Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612806

RESUMEN

N6-methyladenosine (m6A) is essential for RNA metabolism in cells. The YTH domain, conserved in the kingdom of Eukaryotes, acts as an m6A reader that binds m6A-containing RNA. In plants, the YTH domain is involved in plant hormone signaling, stress response regulation, RNA stability, translation, and differentiation. However, little is known about the YTH genes in tea-oil tree, which can produce edible oil with high nutritional value. This study aims to identify and characterize the YTH domains within the tea-oil tree (Camellia chekiangoleosa Hu) genome to predict their potential role in development and stress regulation. In this study, 10 members of the YTH family containing the YTH domain named CchYTH1-10 were identified from C. chekiangoleosa. Through analysis of their physical and chemical properties and prediction of subcellular localization, it is known that most family members are located in the nucleus and may have liquid-liquid phase separation. Analysis of cis-acting elements in the CchYTH promoter region revealed that these genes could be closely related to abiotic stress and hormones. The results of expression profiling show that the CchYTH genes were differentially expressed in different tissues, and their expression levels change under drought stress. Overall, these findings could provide a foundation for future research regarding CchYTHs in C. chekiangoleosa and enrich the world in terms of epigenetic mark m6A in forest trees.


Asunto(s)
Camellia , Camellia/genética , Diferenciación Celular , Sequías , ARN ,
2.
Nucleic Acids Res ; 52(D1): D1661-D1667, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37650644

RESUMEN

The genus Camellia consists of about 200 species, which include many economically important species widely used for making tea, ornamental flowers and edible oil. Here, we present an updated tea plant information archive for Camellia genomics (TPIA2; http://tpia.teaplants.cn) by integrating more novel large-scale genomic, transcriptomic, metabolic and genetic variation datasets as well as a variety of useful tools. Specifically, TPIA2 hosts all currently available and well assembled 10 Camellia genomes and their comprehensive annotations from three major sections of Camellia. A collection of 15 million SNPs and 950 950 small indels from large-scale genome resequencing of 350 diverse tea accessions were newly incorporated, followed by the implementation of a novel 'Variation' module to facilitate data retrieval and analysis of the functionally annotated variome. Moreover, 116 Camellia transcriptomes were newly assembled and added, leading to a significant extension of expression profiles of Camellia genes to 13 developmental stages and eight abiotic/biotic treatments. An updated 'Expression' function has also been implemented to provide a comprehensive gene expression atlas for Camellia. Two novel analytic tools (e.g. Gene ID Convert and Population Genetic Analysis) were specifically designed to facilitate the data exchange and population genomics in Camellia. Collectively, TPIA2 provides diverse updated valuable genomic resources and powerful functions, and will continue to be an important gateway for functional genomics and population genetic studies in Camellia.


Asunto(s)
Camellia , Bases de Datos Genéticas , Camellia/genética , Camellia sinensis/genética , Camellia sinensis/metabolismo , Genoma de Planta , Genómica , Té/metabolismo
3.
Plant Physiol Biochem ; 205: 108157, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37939544

RESUMEN

Tea is one of the most popular beverages, it has many health benefits and flavor properties due to the presence of numerous secondary metabolites. Camellia assamica is also a main source of tea, which is mainly planted in the regions of southwest China. In this study, a non-targeted and targeted metabolomics analysis and sensory evaluation on tea leaves with and without mistletoe (Viscum articulatum) was carried out using liquid chromatography-mass spectrometry. RNA-seq-based transcriptomic analysis was conducted in parallel on the same samples, subsequently gene expression and metabolic differentiation were also investigated. Tea leaves with mistletoe presented much lower contents of (-)-catechin, (-)-epicatechin, (-)-gallocatechin gallate and (-)-epicatechin gallate, but significantly higher levels of free amino acids including Arg, Asp, GABA and Gln than that without mistletoe. Transcriptomic analysis also confirmed the main differentially expressed genes (DEGs) containing phenylpropanoid and flavonoid biosynthesis were down-regulated, but genes of amino acid biosynthesis were up-regulated. qRT-PCR analysis further revealed that the relative expression of CsCHS, CsC4H, CsANS, CsLAR, and CsF3H was hindered, while CsglyA and CsilvE expression was increased.


Asunto(s)
Camellia sinensis , Camellia , Catequina , Camellia/genética , Camellia/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolómica , Catequina/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , , Flavonoides/metabolismo
4.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37511309

RESUMEN

Camellia oleifera a member of the family Theaceae, is a phosphorus (P) tolerator native to southern China. The SPX gene family critically regulates plant growth and development and maintains phosphate (Pi) homeostasis. However, the involvement of SPX genes in Pi signaling in Tea-Oil Camellia remains unknown. In this work, 20 SPX genes were identified and categorized into four subgroups. Conserved domains, motifs, gene structure, chromosomal location and gene duplication events were also investigated in the SPX gene family. Defense and stress responsiveness cis-elements were identified in the SPX gene promoters, which participated in low-Pi stress responses. Based on transcriptome data and qRT-PCR results, nine CoSPX genes had similar expression patterns and eight genes (except CoPHO1H3) were up-regulated at 30 days after exposure to low-Pi stress. CoSPX-MFS3 was selected as a key candidate gene by WGCNA analysis. CoSPX-MFS3 was a tonoplast protein. Overexpression of CoSPX-MFS3 in Arabidopsis promoted the accumulation of total P content and decreased the anthocyanin content. Overexpression of CoSPX-MFS3 could enhance low-Pi tolerance by increased biomass and organic acid contents in transgenic Arabidopsis lines. Furthermore, the expression patterns of seven phosphate starvation genes were higher in transgenic Arabidopsis than those in the wild type. These results highlight novel physiological roles of the SPX family genes in C. oleifera under low-Pi stress, and lays the foundation for a deeper knowledge of the response mechanism of C. oleifera to low-Pi stress.


Asunto(s)
Arabidopsis , Camellia , Camellia/genética , Camellia/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Fosfatos/metabolismo , , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
5.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511379

RESUMEN

Camellia oil (CO) is a high medicinal and nutritional value edible oil. However, its ability to alleviate fat accumulation in high-fat Caenorhabditis elegans has not been well elucidated. Therefore, this study aimed to investigate the effect of CO on fat accumulation in high-fat C. elegans via transcriptome and metabolome analysis. The results showed that CO significantly reduced fat accumulation in high-fat C. elegans by 10.34% (Oil Red O method) and 11.54% (TG content method), respectively. Furthermore, CO primarily altered the transcription levels of genes involved in longevity regulating pathway. Specifically, CO decreased lipid storage in high-fat C. elegans by inhibiting fat synthesis. In addition, CO supplementation modulated the abundance of metabolic biomarkers related to pyrimidine metabolism and riboflavin metabolism. The integrated transcriptome and metabolome analyses indicated that CO supplementation could alleviate fat accumulation in high-fat C. elegans by regulating retinol metabolism, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, ascorbate and aldarate metabolism, and pentose and glucuronate interconversions. Overall, these findings highlight the potential health benefits of CO that could potentially be used as a functional edible oil.


Asunto(s)
Proteínas de Caenorhabditis elegans , Camellia , Animales , Caenorhabditis elegans/metabolismo , Transcriptoma , Camellia/genética , Camellia/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo de los Lípidos , Metaboloma
6.
Genes (Basel) ; 14(5)2023 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-37239444

RESUMEN

The differences in cpDNA SNPs and InDels of 13 samples from single trees of different species or populations of oil-tea camellia in South China were examined in this study, and phylogenetic trees were reconstructed based on CDSs and non-CDSs of cpDNAs to research the evolutionary relationships among all samples. The SNPs of all samples included all kinds of substitutions, and the frequency of the transition from AT to GC was highest; meanwhile, the frequencies of all kinds of transversions differed among the samples, and the SNPs exhibited polymorphism. The SNPs were distributed in all the different functional regions of cpDNAs, and approximately half of all SNPs in exons led to missense mutations and the gain or loss of termination codons. There were no InDels in the exons of any cpDNA samples, except those retrieved from Camellia gigantocarpa, although this InDel did not lead to a frame shift. The InDels of all cpDNA samples were unevenly distributed in the intergenic region and upstream and downstream of genes. The genes, regions of the same gene, sites and mutation types in the same region related to the distributions of SNPs, and InDels were inconsistent among samples. The 13 samples were divided into 2 clades and 7 or 6 subclades, and the samples of species from the same sections of the Camellia genus did not belong to the same subclades. Meanwhile, the genetic relationship between the samples of Camellia vietnamensis and the undetermined species from Hainan Province or the population of C. gauchowensis in Xuwen was closer than that between C. vietnamensis and the population of C. gauchowensis in Luchuan, and the genetic relationship among C. osmantha, C. vietnamensis and C. gauchowensis was very close. In sum, SNPs and InDels in the different cpDNAs resulted in variable phenotypes among the different species or populations, and they could be developed into molecular markers for studies on species and population identification and phylogenetic relationships. The conclusion from the identification of undetermined species from Hainan Province and the phylogenetic relationships among 13 oil-tea camellia samples based on cpCDS and cpnon-CDS sequences were the same as those from the former report.


Asunto(s)
Camellia , Genoma del Cloroplasto , Camellia/genética , Filogenia , Mutación , ADN de Cloroplastos ,
7.
Genes (Basel) ; 14(5)2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37239477

RESUMEN

Oil-tea (Camellia oleifera) is a woody oil crop whose nectar includes galactose derivatives that are toxic to honey bees. Interestingly, some mining bees of the genus Andrena can entirely live on the nectar (and pollen) of oil-tea and are able to metabolize these galactose derivatives. We present the first next-generation genomes for five and one Andrena species that are, respectively, specialized and non-specialized oil-tea pollinators and, combining these with the published genomes of six other Andrena species which did not visit oil-tea, we performed molecular evolution analyses on the genes involved in the metabolizing of galactose derivatives. The six genes (NAGA, NAGA-like, galM, galK, galT, and galE) involved in galactose derivatives metabolism were identified in the five oil-tea specialized species, but only five (with the exception of NAGA-like) were discovered in the other Andrena species. Molecular evolution analyses revealed that NAGA-like, galK, and galT in oil-tea specialized species appeared under positive selection. RNASeq analyses showed that NAGA-like, galK, and galT were significantly up-regulated in the specialized pollinator Andrena camellia compared to the non-specialized pollinator Andrena chekiangensis. Our study demonstrated that the genes NAGA-like, galK, and galT have played an important role in the evolutionary adaptation of the oil-tea specialized Andrena species.


Asunto(s)
Camellia , Galactosa , Abejas , Animales , Galactosa/metabolismo , Néctar de las Plantas/metabolismo , Camellia/genética , Aclimatación ,
8.
BMC Plant Biol ; 23(1): 255, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37189087

RESUMEN

BACKGROUND: Tea, the second largest consumer beverage in the world after water, is widely cultivated in tropical and subtropical areas. However, the effect of environmental factors on the distribution of wild tea plants is unclear. RESULTS: A total of 159 wild tea plants were collected from different altitudes and geological types of the Guizhou Plateau. Using the genotyping-by-sequencing method, 98,241 high-quality single nucleotide polymorphisms were identified. Genetic diversity, population structure analysis, principal component analysis, phylogenetic analysis, and linkage disequilibrium were performed. The genetic diversity of the wild tea plant population from the Silicate Rock Classes of Camellia gymnogyna was higher than that from the Carbonate Rock Classes of Camellia tachangensis. In addition, the genetic diversity of wild tea plants from the second altitude gradient was significantly higher than that of wild tea plants from the third and first altitude gradients. Two inferred pure groups (GP01 and GP02) and one inferred admixture group (GP03) were identified by population structure analysis and were verified by principal component and phylogenetic analyses. The highest differentiation coefficients were determined for GP01 vs. GP02, while the lowest differentiation coefficients were determined for GP01 vs. GP03. CONCLUSIONS: This study revealed the genetic diversity and geographical distribution characteristics of wild tea plants in the Guizhou Plateau. There are significant differences in genetic diversity and evolutionary direction between Camellia tachangensis with Carbonate Rock Classes at the first altitude gradient and Camellia gymnogyna with Silicate Rock Classes at the third altitude gradient. Geological environment, soil mineral element content, soil pH, and altitude markedly contributed to the genetic differentiation between Camellia tachangensis and Camellia gymnogyna.


Asunto(s)
Camellia sinensis , Camellia , Filogenia , Camellia sinensis/genética , Camellia sinensis/química , Camellia/genética , , Variación Genética
9.
PLoS One ; 18(4): e0283189, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37071624

RESUMEN

In this study, the genetic diversity and population structure of 4 wild ancient tea tree (Camellia taliensis) populations at different altitudes (2,050, 2,200, 2,350, and 2,500 m) in Qianjiazhai Nature Reserve, Zhenyuan country, Yunnan province, were investigated using EST-SSR molecular markers to compare their genetic variation against altitude. In total, 182 alleles were detected across all loci, ranging from 6 to 25. The top one informative SSR was CsEMS4 with polymorphism information content (PIC) of 0.96. The genetic diversity of this species was high, with 100% of loci being polymorphic, an average Nei's gene diversity (H) of 0.82, and Shannon's information index (I) of 1.99. By contrast, at the population level, the genetic diversity of wild ancient tea tree was relatively low, with values of H and I being 0.79 and 1.84, respectively. Analysis of molecular variance (AMOVA) revealed a minor genetic differentiation (12.84%) among populations, and most of the genetic variation (87.16%) was detected within populations. Using population structure analysis, we found that the germplasm of wild ancient tea tree was divided into three groups, and there was a substantial gene exchange among these three groups at different altitudes. Divergent habitats caused by altitudes and high gene flow played important roles in genetic diversity of wild ancient tea tree populations, which will provide new opportunities for promoting their protection and potential utilization.


Asunto(s)
Camellia , Humanos , Camellia/genética , Variación Genética , Altitud , Árboles/genética , China , , Filogenia , Repeticiones de Microsatélite/genética
10.
Plant Dis ; 107(10): 3264-3268, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36935384

RESUMEN

Elsinoë annonae is a fungal pathogen that causes fruit scab disease in the edible-oil (tea oil) plant (Camellia oleifera Abel). The absence of genome resources for this fungus hampers functional genetic studies of the pathogenesis mechanism of E. annonae. This study reports the genome assembly of E. annonae strain SM-YC-2 collected from tea oil tree fruit with scab disease in Fujian Province, China. Combining 16.44 Gb of PacBio Sequel II long reads and 5.13 Gb of Illumina NovaSeq reads, we generated a 25.93-Mb (99.19% of expected genome size) high-quality genome assembly with 52.66% GC content, 5.05% repeats, and over 98% Benchmarking Universal Single-Copy Orthologs completeness for E. annonae strain SM-YC-2. These high-quality genome assembly resources will facilitate functional genomic characterization studies, enhance insights into the pathogenicity mechanism of E. annonae, and support the development of molecular-based control strategies.


Asunto(s)
Camellia , Camellia/genética , Frutas , Genómica ,
11.
J Agric Food Chem ; 71(1): 488-498, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36562642

RESUMEN

The high accumulation of galloylated flavan-3-ols in Camellia sp. is a noteworthy phenomenon. We identified a flavan-3-ol galloylation-related functional gene cluster in tannin-rich plant Camellia sp., which included UGT84A22 and SCPL-AT gene clusters. We investigated the possible correlation between the accumulation of metabolites and the expression of SCPL-ATs and UGT84A22. The results revealed that C. sinensis, C. ptilophylla, and C. oleifera accumulated galloylated cis-flavan-3-ols (EGCG), galloylated trans-flavan-3-ols (GCG), and hydrolyzed tannins, respectively; however, C. nitidissima did not accumulate any galloylated compounds. C. nitidissima exhibited no expression of SCPL-AT or UGT84A22, whereas the other three species of Camellia exhibited various expression patterns. This indicated that the functions of the paralogs of SCPL-AT vary. Enzymatic analysis revealed that SCPL5 was neofunctionalized as a noncatalytic chaperone paralog, a type of chaerone-like protein, associating with flavan-3-ol galloylation; moreover, CsSCPL4 was subfunctionalized in association with the galloylation of cis- and trans-flavan-3-ols. In C. nitidissima, an SCPL4 homolog was noted with mutations in two cysteine residues forming a disulfide bond, which suggested that this homolog was defunctionalized. The findings of this study improve our understanding of the functional diversification of SCPL paralogs in Camellia sp.


Asunto(s)
Camellia sinensis , Camellia , Camellia/genética , Flavonoides/química , Taninos/metabolismo , Camellia sinensis/química
12.
Genes (Basel) ; 13(11)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36421835

RESUMEN

Oil-tea camellia trees, the collective term for a class of economically valuable woody oil crops in China, have attracted extensive attention because of their rich nutritional and pharmaceutical value. This study aimed to analyze the genetic relationship and genetic diversity of oil-tea camellia species using polymorphic SSR markers. One-hundred and forty samples of five species were tested for genetic diversity using twenty-four SSR markers. In this study, a total of 385 alleles were identified using 24 SSR markers, and the average number of alleles per locus was 16.0417. The average Shannon's information index (I) was 0.1890, and the percentages of polymorphic loci (P) of oil-tea camellia trees were 7.79-79.48%, indicating that oil-tea camellia trees have low diversity. Analysis of molecular variance (AMOVA) showed that the majority of genetic variation (77%) was within populations, and a small fraction (23%) occurred among populations. Principal coordinate analysis (PCoA) results indicated that the first two principal axes explained 7.30% (PC1) and 6.68% (PC2) of the total variance, respectively. Both UPGMA and PCoA divided the 140 accessions into three groups. Camellia oleifera clustered into one class, Camellia vietnamensis and Camellia gauchowensis clustered into one class, and Camellia crapnelliana and Camellia chekiangoleosa clustered into another class. It could be speculated that the genetic relationship of C. vietnamensis and C. gauchowensis is quite close. SSR markers could reflect the genetic relationship among oil-tea camellia germplasm resources, and the results of this study could provide comprehensive information on the conservation, collection, and breeding of oil-tea camellia germplasms.


Asunto(s)
Camellia , Camellia/genética , Fitomejoramiento , Repeticiones de Microsatélite/genética , Alelos , Biomarcadores ,
13.
Microbiol Spectr ; 10(6): e0227222, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36413019

RESUMEN

Beneficial gut bacteria can enhance herbivorous arthropod adaptation to plant secondary compounds (PSMs), and specialist herbivores provide excellent examples of this. Tea saponin (TS) of Camellia oleifera is triterpenoids toxic to seed-feeding weevil pest, Curculio chinensis (CW). Previous studies disclosed that Acinetobacter, which was specific enriched in the CW's gut, was involved in helping CW evade TS toxicity of C. oleifera. However, it is still not clear whether Acinetobacter is associated with other anti-insect compounds, and the molecular mechanism of Acinetobacter degradation of TS has not been clarified. To address these questions, we explored the relationship between host plant toxin content and Acinetobacter of CW gut bacteria. Results demonstrated that TS content significantly affected the CW gut microbiome structure and enriched bacteria functional for TS degradation. We further isolated Acinetobacter strain and conducted its genome and transcriptome analyses for bacterial characterization and investigation on its role in TS degradation. Biological tests were carried out to verify the ability of the functional bacterium within CW larvae to detoxify TS. Our results showed that TS-degrading bacteria strain (Acinetobacter sp. AS23) genome contains 47 genes relating to triterpenoids degradation. The AS23 strain improved the survival rate of CW larvae, and the steroid degradation pathway could be the key one for AS23 to degrade TS. This study provides the direct evidence that gut bacteria mediate adaptation of herbivorous insects to phytochemical resistance. IMPORTANCE Microorganism is directly exposed to the plant toxin environment and play a crucial third party in herbivores gut. Although previous studies have proved the existence of gut bacteria that help CWs degrade TS, the specific core flora and its function have not been explored. In this study, we investigated the correlation between the larva gut microbiome and plant secondary metabolites. Acinetobacter genus was the target flora related to TS degradation. There were many terpenoids genes in Acinetobacter sp. AS23 genome. Results of transcriptome analysis and biological tests suggested that steroid degradation pathway be the key pathway of AS23 to degrade TS. This study not only provides direct evidence that gut microbes mediate the rapid adaptation of herbivorous insects to phytochemical resistance, but also provides a theoretical basis for further research on the molecular mechanism of intestinal bacteria cooperating with pests to adapt to plant toxins.


Asunto(s)
Acinetobacter , Camellia , Saponinas , Gorgojos , Animales , Gorgojos/genética , Gorgojos/microbiología , Acinetobacter/genética , Camellia/genética , Saponinas/metabolismo , Transcriptoma , Larva/microbiología , Insectos , Bacterias/genética , Perfilación de la Expresión Génica , Genómica , Té/metabolismo
14.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361817

RESUMEN

Floral initiation is a major phase change in the spermatophyte, where developmental programs switch from vegetative growth to reproductive growth. It is a key phase of flowering in tea-oil trees that can affect flowering time and yield, but very little is known about the molecular mechanism of floral initiation in tea-oil trees. A 12-year-old Camellia oleifera (cultivar 'changlin53') was the source of experimental materials in the current study. Scanning electron microscopy was used to identify the key stage of floral initiation, and transcriptome analysis was used to reveal the transcriptional regulatory network in old leaves involved in floral initiation. We mined 5 DEGs related to energy and 55 DEGs related to plant hormone signal transduction, and we found floral initiation induction required a high level of energy metabolism, and the phytohormones signals in the old leaves regulate floral initiation, which occurred at stage I and II. Twenty-seven rhythm-related DEGs and 107 genes associated with flowering were also identified, and the circadian rhythm interacted with photoperiod pathways to induce floral initiation. Unigene0017292 (PSEUDO-RESPONSE REGULATOR), Unigene0046809 (LATE ELONGATED HYPOCOTYL), Unigene0009932 (GIGANTEA), Unigene0001842 (CONSTANS), and Unigene0084708 (FLOWER LOCUS T) were the key genes in the circadian rhythm-photoperiod regulatory network. In conjunction with morphological observations and transcriptomic analysis, we concluded that the induction of floral initiation by old leaves in C. oleifera 'changlin53' mainly occurred during stages I and II, floral initiation was completed during stage III, and rhythm-photoperiod interactions may be the source of the main signals in floral initiation induced by old leaves.


Asunto(s)
Camellia , Camellia/genética , Camellia/metabolismo , Árboles/genética , Perfilación de la Expresión Génica , Flores/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Té/metabolismo , Transcriptoma , Regulación de la Expresión Génica de las Plantas
15.
Plant J ; 111(2): 406-421, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35510493

RESUMEN

Camellia plants include more than 200 species of great diversity and immense economic, ornamental, and cultural values. We sequenced the transcriptomes of 116 Camellia plants from almost all sections of the genus Camellia. We constructed a pan-transcriptome of Camellia plants with 89 394 gene families and then resolved the phylogeny of genus Camellia based on 405 high-quality low-copy core genes. Most of the inferred relationships are well supported by multiple nuclear gene trees and morphological traits. We provide strong evidence that Camellia plants shared a recent whole genome duplication event, followed by large expansions of transcription factor families associated with stress resistance and secondary metabolism. Secondary metabolites, particularly those associated with tea quality such as catechins and caffeine, were preferentially heavily accumulated in the Camellia plants from section Thea. We thoroughly examined the expression patterns of hundreds of genes associated with tea quality, and found that some of them exhibited significantly high expression and correlations with secondary metabolite accumulations in Thea species. We also released a web-accessible database for efficient retrieval of Camellia transcriptomes. The reported transcriptome sequences and obtained novel findings will facilitate the efficient conservation and utilization of Camellia germplasm towards a breeding program for cultivated tea, camellia, and oil-tea plants.


Asunto(s)
Camellia , Camellia/genética , Camellia/metabolismo , Filogenia , Fitomejoramiento , Té/metabolismo , Transcriptoma/genética
16.
J Cosmet Dermatol ; 21(10): 5018-5025, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35364626

RESUMEN

OBJECTIVES: Camellia seed cake is a by-product of Camellia oleifera Abel seed after oil extraction. Washing hair with Camellia seed cake extract is a traditional Chinese custom that has lasted for over one thousand years. However, the hair growth-promoting effects of Camellia seed cake extract were not investigated so far. This work examined the effects of de-saponinated Camellia seed cake extracts (DS-CSE) on hair growth, using in vitro and in vivo models. METHODS: The studies on cell proliferation, cell cycle regulation, and K+ channels activation effects of DS-CSE were performed on human dermal papilla cells (DPCs). Relative expression of insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and transforming growth factor-ß (TGF-ß1) in DPCs was determined by RT-PCR. Relative expression of ERK and AKT was determined by Western blot analysis. Hair growth-promoting effects were also measured in C57BL/6J mice model. RESULTS: DS-CSE treatment significantly proliferated DPCs, relating to the increased proportion of DPCs in S and G2 /M phases, the activation of potassium channels and the promoted phosphorylation of ERK and AKT in DPCs. DS-CSE treatment also significantly upregulated the mRNA levels of HGF, VEGF and IGF-1, and downregulated the mRNA level of TGF-ß1. Topical application of DS-CSE promoted hair growth on shaven back mice and also upregulated the expression of VEGF in mice. CONCLUSION: Our results demonstrated that DS-CSE exerts a hair growth-promoting effect in vitro and in vivo by proliferating DPCs through the ERK and AKT signaling pathways and regulating the expression of growth factors.


Asunto(s)
Camellia , Folículo Piloso , Humanos , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Factor A de Crecimiento Endotelial Vascular/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Camellia/genética , Camellia/metabolismo , Células Cultivadas , Ratones Endogámicos C57BL , Cabello , Proliferación Celular , Semillas , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , ARN Mensajero/metabolismo
17.
Plant J ; 110(3): 881-898, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35306701

RESUMEN

The section Oleifera (Theaceae) has attracted attention for the high levels of unsaturated fatty acids found in its seeds. Here, we report the chromosome-scale genome of the sect. Oleifera using diploid wild Camellia lanceoleosa with a final size of 3.00 Gb and an N50 scaffold size of 186.43 Mb. Repetitive sequences accounted for 80.63% and were distributed unevenly across the genome. Camellia lanceoleosa underwent a whole-genome duplication event approximately 65 million years ago (65 Mya), prior to the divergence of C. lanceoleosa and Camellia sinensis (approx. 6-7 Mya). Syntenic comparisons of these two species elucidated the genomic rearrangement, appearing to be driven in part by the activity of transposable elements. The expanded and positively selected genes in C. lanceoleosa were significantly enriched in oil biosynthesis, and the expansion of homomeric acetyl-coenzyme A carboxylase (ACCase) genes and the seed-biased expression of genes encoding heteromeric ACCase, diacylglycerol acyltransferase, glyceraldehyde-3-phosphate dehydrogenase and stearoyl-ACP desaturase could be of primary importance for the high oil and oleic acid content found in C. lanceoleosa. Theanine and catechins were present in the leaves of C. lanceoleosa. However, caffeine can not be dectected in the leaves but was abundant in the seeds and roots. The functional and transcriptional divergence of genes encoding SAM-dependent N-methyltransferases may be associated with caffeine accumulation and distribution. Gene expression profiles, structural composition and chromosomal location suggest that the late-acting self-incompatibility of C. lanceoleosa is likely to have favoured a novel mechanism co-occurring with gametophytic self-incompatibility. This study provides valuable resources for quantitative and qualitative improvements and genome assembly of polyploid plants in sect. Oleifera.


Asunto(s)
Camellia sinensis , Camellia , Cafeína/metabolismo , Camellia/genética , Camellia/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Cromosomas , Evolución Molecular
18.
Protein Expr Purif ; 194: 106078, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35272013

RESUMEN

Camellia vietnamensis Huang, which belongs to Camellia oleifera, is a traditional Chinese medicinal plant widely planted on Hainan Island. Tea saponin is an important functional component of C. vietnamensis, and squalene is the precursor substance that controls its formation. Squalene synthase (SQS: EC 2.5.1.21) synthesizes squalene from 2 molecules of farnesyl pyrophosphate (FPP). In this study, 1683 bp of the C. vietnamensis SQS gene, designated as CvSQS, was cloned and encoded 414 amino acids. Bioinformatics and phylogenetic tree analysis revealed the high homology of CvSQS with squalene synthases from other plants. For soluble proteins, the carboxy-terminal deleted CvSQS was obtained for expression in Escherichia coli Transetta (DE3), and the recombinant protein with a weight of 42.5 kDa was detected using SDS-PAGE and Western blot. After an enzymatic reaction, the presence of squalene in the product was analyzed using GC-MS detection, which indicated that CvSQS had catalytic activity. The tissue specificity of CvSQS and its presence in seeds at various ripening stages was detected by q-RT PCR. CvSQS had the highest transcriptional level in leaves, followed by seeds, roots, and flowers; the amount of CvSQS in the seeds was highest in September. The identification and functional characterization of CvSQS is essential for further studies on the regulation mechanism of tea saponin in C. vietnamensis.


Asunto(s)
Camellia , Saponinas , Camellia/genética , Camellia/metabolismo , Clonación Molecular , ADN Complementario , Farnesil Difosfato Farnesil Transferasa/química , Filogenia , Escualeno/metabolismo ,
19.
Genome Biol ; 23(1): 14, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012630

RESUMEN

BACKGROUND: As a perennial crop, oil-Camellia possesses a long domestication history and produces high-quality seed oil that is beneficial to human health. Camellia oleifera Abel. is a sister species to the tea plant, which is extensively cultivated for edible oil production. However, the molecular mechanism of the domestication of oil-Camellia is still limited due to the lack of sufficient genomic information. RESULTS: To elucidate the genetic and genomic basis of evolution and domestication, here we report a chromosome-scale reference genome of wild oil-Camellia (2.95 Gb), together with transcriptome sequencing data of 221 cultivars. The oil-Camellia genome, assembled by an integrative approach of multiple sequencing technologies, consists of a large proportion of repetitive elements (76.1%) and high heterozygosity (2.52%). We construct a genetic map of high-density corrected markers by sequencing the controlled-pollination hybrids. Genome-wide association studies reveal a subset of artificially selected genes that are involved in the oil biosynthesis and phytohormone pathways. Particularly, we identify the elite alleles of genes encoding sugar-dependent triacylglycerol lipase 1, ß-ketoacyl-acyl carrier protein synthase III, and stearoyl-acyl carrier protein desaturases; these alleles play important roles in enhancing the yield and quality of seed oil during oil-Camellia domestication. CONCLUSIONS: We generate a chromosome-scale reference genome for oil-Camellia plants and demonstrate that the artificial selection of elite alleles of genes involved in oil biosynthesis contributes to oil-Camellia domestication.


Asunto(s)
Camellia , Camellia/genética , Camellia/metabolismo , Domesticación , Genoma de Planta , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Metagenómica , Aceites de Plantas/metabolismo
20.
Plant Physiol Biochem ; 171: 95-104, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34974387

RESUMEN

Camellia chekiangoleosa has a higher oleic acid content and a shorter reproductive cycle than typical oil tea plants. It was intensively sampled over six C. chekiangoleosa seed development stages. The content of fatty acids determined by GC showed that the accumulation of fatty acids gradually increased from the S1 to S5 stages, and the maximum concentration was reached in S5. Then, fatty acids declined slightly in S6. The main fatty acid component showed the same accumulation trend as the total fatty acids, except linolenic acid, which remained at a low level throughout seed developmental stages. Changes in the expression of fatty acid accumulation-related genes were monitored using second-generation and SMRT full-length transcriptome sequencing. Finally, 18.92 G accurate and reliable data were obtained. Differential expression analysis and weighted coexpression analysis revealed two "gene modules" significantly associated with oleic acid and linoleic acid contents, and the high expression of ENR, KAS I, and KAS II, which accumulate substrates for oleic acid synthesis, was thought to be responsible for the rapid accumulation of fatty acids in the early stage. The rapid increase in fatty acids in the second stage may be closely related to the synergy between the high expression of SAD and low expression of FAD2. In addition, many transcription factors, such as ERF, GRAS, GRF, MADS, MYB and WRKY, may be involved in the fatty acid synthesis. Our data provide a rich resource for further studies on the regulation of fatty acid synthesis in C. chekiangoleosa.


Asunto(s)
Camellia , Transcriptoma , Camellia/genética , Camellia/metabolismo , Ácidos Grasos , Frutas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácido Oléico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo ,
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA