Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nat Med ; 77(4): 774-791, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37358722

RESUMEN

Calystegia hederacea Wall. (Convolvulaceae) is a perennial herbaceous vine that grows widely in India and East Asia. All parts of this plant are used to treat various disorders such as menoxenia and gonorrhea. Four new resin glycosides, calyhedins XI (1)-XIV (4), were isolated from the rhizomes of C. hederacea. A new glycoside, calyhedin XV (5), was isolated from its leaves and stems. Alkaline hydrolysis of 1 and 2 furnished a new glycosidic acid, calyhedic acid G (1a), from 1 and a new acid, calyhedic acid H (2a), from 2 along with 2S-methylbutyric acid and 2R-methyl-3R-hydroxybutyric (2R,3R-nilic) acid. The structures of 1-5, 1a, and 2a were determined using MS and NMR spectral analyses. Compounds 1a and 2a had the same sugar moiety, ß-D-glucopyranosyl-(1 → 6)-O-ß-D-glucopyranosyl-(1 → 6)-O-ß-D-glucopyranosyl-(1 → 3)-[O-ß-D-glucopyranosyl-(1 → 3)-O-α-L-rhamnopyranosyl-(1 → 2)]-O-ß-D-glucopyranosyl-(1 → 2)-ß-D-fucopyranose, while their aglycones were 11S-dihydroxyhexadecanoic acid and 12S-dihydroxyhexadecanoic acid, respectively. These compounds are the first glycosidic acids, with fucose as the monosaccharide component obtained from the resin glycosides of C. hederacea. Compounds 1-5, comprising either 1a or 2a, were heptaglycosides with macrolactone structures, and their sugar moieties were partially acylated with 5 mol of organic acids comprising 2S-methylbutyric, (E)-2-methylbut-2-enoic, and 2R,3R-nilic acids. Compounds 1 and 5 had 22-membered rings, while 2-4 had 28-membered rings. In addition, 1 and 5 exhibited cytotoxic activity against HL-60 human promyelocytic leukemia cells, comparable to that of the positive control cisplatin.


Asunto(s)
Calystegia , Convolvulaceae , Humanos , Calystegia/química , Glicósidos/farmacología , Glicósidos/química , Convolvulaceae/química , Plantas , Resinas de Plantas/química , Azúcares
2.
J Nat Med ; 77(2): 284-297, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36527581

RESUMEN

The alkaline hydrolysis of the crude resin glycoside fraction from the leaves and stems of the plant Calystegia japonica Choisy (Convolvulaceae) yielded organic acid and glycosidic acid fractions. The organic acid fraction was esterified with p-bromophenacyl bromide to obtain p-bromophenacyl 2R-methyl-3R-hydroxybutyrate (1) and p-bromophenacyl (E)-2-methylbut-2-enoate (2). By treating the glycosidic acid fraction with trimethylsilyldiazomethane-hexane, seven new methyl esters of glycosidic acids, namely calyjaponic acid A methyl ester (3) calyjaponic acid B methyl ester (5), calyjaponic acid C methyl ester (6), calyjaponic acid D methyl ester (7), calyjaponic acid E methyl ester (8), calyjaponic acid F methyl ester (9), and calyjaponic acid G methyl ester (10), were isolated along with one known ester (4). Their structures were characterized based on spectroscopic and chemical analyses. Compounds 3-8 had the same sugar moiety, α-L-rhamnopyranosyl-(1 → 2)-O-ß-D-glucopyranosyl-(1 → 2)-[O-α-L-rhamnopyranosyl-(1 → 6)]-O-ß-D-glucopyranose, and the aglycones of 3-8 were methyl 3S,11S-dihydroxyhexadecanoate, methyl 3S,12S-dihydroxyhexadecanoate, methyl 11S-hydroxyhexadecanoate, methyl 11S-hydroxypentadecanoate, methyl 3S,11S-dihydroxypentadecanoate, and methyl 3S,12S-dihydroxypentadecanoate, respectively. Compounds 9 and 10 were derivatives of 3 and 4, respectively, in which the C-6 of the second glucosyl residue was methylated. Compounds 6-8 contained methyl esters of unusual odd-carbon fatty acids as aglycones. The cytotoxicity of the crude resin glycoside fraction and 3 against HL-60 human promyelocytic leukemia cells was evaluated further; both were either weakly active or inactive compared to the positive control, cisplatin.


Asunto(s)
Calystegia , Convolvulaceae , Humanos , Glicósidos/química , Calystegia/química , Convolvulaceae/química , Ácidos , Resinas de Plantas/química , Hojas de la Planta/química , Ésteres/análisis
3.
Mol Med Rep ; 25(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34935054

RESUMEN

Calystegia soldanella is a halophyte and a perennial herb that grows on coastal sand dunes worldwide. Extracts from this plant have been previously revealed to have a variety of bioactive properties in humans. However, their effects on colorectal cancer cells remain poorly understood. In the present study, the potential biological activity of C. soldanella extracts in the colorectal cancer cell line HT­29 was examined. First, five solvent fractions [n­hexane, dichloromethane (DCM), ethyl acetate, n­butanol and water] were obtained from the crude extracts of C. soldanella through an organic solvent extraction method. In particular, the DCM fraction was demonstrated to exert marked dose­ and time­dependent inhibitory effects according to results from the cell viability assay. Data obtained from the apoptosis assay suggested that the inhibition of HT­29 cell viability induced by DCM treatment was attributed to increased apoptosis. The apoptotic rate was markedly increased in a dose­dependent manner, which was associated with the protein expression levels of apoptosis­related proteins, including increased Fas, Bad and Bax, and decreased pro­caspase­8, Bcl­2, Bcl­xL, pro­caspase­9, pro­caspase­7 and pro­caspase­3. A mitochondrial membrane potential assay demonstrated that more cells became depolarized and the extent of cytochrome c release was markedly increased in a dose­dependent manner in HT­29 cells treated with DCM. In addition, cell cycle analysis confirmed S­phase arrest following DCM fraction treatment, which was associated with decreased protein expression levels of cell cycle­related proteins, such as cyclin A, CDK2, cell division cycle 25 A and cyclin dependent kinase inhibitor 1. Based on these results, the present study suggested that the DCM fraction of the C. soldanella extract can inhibit HT­29 cell viability whilst inducing apoptosis through mitochondrial membrane potential regulation and S­phase arrest. These results also suggested that the DCM fraction has potential anticancer activity in HT­29 colorectal cells. Further research on the composition of the DCM fraction is warranted.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Calystegia/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Extractos Vegetales/farmacología , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales , Citocromos c/metabolismo , Relación Dosis-Respuesta a Droga , Células HT29 , Humanos , Cloruro de Metileno/química
4.
J Nat Med ; 74(1): 200-211, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31691185

RESUMEN

Resin glycosides are well known as the purgative ingredients, which are characteristic of convolvulaceous plants. Calystegia hederacea Wall. is a perennial herbaceous vine that is widespread throughout India and East Asia. All parts of this plant are used for the treatment of menoxenia, gonorrhea, etc. Alkaline hydrolysis of the crude resin glycoside fraction of the whole plants of C. hederacea yielded four new glycosidic acids, calyhedic acids A, B, C, and D, along with two known glycosidic acids, calysolic acids A and C, and three known organic acids, 2S-methylbutyric, tiglic, and 2R,3R-nilic acids. Their structures were characterized on the basis of spectroscopic data and chemical evidence. Calyhedic acids A, B, and D were penta-, hexa-, and hepta-glycosides of 12S-hydroxyhexadecanoic acid, respectively, and cayhedic acid C was an isomer of calyhedic acid D, in which the 12S-hydroxyhexadecanoyl residue of calyhedic acid D was replaced by a 11S-hydroxyhexadecanoyl residue. Additionally, cytotoxic activity toward HL-60 human promyelocytic leukemia cells of the crude resin glycoside fraction, the glycosidic acid fraction, calyhedic acid A, and calysolic acid A from C. hederacea was evaluated. Furthermore, to clarify the structure-activity relationship of resin glycosides, the activities of six genuine resin glycosides with calysolic acid A or calysolic acid C as the glycosidic acid, which were isolated from C. soldanella, were examined. Among them, the crude resin glycoside fraction and five genuine resin glycosides with macrolactone structures demonstrated clear cytotoxic activities, while the glycosidic acid fraction, calyhedric acid A, calysolic acid A, and a genuine non-macrolactone-type resin glycoside were either inactive or exhibited weaker activity than the tested macrolactone-type resin glycosides.


Asunto(s)
Calystegia/química , Glicósidos/química , Resinas de Plantas/química , Humanos , Hidrólisis , Estructura Molecular , Oligosacáridos , Plantas Medicinales/química , Relación Estructura-Actividad
5.
Nat Prod Res ; 31(22): 2660-2664, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28105860

RESUMEN

A new resin glycoside, named calysolin XVIII (1), was isolated from the leaves, stems and roots of Calystegia soldanella Roem. et Schult. (Convolvulaceae). The structure of 1 was defined as 11S-jalapinolic acid 11-O-ß-d-glucopyranosyl-(1 → 3)-O-(2-O-2S-methylbutyryl,4-O-3-hydroxy-2-methylenebutyryl)-α-l-rhamnopyranosyl-(1 → 2)-[O-ß-d-glucopyranosyl-(1 → 6)-O-(34-di-O-2S-methylbutyryl)-ß-d-glucopyranosyl-(1 → 3)]-O-ß-d-glucopyranosyl-(1 → 2)-ß-d-quinovopyranoside, intramolecular 1,2″'″'-ester on the basis of spectroscopic data. Compound 1 is the first known resin glycoside to feature 3-hydroxy-2-methylenebutyric acid as a component organic acid. In addition, 1 demonstrated an antiviral activity against herpes simplex virus type 1, with an IC50 value 2.3 µM.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Calystegia/química , Herpesvirus Humano 1/efectos de los fármacos , Resinas de Plantas/química , Animales , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos/métodos , Glicósidos/química , Glicósidos/farmacología , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Estructura Molecular , Hojas de la Planta/química , Raíces de Plantas/química , Células Vero
6.
Nat Prod Commun ; 10(3): 429-32, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25924521

RESUMEN

Coastal species are exposed to severe environmental stresses, e.g. salt and UV-B. The plants adapt themselves to such harsh environment by controlling morphological features and chemical defense systems. Flavonoids are known as efficient anti-stress polyphenols produced by plants. Most flavonoids show antioxidant activity, and their properties are important for plants to survive under high-stress conditions such as those in a coastal area. Among the compounds, ortho-dihydroxylated flavonoids act as strong antioxidants. In this survey, we elucidated the flavonoid composition of a seashore species Calystegia soldanella, which is distributed not only on the seashore, but also by the inland freshwater lake, Lake Biwa. Seven flavonol glycosides, i.e. quercetin 3-0- rutinoside, 3-O-glucoside, 3-O-rhamnoside and 3-O-apiosyl-(1-->2)-[rhamnosyl-(1-->6)-glucoside], and kaempferol 3-O-rutinoside, 3-O-glucoside and 3-0- rhamnoside were isolated from the leaves of C. soldanella. In addition, it was shown that the quercetin (Qu) to kaempferol (Km) ratio of coastal populations was higher than that of lakeshore populations. In general, these differences of Qu/Km ratio depend on flavonoid 3'-hydroxylase (F3'H) transcription. RT-PCR analysis suggested that F3'H of C. soldanella is regulated translationally or post-translationally, but not transcriptionally. Furthermore, quantitative and qualitative differences in flavonoid composition occurred among three Calystegia species, C. soldanella, C. japonica and C. hederacea.


Asunto(s)
Calystegia/química , Convolvulaceae/química , Flavonoides/química , Calystegia/metabolismo , Convolvulaceae/metabolismo , Flavonoides/metabolismo , Estructura Molecular , Especificidad de la Especie
7.
Nat Prod Commun ; 9(11): 1585-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25532287

RESUMEN

In this report, the PTP1B inhibitory effect of Calystegia soldanella was investigated. Bioassay-guided fractionation of the crude extracts revealed that the n-hexane fraction had the strongest PTP1B inhibitory effect. Nine known alkyl p-coumarates were isolated from the n-hexane fraction, and each compound was evaluated for its effect on PTP1B. All compounds effectively inhibited PTP1B activity. The IC50 values of the compounds were 3 (10.8 µg/mL) > 2 (15.5 µg/mL) > 7 (26.6 µg/mL) > 1 (37.0 µg/mL) > 8 (41.2 µg/mL) > 9 (43.4 µg/mL) > 5 (44.7 µg/mL) > 4 (> 50 µg/mL) > 6 (> 50 µg/mL).


Asunto(s)
Calystegia/química , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Animales , Hexanos/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores
8.
Eur J Cancer Prev ; 13(5): 419-24, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15452455

RESUMEN

Since nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) has been found to be involved in various pathophysiological processes, including inflammation and carcinogenesis, the modulators of NO synthesis or expression have been considered as potential anti-inflammatory and cancer chemopreventive agents. In this study, to procure the iNOS inhibitors from natural products, we evaluated 57 methanol extracts of natural products including Korean indigenous plants for the inhibition of NO formation on lipopolysaccharide (LPS)-activated mouse macrophage-like RAW 264.7 cells. As a result, several extracts including those from Actinodaphne lancifolia, Calystegia soldanella, Caryratia japonica, Citrus dachibana, Dystaenia takeshimana, Erysimum aurantiacum, Hovenia undulata, Stewartia koreana and Viburnum awabuki showed potent inhibitory activities of NO production (>70% inhibition at the test concentration of 40 microg/ml). In particular, the extract of Calystegia soldanella showed a potential inhibition of NO production in a dose-dependent manner (IC50=4.3 microg/ml). Subsequent study also exhibited that the extract of Calystegia soldanella significantly suppressed iNOS protein and gene expression in a dose-dependent manner. These results suggest that Calystegia soldanella might be a new potential candidate for developing an iNOS inhibitor from natural products and also could be warranted for further elucidation of active principles for the development of new anti-inflammatory and/or cancer chemopreventive agents.


Asunto(s)
Calystegia/química , Óxido Nítrico Sintasa/biosíntesis , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Animales , Técnicas de Cultivo de Célula , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación , Lipopolisacáridos/toxicidad , Macrófagos , Ratones , Óxido Nítrico Sintasa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA