support the traditionally claimed health benefits.


Asunto(s)
Apocynaceae , Calotropis , Calotropis/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Látex/química , Látex/farmacología
6.
J Ethnopharmacol ; 303: 115963, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442758

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal remedies can be used to treat a variety of chronic inflammatory illnesses, like rheumatoid arthritis and leprosy. The plant Calotropis gigantea (C. gigantea) belongs to the family Apocynaceae. To treat numerous contagious diseases, C. gigantea is utilized alone or combine with certain medicinal herbs. Traditional Asian and African practitioners employed C. gigantea to treat a variety of inflammatory conditions like boils, rheumatoid arthritis, gout, leprosy and other disorders. AIM OF THE STUDY: The goal of this study is to examine the anti-inflammatory and antioxidant activities of C. gigantea leaf extracts extracted using methanol, petroleum ether, and water. MATERIALS AND METHODS: The leaf extracts of C. gigantea were obtained using the Soxhlet extraction technique. The phytoconstituents present in all three C. gigantea leaf extracts were confirmed by qualitative analysis, and the amounts of the alkaloids, flavonoids, terpenoids and phenols found in the extracts were quantified. C. gigantea crude extracts were subjected to a nitric oxide scavenging experiment to assess their free radical scavenging activities. Protein denaturation and proteinase inhibition assays were used to investigate the effectiveness of extracts to restrict denaturation of protein and to inhibit key enzymes responsible for tissue damage. Further, the membrane stabilization efficacy of plant extracts were examined by the heat-induced hemolysis method. The DPPH and FRAP experiments were performed to determine the antioxidant effectiveness of phytoconstituents extracted using different solvents. The GC-MS study of plant C. gigantea methanolic, aqueous and petroleum ether extracts displayed a broad range of compounds that possess beneficial therapeutic effects. RESULTS: This study reveals that the methanolic extract of C. gigantea provides significantly more anti-inflammatory and antioxidant activity than other extracts. CONCLUSION: Compared to the aqueous and petroleum ether extracts, the methanolic leaf extract of C. gigantea demonstrated greater in vitro anti-inflammatory and antioxidant properties.


Asunto(s)
Artritis Reumatoide , Calotropis , Antioxidantes/química , Calotropis/química , Extractos Vegetales/uso terapéutico , Antiinflamatorios/farmacología , Fitoquímicos/farmacología , Fitoquímicos/análisis , Artritis Reumatoide/tratamiento farmacológico
7.
Molecules ; 29(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38202721

RESUMEN

Fungal diseases have always been a major problem for cantaloupe crops; however, synthetic fungicides are hazardous to humans and the environment. Consequently, a feasible alternative to fungicides without side effects could be by using bio agents and naturally occurring plants with antibacterial potential. This study has achieved a novel procedure for managing wilt and root rot diseases by potentially using Trichoderma sp. culture filtrates in consortium with plant extract of Calotropis procera, Rhizoctonia solani, Fusarium oxysporum, and Pythium ultimum, which were isolated from infected cantaloupe roots with identified root rot symptoms. The antagonistic activity of four Trichoderma isolates and analysis of antibiotics and filtrate enzymes of the most active Trichoderma isolate were determined as well as phytochemical analysis of C. procera plant extract using HPLC-UV. The obtained results showed that all Trichoderma isolates considerably lowered the radial growth of P. ultimum, R. solani, and F. oxysporum in varying degrees. The scanning electron micrographs illustrate the mycoparasitic nature of Trichoderma sp. on F. oxysporum. The phytochemical analysis of C. procera indicated that phenolic contents were the major compounds found in extracts, such as vanillin (46.79%), chlorogenic acid (30.24%), gallic acid (8.06%), and daidzein (3.45%) but including only a low amount of the flavonoid compounds rutin, naringenin, and hesperetin. The Pot experiment's findings showed that cantaloupe was best protected against wilting and root rot diseases when it was treated with both Trichoderma sp. culture filtrates (10%) and C. procera extract of (15 mg/mL), both alone and in combination. This study demonstrates that the application of bio agent Trichoderma spp. filtrate with C. procera phenol extract appears useful for controlling wilting and root rot disease in cantaloupe. This innovative approach could be used as an alternative to chemical fungicide for the control of wilting and rot root diseases.


Asunto(s)
Calotropis , Cucumis melo , Porcelana Dental , Fungicidas Industriales , Aleaciones de Cerámica y Metal , Titanio , Trichoderma , Humanos , Polifenoles , Fenoles/farmacología , Antibacterianos , Fitoquímicos , Extractos Vegetales/farmacología
8.
Acta Trop ; 236: 106700, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36181877

RESUMEN

Fascioliasis is an important zoonotic disease but treatment with the mainstay drugs poses challenge of parasite resistance. The aim of the study was to determine the anthelmintic efficacy of ethanolic leaf extract of Calotropis procera (CP) and its synthesized silver nanoparticles (AgNPs) against the eggs and miracidia of Fasciola species. The ethanolic extract of C. procera was used to synthesise its corresponding green-synthesis derivative using silver nitrate (CP-AgNPs). The synthesized silver nanoparticles were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscopy/Energy Dispersive X-ray (SEM/EDX). The ova and miracidia of Fasciola spp. were exposed to 1, 2, and 4 mg/ml CP ethanolic extracts and its corresponding AgNPs. FTIR showed that the formulation was capped with compounds present in the extract. The XRD showed the crystalline property of CP-AgNPs. The SEM image showed clusters of irregularly shape nanoparticles. The ovicidal activities were concentration dependent and showed highest activities 81.02±4.03% and 92.91±1.25% in 4 mg/ml CP and CP-AgNPs respectively (p < 0.05). The LC50 of CP (1.49 mg/ml) was more than 3 folds higher than that of CP-AgNPs (0.47 mg/ml). While CP did not cause miracidia death after 60 min exposure, however, 100% miracidia death were observed within 30 min exposure in all the tested concentration with CP-AgNPs. The positive control (ABZ) only showed 100% mortality after 60 min of exposure of miracidia. The study showed that green-synthesised C. procera nanoparticles showed superior ovicidal and miracicidal activities over C. procera leaf extracts and could be a source of potential antifasciola agent.


Asunto(s)
Calotropis , Nanopartículas del Metal , Antibacterianos , Porcelana Dental , Aleaciones de Cerámica y Metal , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta , Plata/farmacología , Nitrato de Plata , Espectroscopía Infrarroja por Transformada de Fourier , Titanio , Difracción de Rayos X
9.
Molecules ; 27(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36014547

RESUMEN

Herein, we report our success synthesizing silver nanoparticles (AgNPs) using aqueous extracts from the leaves and flowers of Calotropis gigantea growing in the geothermal manifestation Ie Seu-Um, Aceh Besar, Indonesia. C. gigantea aqueous extract can be used as a bio-reductant for Ag+→Ag0 conversion, obtained by 48h incubation of Ag+, and the extract mixture in a dark condition. UV-Vis characterization showed that the surface plasmon resonance (SPR) peaks of AgNPs-leaf C. gigantea (AgNPs-LCg) and AgNPs-flower C. gigantea (AgNPs-FCg) appeared in the wavelength range of 410-460 nm. Scanning electron microscopy energy-dispersive X-ray spectrometry (SEM-EDS) revealed the agglomeration and spherical shapes of AgNPs-LCg and AgNPs-FCg with diameters ranging from 87.85 to 256.7 nm. Zeta potentials were observed in the range of -41.8 to -25.1 mV. The Kirby-Bauer disc diffusion assay revealed AgNPs-FCg as the most potent antimicrobial agent with inhibition zones of 12.05 ± 0.58, 11.29 ± 0.45, and 9.02 ± 0.10 mm for Escherichia coli, Staphylococcus aureus, and Candida albicans, respectively. In conclusion, aqueous extract from the leaves or flowers of Calotropis gigantea may be used in the green synthesis of AgNPs with broad-spectrum antimicrobial activities.


Asunto(s)
Antiinfecciosos , Calotropis , Nanopartículas del Metal , Acetona/análogos & derivados , Antibacterianos/química , Antiinfecciosos/química , Escherichia coli , Tecnología Química Verde , Indonesia , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plata/química
10.
Protein Pept Lett ; 29(9): 775-787, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35927810

RESUMEN

BACKGROUND: Lectins are proteins with therapeutic and diagnostic potential that can be applied in battling various ailments. AIM AND OBJECTIVE: This study was designed to purify and characterize the hemagglutinating activity derived from the leaves of Calotropis procera and its possible role in protecting the stomach against ethanol-induced lesions. METHODS: The Calotropis procera leaf lectin (ProLec), was isolated by homogenization of the defatted leaf powder in Phosphate-Buffered Saline (PBS) and purified by affinity chromatography on Sephadex G-100. The lectin was eluted from the affinity column by 3% acetic acid and was physicochemically characterized. In a dose-dependent manner, ProLec was administered to rats with ethanol-induced ulcers, and biochemical, histopathological, and toxicological examinations were performed. RESULTS: ProLec is a heterodimer of 75 and 68 kDa. It agglutinated all human RBCs, whereas it showed weak interaction with animal erythrocytes. The protein was optimally active at 25 °C and was labile above this temperature. ProLec exhibited two pH optima and was a metalloprotein requiring Ca, Mn, and Ni. It contains 1.6% tryptophan residues of which about 1% is exposed and critical for lectin activity. The lectin exhibited a potent gastroprotective effect against ethanolinduced gastric lesions with no apparent toxicity to both kidneys and liver. Examination of the pH of the gastric juice of lectin-treated animals indicated a possible role of lectin in maintaining stomach acidity within the normal ranges compared to the gastric juice pH of animals that received ethanol only. CONCLUSION: These results may suggest that ProLec could conceivably be a good future drug for the treatment of gastric ulcers, however, extensive immunological and toxicological research remains to be done.


Asunto(s)
Calotropis , Úlcera Gástrica , Humanos , Ratas , Animales , Calotropis/química , Lectinas/farmacología , Lectinas/uso terapéutico , Hojas de la Planta/química , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/patología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Etanol
11.
Molecules ; 27(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35889333

RESUMEN

Cherry is a fleshy drupe, and it is grown in temperate regions of the world. It is perishable, and several biotic and abiotic factors affect its yield. During April-May 2021, a severe fruit rot of cherry was observed in Swat and adjacent areas. Diseased fruit samples were collected, and the disease-causing pathogen was isolated on PDA. Subsequent morphological, microscopic, and molecular analyses identified the isolated pathogen as Aspergillus flavus. For the control of the fruit rot disease of cherry, iron oxide nanoparticles (Fe2O3 NPs) were synthesized in the leaf extract of Calotropis procera and characterized. Fourier transform infrared (FTIR) spectroscopy of synthesized Fe2O3 NPs showed the presence of capping and stabilizing agents such as alcohols, aldehydes, and halo compounds. X-ray diffraction (XRD) analysis verified the form and size (32 nm) of Fe2O3 NPs. Scanning electron microscopy (SEM) revealed the spinal-shaped morphology of synthesized Fe2O3 NPs while X-ray diffraction (EDX) analysis displayed the occurrence of main elements in the samples. After successful preparation and characterization of NPs, their antifungal activity against A. flavus was determined by poison technique. Based on in vitro and in vivo antifungal activity analyses, it was observed that 1.0 mg/mL concentration of Fe2O3 can effectively inhibit the growth of fungal mycelia and decrease the incidence of fruit rot of cherry. The results confirmed ecofriendly fungicidal role of Fe2O3 and suggested that their large-scale application in the field to replace toxic chemical fungicides.


Asunto(s)
Calotropis , Nanopartículas del Metal , Nanopartículas , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Frutas , Nanopartículas del Metal/química , Nanopartículas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
12.
Sci Rep ; 12(1): 12151, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840761

RESUMEN

Several fractions of Calotropis gigantea extracts have been proposed to have potential anticancer activity in many cancer models. The present study evaluated the anticancer activity of C. gigantea stem bark extracts in liver cancer HepG2 cells and diethylnitrosamine (DEN)-induced primary liver cancer in rats. The carcinogenesis model induced by DEN administration has been widely used to study pathophysiological features and responses in rats that are comparable to those seen in cancer patients. The dichloromethane (CGDCM), ethyl acetate, and water fractions obtained from partitioning crude ethanolic extract were quantitatively analyzed for several groups of secondary metabolites and calactin contents. A combination of C. gigantea stem bark extracts with doxorubicin (DOX) was assessed in this study to demonstrate the enhanced cytotoxic effect to cancer compared to the single administration. The combination of DOX and CGDCM, which had the most potential cytotoxic effect in HepG2 cells when compared to the other three fractions, significantly increased cytotoxicity through the apoptotic effect with increased caspase-3 expression. This combination treatment also reduced ATP levels, implying a correlation between ATP and apoptosis induction. In a rat model of DEN-induced liver cancer, treatment with DOX, C. gigantea at low (CGDCM-L) and high (CGDCM-H) doses, and DOX + CGDCM-H for 4 weeks decreased the progression of liver cancer by lowering the liver weight/body weight ratio and the occurrence of liver hyperplastic nodules, fibrosis, and proliferative cells. The therapeutic applications lowered TNF-α, IL-6, TGF-ß, and α-SMA inflammatory cytokines in a similar way, implying that CGDCM had a curative effect against the inflammation-induced liver carcinogenesis produced by DEN exposure. Furthermore, CGDCM and DOX therapy decreased ATP and fatty acid synthesis in rat liver cancer, which was correlated with apoptosis inhibition. CGDCM reduced cleaved caspase-3 expression in liver cancer rats when used alone or in combination with DOX, implying that apoptosis-inducing hepatic carcinogenesis was suppressed. Our results also verified the low toxicity of CGDCM injection on the internal organs of rats. Thus, this research clearly demonstrated a promising, novel anticancer approach that could be applied in future clinical studies of CGDCM and combination therapy.


Asunto(s)
Calotropis , Neoplasias Hepáticas , Adenosina Trifosfato/metabolismo , Animales , Carcinogénesis/metabolismo , Caspasa 3/metabolismo , Dietilnitrosamina/toxicidad , Doxorrubicina/uso terapéutico , Hígado/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Corteza de la Planta/metabolismo , Extractos Vegetales/uso terapéutico , Ratas
13.
Anticancer Agents Med Chem ; 22(18): 3136-3147, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35676853

RESUMEN

INTRODUCTION: Calotropis procera (Aiton) Dryand (Apocynaceae) is an herb that has been commonly used in folk medicine to treat various diseases for more than 1500 years. AIMS: Our goal was to investigate the anti-metastatic effects of phenolics extracted from C. procera (CphE) against 4T1 breast cancer cells and in BALB/c mice. METHODS: 4T1 cells were treated with CphE and quercetin (positive control) at concentrations that inhibited cell viability by 50% (IC50). Levels of reactive oxygen species (ROS), wound healing, and protein expressions were determined following standard protocols. For the in vivo pilot study, the syngeneic BALB/c mouse model was used. 4T1 cells were injected into mammary fat pads. Tumors were allowed to grow for 9 days before gavage treatment with CphE (150 mg GAE/kg/day) or PBS (controls) for one week. Excised tumors, liver, and lungs were analyzed for gene and protein expression and histology. RESULTS: In vitro results showed that CphE suppressed cell viability through apoptosis induction, via caspase-3 cleavage and total PARP reduction. CphE also scavenged ROS and suppressed Akt, mTOR, ERK1/2, CREB, and Src activation contributing to cell motility inhibition. CphE reduced IR, PTEN, TSC2, p70S6, and RPS6, protein levels, which are proteins involved in the PI3K/Akt/mTOR pathway, suggesting this pathway as CphE primary target. In vivo results showed downregulation of ERK1/2 activation by phosphorylation in tumor tissues, accompanied by angiogenesis reduction in tumor and lung tissues. A reduction of Cenpf mRNA levels in liver and lung tissues strongly suggested anti-invasive cancer activity of CphE. CONCLUSION: CphE inhibited 4T1 cell signal pathways that play a key role in cell growth and invasion. The potential for in vitro results to be translated in vivo was confirmed. A complete animal study is a guarantee to confirm the CphE anticancer and antimetastatic activity in vivo.


Asunto(s)
Calotropis , Neoplasias , Animales , Apoptosis , Calotropis/genética , Calotropis/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Ratones , Ratones Endogámicos BALB C , Fosfatidilinositol 3-Quinasas/metabolismo , Proyectos Piloto , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quercetina/farmacología , ARN Mensajero , Especies Reactivas de Oxígeno , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
14.
Braz J Biol ; 84: e261123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35674603

RESUMEN

Nature is gifted with a wide range of ornamental plants, which beautify and clean the nature. Due to its great aesthetic value, there is a need to protect these plants from a variety of biotic and abiotic stresses. Hibiscus rosa-sinensis (L.) is an ornamental plant and it is commonly known as China rose or shoeblack plant. It is affected by several fungal and bacterial pathogens. Current study was designed to isolate leaf spot pathogen of H. rosa-sinensis and its control using silver nanoparticles (AgNPs). Based on molecular and morphological features, the isolated leaf spot pathogen was identified as Aspergillus niger. AgNPs were synthesized in the leaf extract of Calotropis procera and characterized. UV-vis spectral analysis displayed discrete plasmon resonance bands on the surface of synthesized AgNPs, depicting the presence of aromatic amino acids. Fourier transform infrared spectroscopy (FTIR) described the presence of C-O, NH, C-H, and O-H functional groups, which act as stabilizing and reducing molecules. X-ray diffraction (XRD) revealed the average size (~32.43 nm) of AgNPs and scanning electron microscopy (SEM) depicted their spherical nature. In this study, in vitro and in vivo antifungal activity of AgNPs was investigated. In vitro antifungal activity analysis revealed the highest growth inhibition of mycelia (87%) at 1.0 mg/ml concentration of AgNPs. The same concentration of AgNPs tremendously inhibited the spread of disease on infected leaves of H. rosa-sinensis. These results demonstrated significant disease control ability of AgNPs and suggested their use on different ornamental plants.


Asunto(s)
Calotropis , Hibiscus , Nanopartículas del Metal , Rosa , Antifúngicos , Calotropis/metabolismo , Hibiscus/metabolismo , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/metabolismo , Rosa/metabolismo , Plata/química , Plata/metabolismo , Plata/farmacología
15.
Anticancer Agents Med Chem ; 22(18): 3163-3171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692152

RESUMEN

BACKGROUND: Calotropis procera is a laticiferous plant (Apocynaceae) found in tropical regions all over the world. The ultrastructural characteristics of laticifers, their restricted distribution among different taxonomic groups, and in some species in each clade, as peptidases from latex, make them very attractive for biological analysis. OBJECTIVE: The study aims to investigate the effects of LP-PII-IAA (laticifer protein (LP) sub-fraction II (PII) of C. procera presenting an iodoacetamide-inhibited cysteine proteinase activity) on irinotecan-induced intestinal mucositis, a serious adverse effect of this medicine for the treatment of cancer. METHODS: LP-PII-IAA is composed of closely related isoforms (90%) of peptidases derived from catalysis and an osmotin protein (5%). Animals receiving co-administration of LP-PII-IAA presented a significant decrease in mortality, absence of diarrhea, histological preservation, and normalization of intestinal functions. RESULTS: Clinical homeostasis was accompanied by a reduction in MPO activity and declined levels of IL-1ß, IL-6 and KC, while the IL-10 level increased in LP-PII-IAA-treated animals. COX-2 and NF-kB immunostaining was reduced and the levels of oxidative markers (GSH, MDA) were normalized in animals that received LP-PII-IAA. CONCLUSION: We suggest that peptidases from the latex of Calotropis procera were instrumental in the suppression of the adverse clinical and physiological effects of irinotecan.


Asunto(s)
Calotropis , Proteasas de Cisteína , Animales , Calotropis/química , Ciclooxigenasa 2 , Interleucina-10 , Interleucina-6 , Yodoacetamida , Irinotecán/farmacología , Látex/química , Látex/farmacología , FN-kappa B , Proteínas de Plantas/farmacología , Proteínas de Plantas/uso terapéutico
16.
J Ethnopharmacol ; 296: 115503, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35753608

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Preparations derived from the plant Calotropis procera, have been used for medicinal purpose though the plant is known for its toxic effects. The aerial parts of the plant contain latex in plenty and have been found effective in treating disorders of gastrointestinal system and cancer. AIM OF THE STUDY: This study evaluated the efficacy of C. procera dried latex extract prepared in methanol (MeDL) against inflammation and oxidative stress in experimental model of colorectal carcinoma (CRC). MATERIALS AND METHODS: Two subcutaneous injections of chemical carcinogen, 1,2-dimethylhydrazine (DMH; 150 mg/kg) were given at an interval of one week to induce CRC in rats. The MeDL (50 and 150 mg/kg) and aspirin (60 mg/kg) were given daily and their effect was evaluated on markers of oxidative stress and inflammation after completion of 8 weeks following second injection of carcinogen. A comparison was made with normal and experimental control groups. The colon tissue levels of glutathione (GSH), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), nitrite and myeloperoxidase (MPO) were determined. Enzyme-linked immunosorbent assay was performed to determine the levels of prostaglandin E2 (PGE2) and tumor necrosis factor-alpha (TNF-α) and immunohistochemical analysis was performed for IL-1ß. RESULTS: Induction of cancerous changes in the colon resulted in altered oxidative homeostasis as evident from a reduction in GSH level and SOD activity and rise in TBARS level when compared with normal rats. Elevated levels of nitrite, MPO, TNF-α, PGE2 and immunoreactivity of IL-1ß were also observed in these rats. The levels of these markers were normalized when the rats were treated with MeDL or anti-inflammatory drug, aspirin. CONCLUSION: This study demonstrates that suppression of oxidative stress and inflammation contributes to the beneficial effect of MeDL in rat model of colon carcinogenesis.


Asunto(s)
Calotropis , Neoplasias Colorrectales , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Aspirina/farmacología , Calotropis/química , Carcinógenos , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/tratamiento farmacológico , Dinoprostona , Glutatión , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Látex/farmacología , Metanol/uso terapéutico , Nitritos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Wistar , Superóxido Dismutasa , Sustancias Reactivas al Ácido Tiobarbitúrico , Factor de Necrosis Tumoral alfa
17.
Molecules ; 27(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630600

RESUMEN

Calotropis procera (C. procera) is a wild shrub that is a medicinal plant found in abundance throughout Saudi Arabia. In this study, we investigated the phytochemical composition and antigenotoxic properties of the ethanolic extract of C. procera, in addition to the antimicrobial activity of the plant and its rhizospheric actinobacteria effects against pathogenic microorganisms. Soil-extract medium supplemented with glycerol as a carbon source and starch-casein agar medium was used for isolation of actinobacteria from rhizosphere. From the plant, a total of 31 compounds were identified using gas chromatography/mass spectrometry (GC-MS). The main components were α-amyrin (39.36%), lupeol acetate (17.94%), phytol (13.32%), hexadecanoic acid (5.55%), stigmasterol (3.16%), linolenic acid (3.04%), and gombasterol A (2.14%). C. procera plant extract's antimicrobial activity was investigated using an agar well-diffusion assay and minimum inhibitory concentration (MIC) against six pathogenic microbial strains. The plant extract of C. procera was considered significantly active against Staphylococcus aureus, Klebsiella pneumonia, and Escherichia coli, with inhibition zones of 18.66 mm, 21.26 mm, and 21.93 mm, respectively. The plant extract was considered to be a moderate inhibitor against Bacillus subtilis, with MIC ranging from 0.60-1.50 mg/mL. On the other hand, the isolated actinobacteria were considered to be a moderate inhibitor against S. aureus (MIC of 86 µg/mL), and a potent inhibitor, strain CALT_2, against Candida albicans (MIC of 35 µg/mL). The 16S rRNA gene sequence analysis showed that the potential strains belonged to the genus Streptomyces. The effect of C. procera extract against cyclophosphamide (CP)-induced genotoxicity was examined by evaluating chromosome abnormalities in mouse somatic cells and DNA fragmentation assays. The current study revealed that oral pretreatment of C. procera (50, 100, and 200 mg/kg b.w.) for 1, 7, and 14 days to cyclophosphamide-treated animals significantly reduced chromosomal abnormalities as well as DNA fragmentation in a dose-dependent manner. Moreover, C. procera extract had antimicrobial and antigenotoxic effects against CP-induced genotoxicity.


Asunto(s)
Actinobacteria , Antiinfecciosos , Calotropis , Streptomyces , Actinobacteria/genética , Agar , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Calotropis/química , Ciclofosfamida , Ratones , Extractos Vegetales/química , ARN Ribosómico 16S , Rizosfera , Staphylococcus aureus , Streptomyces/genética
18.
Phytomedicine ; 102: 154186, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35617890

RESUMEN

BACKGROUND: The osmotin from the medicinal plant Calotropis procera (CpOsm) has characteristics similar to adiponectin, a human protein with immunoregulatory actions. PURPOSE: This study aimed to investigate whether recombinant osmotin inclusion bodies from C. procera (IB/rCpOsm) produced in E. coli BL21(DE3) can prevent infection-induced inflammation. A virulent strain of Listeria monocytogenes was used as an infection model. METHODS: Cells of E. coli BL21(DE3) carrying the plasmid pET303-CpOsm were used to express the recombinant osmotin, which accumulated at reasonable levels as inclusion bodies (IB/rCpOsm). IB/rCpOsm were purified from induced cells and SDS-polyacrylamide gel electrophoresis followed by mass spectrometry analyses confirmed the identity of the major protein band (23 kDa apparent molecular mass) as CpOsm. Peritoneal macrophages (pMØ) from Swiss mice were cultured with IB/rCpOsm (1 or 10 µg/ml) in 96-well plates and then infected with L. monocytogenes. IB/rCpOsm (0.1, 1 or 10 mg/kg) was also administered intravenously to Swiss mice, which were then infected intraperitoneally with L. monocytogenes. RESULTS: Pretreatment of the pMØ with IB/rCpOsm significantly increased cell viability after infection and reduced the intracellular bacterial load. The infiltration of neutrophils into the peritoneal cavity of mice pretreated with IB/rCpOsm at 10 mg/kg (but not 0.1 and 1 mg/kg) was reduced after infection. In these mice, the bacterial load was high in the peritoneal fluid and the liver, but histological damage was discrete. The treatments with IB/rCpOsm at 10 mg/kg significantly increased the expression of the anti-inflammatory cytokine IL-10. CONCLUSION: This study shows that recombinant osmotin inclusion bodies from C. procera were bioactive and prompted anti-inflammatory actions at therapeutic dosages in the L. monocytogenes infection model.


Asunto(s)
Antiinflamatorios , Calotropis , Listeriosis , Animales , Antiinflamatorios/farmacología , Calotropis/química , Modelos Animales de Enfermedad , Escherichia coli , Cuerpos de Inclusión/metabolismo , Inflamación/tratamiento farmacológico , Látex/química , Listeriosis/tratamiento farmacológico , Ratones , Proteínas de Plantas/farmacología
19.
Sci Rep ; 12(1): 5825, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388095

RESUMEN

Propeptides, released from the autocatalytic activation of its zymogen, are potential inhibitors against proteases involved in cancer cell invasion and migration. Our research team previously obtained novel propeptides (SnuCalCpIs) from transcriptome analysis of the medicinal plant Calotropis procera R. Br. and reported them as promising candidates for cancer therapeutics due to their cathepsin L inhibition activity. In the present study, inhibitory activity among SnuCalCpIs was compared with inhibition efficiency and verified by in silico molecular docking analysis. Only SnuCalCpI03 and SnuCalCpI15, expressed in Escherichia coli, showed inhibitory activity against cathepsin L as competitive inhibitors, and the half-maximal inhibitory concentrations (IC50) values of 2.1 nM and 1.6 nM, respectively. They were stable below 70 °C, maintaining more than 90% inhibitory activity over a wide range of pH (2.0-10.0), except at the isoelectric point (pI). The template-based docking simulation models showed that SnuCalCpI02, SnuCalCpI12, and SnuCalCpI16 could not interact with the substrate-binding cleft of cathepsin L even though they possessed the same conserved domain. In contrast, SnuCalCpI03 and SnuCalCpI15 interacted with cathepsin L along the propeptide binding loop and substrate-binding cleft, resulting in obstruction of substrate access to the active site.


Asunto(s)
Calotropis , Calotropis/metabolismo , Catepsina L/metabolismo , Precursores Enzimáticos/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/metabolismo
20.
J Fluoresc ; 32(3): 1039-1049, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35262854

RESUMEN

An eco-friendly, cost-effective, and convenient approach for synthesizing biocompatible fluorescent carbon quantum dots (CQDs) from the leaf extract of the medicinal plant Calotropis gigantea, commonly known as crown flower, has been demonstrated in this work. Fluorescence quantum yields of up to 4.24 percent were observed in as-synthesized CQDs. The size distribution of the as-synthesized CQDs varied from 2.7 to 10.4 nm, with a significant proportion of sp2 and sp3 carbon groups verified by nuclear magnetic resonance analysis. The zeta potential of as-synthesized CQDs was measured to be -13.8 mV, indicating the existence of a negatively charged surface with incipient instability in aqueous suspension. Furthermore, as an alternative to organic or synthetic dyes, the development of simple, inexpensive, and non-destructive fluorescence-based staining agents are highly desired. In this regard, as-synthesized CQDs have shown remarkable fluorescent staining capabilities in this work and might be utilised as a suitable probe for optical and bio-imaging of bacteria, fungi, and plant cells.


Asunto(s)
Calotropis , Puntos Cuánticos , Carbono , Colorantes Fluorescentes , Microondas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA