RESUMEN
BACKGROUND/AIMS: Tea, produced from the evergreen Camellia sinensis, has reported therapeutic properties against multiple pathologies, including hypertension. Although some studies validate the health benefits of tea, few have investigated the molecular mechanisms of action. The KCNQ5 voltage-gated potassium channel contributes to vascular smooth muscle tone and neuronal M-current regulation. METHODS: We applied electrophysiology, myography, mass spectrometry and in silico docking to determine effects and their underlying molecular mechanisms of tea and its components on KCNQ channels and arterial tone. RESULTS: A 1% green tea extract (GTE) hyperpolarized cells by augmenting KCNQ5 activity >20-fold at resting potential; similar effects of black tea were inhibited by milk. In contrast, GTE had lesser effects on KCNQ2/Q3 and inhibited KCNQ1/E1. Tea polyphenols epicatechin gallate (ECG) and epigallocatechin-3-gallate (EGCG), but not epicatechin or epigallocatechin, isoform-selectively hyperpolarized KCNQ5 activation voltage dependence. In silico docking and mutagenesis revealed that activation by ECG requires KCNQ5-R212, at the voltage sensor foot. Strikingly, ECG and EGCG but not epicatechin KCNQ-dependently relaxed rat mesenteric arteries. CONCLUSION: KCNQ5 activation contributes to vasodilation by tea; ECG and EGCG are candidates for future anti-hypertensive drug development.
Asunto(s)
Catequina/análogos & derivados , Canales de Potasio KCNQ/química , Canal de Potasio KCNQ1/química , Arterias Mesentéricas/efectos de los fármacos , Extractos Vegetales/farmacología , Té/química , Animales , Sitios de Unión , Catequina/química , Catequina/farmacología , Canales de Potasio KCNQ/agonistas , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Arterias Mesentéricas/fisiología , Leche/química , Simulación del Acoplamiento Molecular , Miografía , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Extractos Vegetales/química , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Wistar , Técnicas de Cultivo de Tejidos , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Xenopus laevisRESUMEN
Jervell and Lange-Nielsen syndrome (JLNS) is one of the most severe life-threatening cardiac arrhythmias. Patients display delayed cardiac repolarization, associated high risk of sudden death due to ventricular tachycardia, and congenital bilateral deafness. In contrast to the autosomal dominant forms of long QT syndrome, JLNS is a recessive trait, resulting from homozygous (or compound heterozygous) mutations in KCNQ1 or KCNE1. These genes encode the α and ß subunits, respectively, of the ion channel conducting the slow component of the delayed rectifier K(+) current, IKs. We used complementary approaches, reprogramming patient cells and genetic engineering, to generate human induced pluripotent stem cell (hiPSC) models of JLNS, covering splice site (c.478-2A>T) and missense (c.1781G>A) mutations, the two major classes of JLNS-causing defects in KCNQ1. Electrophysiological comparison of hiPSC-derived cardiomyocytes (CMs) from homozygous JLNS, heterozygous, and wild-type lines recapitulated the typical and severe features of JLNS, including pronounced action and field potential prolongation and severe reduction or absence of IKs. We show that this phenotype had distinct underlying molecular mechanisms in the two sets of cell lines: the previously unidentified c.478-2A>T mutation was amorphic and gave rise to a strictly recessive phenotype in JLNS-CMs, whereas the missense c.1781G>A lesion caused a gene dosage-dependent channel reduction at the cell membrane. Moreover, adrenergic stimulation caused action potential prolongation specifically in JLNS-CMs. Furthermore, sensitivity to proarrhythmic drugs was strongly enhanced in JLNS-CMs but could be pharmacologically corrected. Our data provide mechanistic insight into distinct classes of JLNS-causing mutations and demonstrate the potential of hiPSC-CMs in drug evaluation.
Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Síndrome de Jervell-Lange Nielsen/tratamiento farmacológico , Síndrome de Jervell-Lange Nielsen/genética , Síndrome de Jervell-Lange Nielsen/fisiopatología , Canal de Potasio KCNQ1/genética , Modelos Biológicos , Fenotipo , Potenciales de Acción/fisiología , Análisis de Varianza , Secuencia de Bases , Línea Celular , Genes Recesivos/genética , Ingeniería Genética , Humanos , Técnicas In Vitro , Canal de Potasio KCNQ1/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense/genética , Miocitos Cardíacos/fisiología , Análisis de Secuencia de ADNRESUMEN
KCNQ1 and hERG encode the voltage-gated potassium channel α-subunits of the cardiac repolarizing currents I(Ks) and I(Kr), respectively. These currents function in vivo with some redundancy to maintain appropriate action potential durations (APDs), and loss-of-function mutations in these channels manifest clinically as long QT syndrome, characterized by the prolongation of the QT interval, polymorphic ventricular tachycardia, and sudden cardiac death. Previous cellular electrophysiology experiments in transgenic rabbit cardiomyocytes and heterologous cell lines demonstrated functional downregulation of complementary repolarizing currents. Biochemical assays indicated direct, protein-protein interactions between KCNQ1 and hERG may underlie the interplay between I(Ks) and I(Kr). Our objective was to investigate hERG-KCNQ1 interactions in the intact cellular environment primarily through acceptor photobleach FRET (apFRET) experiments. We quantitatively assessed the extent of interactions based on fluorophore location and the potential regulation of interactions by physiologically relevant signals. apFRET experiments established specific hERG-KCNQ1 associations in both heterologous and primary cardiomyocytes. The largest FRET efficiency (E(f); 12.0 ± 5.2%) was seen between ion channels with GFP variants fused to the COOH termini. Acute treatment with forskolin + IBMX or a membrane-permeable cAMP analog significantly and specifically reduced the extent of hERG-KCNQ1 interactions (by 41 and 38%, respectively). Our results demonstrate direct interactions between KCNQ1 and hERG occur in both intact heterologous cells and primary cardiomyocytes and are mediated by their COOH termini. Furthermore, this interplay between channel proteins is regulated by intracellular cAMP.
Asunto(s)
AMP Cíclico/química , Canales de Potasio Éter-A-Go-Go/química , Canal de Potasio KCNQ1/química , 1-Metil-3-Isobutilxantina/administración & dosificación , Potenciales de Acción/fisiología , Animales , Células CHO , Células Cultivadas , Colforsina/administración & dosificación , Cricetinae , Cricetulus , AMP Cíclico/agonistas , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/fisiología , Femenino , Células HEK293 , Corazón/efectos de los fármacos , Corazón/fisiología , Humanos , Canal de Potasio KCNQ1/fisiología , Masculino , Inhibidores de Fosfodiesterasa/administración & dosificación , ConejosRESUMEN
The slowly activating delayed rectifier K(+) channels (I(Ks)) are one of the main pharmacological targets for development of drugs against cardiovascular diseases. Cardiac I(Ks) consists of KCNQ1 plus KCNE1 subunits. Ginsenoside, one of the active ingredient of Panax ginseng, enhances cardiac I(Ks) currents. However, little is known about the molecular mechanisms of how ginsenoside interacts with channel proteins to enhance cardiac I(Ks). In the present study, we investigated ginsenoside Rg(3) (Rg(3)) effects on human I(Ks) by co-expressing human KCNQ1 plus KCNE1 subunits in Xenopus oocytes. Rg(3) enhanced I(Ks) currents in concentration- and voltage-dependent manners. The EC(50) was 15.2+/-8.7 microM. However, in oocytes expressing KCNQ1 alone, Rg(3) inhibited the currents with concentration- and voltage-dependent manners. The IC(50) was 4.8+/-0.6 microM. Since Rg(3) acts opposite ways in oocytes expressing KCNQ1 alone or KCNQ1 plus KCNE1 subunits, we examined Rg(3) effects after co-expression of different ratios of KCNE1 and KCNQ1. The increase of KCNE1/KCNQ1 ratio converted I(Ks) inhibition to I(Ks) activations. One to ten ratio of KCNE1 and KCNQ1 subunit is required for Rg(3) activation of I(Ks). Mutations of K318 and V319 into K318Y and V319Y of KCNQ1 channel abolished Rg(3) effects on KCNQ1 or KCNQ1 plus KCNE1 channel currents. The docked modeling revealed that K318 residue plays a key role in stabilization between Rg(3) and KCNQ1 plus KCNE1 or KCNQ1 subunit. These results indicate that Rg(3)-induced activation of I(Ks) requires co-assembly of KCNQ1 and KCNE1 subunits and achieves this through interaction with residues K318 and V319 of KCNQ1 subunit.
Asunto(s)
Ginsenósidos/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio KCNQ1/agonistas , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Subunidades de Proteína/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Secuencia de Bases , Dominio Catalítico , Relación Dosis-Respuesta a Droga , Humanos , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/genética , Lisina/metabolismo , Mutación , Oocitos/metabolismo , Panax/química , Canales de Potasio con Entrada de Voltaje/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , Valina/metabolismo , Xenopus laevisRESUMEN
Ephedrine (Eph) is an alkaloid extracted from the Chinese traditional medicine plant Ephedra Sinica or Ma huang, which has been known for effects on the central nervous system, cardiovascular system, and smooth muscles. However, the corresponding molecular mechanism of these effects remains unknown. In this study, we investigated the influences of Eph on heart rate, QTc interval in vivo, and the slowly activated K channels (IKs) that were composed of both KCNQ1 and KCNE1 subunits in vitro. Results demonstrated that Eph, but not pseudoephedrine, could increase the heart rate and shorten QTc interval of BALB/c mouse. Besides, Eph markedly activated cardiac IKs currents with EC50 = 50 nM and shifted G-V curves to left. But pseudoephedrine had no effects on Iks currents. The onset and offset time constants of IKs currents activated by Eph at 1 M were tauon = 49 seconds and tauoff = 400 seconds. A pair of binding sites of Eph on KCNQ1/KCNE1 channel was also shown to occur at F296 and Y299 in the S5-S6 P-loop of the KCNQ1 channel. As both amino acids are highly conserved in the KCNQ family, Eph can possibly activate other members of the KCNQ family. The mechanism of Iks activated by Eph may provide a clue for drug design in the future.