Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Med Case Rep ; 18(1): 3, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38167335

RESUMEN

BACKGROUND: Dravet syndrome is a severe epilepsy disorder characterized by drug-resistant seizures and cognitive dysfunction, often caused by SCN1A gene mutations. It leads to neurodevelopmental delays and motor, behavioral, and cognitive impairments, with a high mortality rate. Treatment options include sodium valproate, clobazam, and newer agents such as cannabidiol and fenfluramine. Zonisamide, which is used in some cases, can cause hyperthermia and oligohydrosis. Herein, we present a case of a patient with Dravet syndrome whose seizures were controlled by treating infections and switching from zonisamide to perampanel. CASE PRESENTATION: A 24-year-old Japanese man with Dravet syndrome presented to our department with aspiration pneumonia. The patient had been treated with valproate, sodium bromide, and zonisamide for a long time. His seizures were triggered by hyperthermia. The patient was experiencing a sustained pattern of hyperthermia caused by infection, zonisamide, and persistent convulsions, which caused a vicious cycle of further seizures. In this case, the control of infection and switching from zonisamide to perampanel improved seizure frequency. CONCLUSION: Dravet syndrome usually begins with generalized clonic seizures in its infancy because of fever and progresses to various seizure types, often triggered by fever or seizure-induced heat due to mutations in the SCN1A gene that increases neuronal excitability. Seizures usually diminish with age, but the heat sensitivity remains. In this case, seizures were increased by repeated infections, and hyperthermia was induced by zonisamide, resulting in status epilepticus. Perampanel, an aminomethylphosphonic acid receptor antagonist, decreased seizures but caused psychiatric symptoms. It was effective in suppressing seizures of Dravet syndrome in this patient.


Asunto(s)
Epilepsias Mioclónicas , Hipertermia Inducida , Masculino , Humanos , Adulto Joven , Adulto , Zonisamida/uso terapéutico , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Ácido Valproico/uso terapéutico , Hipertermia/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico
2.
PLoS One ; 18(1): e0280842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36701411

RESUMEN

A purified preparation of cannabidiol (CBD), a cannabis constituent, has been approved for the treatment of intractable childhood epilepsies such as Dravet syndrome. Extensive pharmacological characterization of CBD shows activity at numerous molecular targets but its anticonvulsant mechanism(s) of action is yet to be delineated. Many suggest that the anticonvulsant action of CBD is the result of G protein-coupled receptor 55 (GPR55) inhibition. Here we assessed whether Gpr55 contributes to the strain-dependent seizure phenotypes of the Scn1a+/- mouse model of Dravet syndrome. The Scn1a+/- mice on a 129S6/SvEvTac (129) genetic background have no overt phenotype, while those on a [129 x C57BL/6J] F1 background exhibit a severe phenotype that includes hyperthermia-induced seizures, spontaneous seizures and reduced survival. We observed greater Gpr55 transcript expression in the cortex and hippocampus of mice on the seizure-susceptible F1 background compared to those on the seizure-resistant 129 genetic background, suggesting that Gpr55 might be a genetic modifier of Scn1a+/- mice. We examined the effect of heterozygous genetic deletion of Gpr55 and pharmacological inhibition of GPR55 on the seizure phenotypes of F1.Scn1a+/- mice. Heterozygous Gpr55 deletion and inhibition of GPR55 with CID2921524 did not affect the temperature threshold of a thermally-induced seizure in F1.Scn1a+/- mice. Neither was there an effect of heterozygous Gpr55 deletion observed on spontaneous seizure frequency or survival of F1.Scn1a+/- mice. Our results suggest that GPR55 antagonism may not be a suitable anticonvulsant target for Dravet syndrome drug development programs, although future research is needed to provide more definitive conclusions.


Asunto(s)
Cannabidiol , Epilepsias Mioclónicas , Hipertermia Inducida , Convulsiones Febriles , Ratones , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.1/genética , Ratones Endogámicos C57BL , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Convulsiones Febriles/tratamiento farmacológico , Convulsiones Febriles/genética , Receptores de Cannabinoides/metabolismo
3.
Cannabis Cannabinoid Res ; 8(3): 495-504, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36269656

RESUMEN

Introduction: The endocannabinoid system contributes to the homeostatic response to seizure activity in epilepsy, a disease of brain hyperexcitability. Indeed, studies using conventional epilepsy models have shown that seizures increase endocannabinoids in the brain. However, it is unknown whether endocannabinoids and structurally related fatty acid amides and monoacylglycerols are similarly released in response to acute seizures in animal models of drug-resistant epilepsy. Therefore, in this study, we investigated whether a hyperthermia-induced seizure increased concentrations of endocannabinoids and related signaling lipids in the Scn1a+/- mouse model of Dravet syndrome. Materials and Methods: We compared hippocampal concentrations of the major endocannabinoids and related monoglycerols and N-acylethanolamines in wild-type mice, naïve Scn1a+/- mice, and Scn1a+/- mice primed with a single, hyperthermia-induced, generalized tonic-clonic seizure. Samples were collected 5 and 60 min following the seizure and then analyzed with LC-MS/MS. Results: We found that a hyperthermia-induced seizure in Scn1a+/- mice did not affect hippocampal concentrations of the major endocannabinoids, 2-AG and anandamide, or the N-acylethanolamines studied, although the sampling of tissue 5 min postseizure may have been too late to capture any effect on these lipids. Heterozygous deletion of Scn1a alone did not affect these lipid signaling molecules. Notably, however, we found that a hyperthermia-induced seizure significantly increased hippocampal concentrations of the monoacylglycerols, 2-linoleoyl glycerol (2-LG) and 1-linoleoyl glycerol (1-LG), in Scn1a+/- mice. Conclusions: Our results show the unprecedented elevation of the lesser-studied endocannabinoid-related monoacylglycerols, 2-LG and 1-LG, following a hyperthermia-induced seizure in a mouse model of Dravet syndrome. Future research is needed to comprehensively explore the function of these lipid signaling molecules during seizure activity and whether their actions can be exploited to develop new therapeutics.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Hipertermia Inducida , Convulsiones Febriles , Ratones , Animales , Endocannabinoides , Glicerol , Canal de Sodio Activado por Voltaje NAV1.1/genética , Cromatografía Liquida , Monoglicéridos , Espectrometría de Masas en Tándem , Epilepsias Mioclónicas/genética , Convulsiones , Hipocampo , Modelos Animales de Enfermedad
4.
Neurobiol Dis ; 167: 105672, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35219855

RESUMEN

Thalamocortical network dysfunction contributes to seizures and sleep deficits in Dravet syndrome (DS), an infantile epileptic encephalopathy, but the underlying molecular and cellular mechanisms remain elusive. DS is primarily caused by mutations in the SCN1A gene encoding the voltage-gated sodium channel NaV1.1, which is highly expressed in GABAergic reticular thalamus (nRT) neurons as well as glutamatergic thalamocortical neurons. We hypothesized that NaV1.1 haploinsufficiency alters somatosensory corticothalamic circuit function through both intrinsic and synaptic mechanisms in nRT and thalamocortical neurons. Using Scn1a heterozygous mice of both sexes aged P25-P30, we discovered reduced excitability of nRT neurons and thalamocortical neurons in the ventral posterolateral (VPL) thalamus, while thalamocortical ventral posteromedial (VPM) neurons exhibited enhanced excitability. NaV1.1 haploinsufficiency enhanced GABAergic synaptic input and reduced glutamatergic input to VPL neurons, but not VPM neurons. In addition, glutamatergic input to nRT neurons was reduced in Scn1a heterozygous mice. These findings introduce alterations in glutamatergic synapse function and aberrant glutamatergic neuron excitability in the thalamus as disease mechanisms in DS, which has been widely considered a disease of GABAergic neurons. This work reveals additional complexity that expands current models of thalamic dysfunction in DS and identifies new components of corticothalamic circuitry as potential therapeutic targets.


Asunto(s)
Epilepsias Mioclónicas , Neuronas GABAérgicas , Animales , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/genética , Femenino , Neuronas GABAérgicas/fisiología , Haploinsuficiencia , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.1/genética , Tálamo
5.
Epilepsia ; 62(12): 3131-3142, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34713469

RESUMEN

OBJECTIVE: Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy with early childhood onset. Patients with DS do not respond well to antiepileptic drugs and have only a few treatment options available. Here, we evaluated the effect of medium chain triglyceride (MCT) diet therapy in a mouse model of DS. METHODS: Scn1aR1407X/+ DS mice were given diets supplemented with MCTs with varying ratios of decanoic (C10) and octanoic (C8) acid or a control diet for 4 weeks. Video monitoring was performed to evaluate spontaneous convulsive seizure frequency. Susceptibility to hyperthermia-induced seizures was also examined. Medium chain fatty acids, and mitochondrial and antioxidant markers were assessed in brain homogenate. RESULTS: Dietary intervention with MCTs significantly prolonged survival and reduced convulsive seizure frequency during the critical period of highest seizure occurrence in the Scn1aR1407X/+ DS mice. Moreover, MCT diet therapy showed protective effects against hyperthermia-induced seizures. We demonstrated that coadministration of C10/C8 was effective at reducing both seizures and mortality, whereas C10 alone only reduced mortality, suggesting that the ratio of C10 to C8 in the MCT is an important factor for efficacy. When C10 and C8 are supplemented at an 80:20 ratio in the diet, C10 accumulates in the brain in high enough concentrations to enhance brain energy metabolism by both stimulating mitochondrial enrichment and increasing its antioxidant status. SIGNIFICANCE: The results from this study indicate that MCT diet therapy may provide therapeutic benefits in DS. Future clinical studies would elucidate whether these positive effects are mirrored in human patients.


Asunto(s)
Antioxidantes , Epilepsias Mioclónicas , Animales , Antioxidantes/uso terapéutico , Dieta , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/tratamiento farmacológico , Ratones , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones/tratamiento farmacológico , Convulsiones/prevención & control , Triglicéridos
6.
Biochem Biophys Res Commun ; 554: 151-157, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33798941

RESUMEN

It has been suggested that the intelligence quotient of children born to pregnant women taking 1000 mg or more of valproic acid per day is lower than that of children born to pregnant women taking other antiepileptic drugs. However, the mechanism whereby intelligence quotient is decreased in children exposed to valproic acid during the fetal period has not yet been elucidated. Therefore, we used the human neuroblastoma cell line SH-SY5Y to evaluate the effects of antiepileptic drugs containing valproic acid on nerve cells. We assessed the anti-proliferative effects of drugs in these cells via WST-8 colorimetric assay, using the Cell Counting Kit-8. We also quantified drug effects on axonal elongation from images using ImageJ software. We also evaluated drug effects on mRNA expression levels on molecules implicated in nervous system development and folic acid uptake using real-time PCR. We observed that carbamazepine and lamotrigen were toxic to SH-SY5Y cells at concentrations >500 µM. In contrast, phenytoin and valproic acid were not toxic to these cells. Carbamazepine, lamotrigen, phenytoin, and valproic acid did not affect axonal outgrowth in SH-SY5Y cells. Sodium channel neuronal type 1a (SCN1A) mRNA expression-level ratios increased when valproic acid was supplemented to cells. The overexpression of SCN1A mRNA due to high valproic acid concentrations during the fetal period may affect neurodevelopment. However, since detailed mechanisms have not yet been elucidated, it is necessary to evaluate it by comparing cell axon elongation and SCN1A protein expression due to high-concentration valproic acid exposure.


Asunto(s)
Anticonvulsivantes/farmacología , Epilepsia/tratamiento farmacológico , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Neuroblastoma/tratamiento farmacológico , Proyección Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Carbamazepina/farmacología , Línea Celular Tumoral , Proliferación Celular , Niño , Epilepsia/complicaciones , Epilepsia/metabolismo , Femenino , Humanos , Lamotrigina/farmacología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Neuroblastoma/complicaciones , Neuroblastoma/metabolismo , Fenitoína/farmacología , Embarazo , Ácido Valproico/farmacología
7.
Epilepsy Behav ; 110: 107152, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32585475

RESUMEN

Current antiepileptic drugs (AEDs) are undesirable for many reasons including the inability to reduce seizures in certain types of epilepsy, such as Dravet syndrome (DS) where in one-third of patients does not respond to current AEDs, and severe adverse effects that are frequently experienced by patients. Epidiolex, a cannabidiol (CBD)-based drug, was recently approved for treatment of DS. While Epidiolex shows great promise in reducing seizures in patients with DS, it is used in conjunction with other AEDs and can cause liver toxicity. To investigate whether other cannabis-derived compounds could also reduce seizures, the antiepileptic effects of CBD, Δ9-tetrahydrocannabinol (THC), cannabidivarin (CBDV), cannabinol (CBN), and linalool (LN) were compared in both a chemically-induced (pentylenetetrazole, PTZ) and a DS (scn1Lab-/-) seizure models. Zebrafish (Danio rerio) that were either wild-type (Tupfel longfin) or scn1Lab-/- (DS) were exposed to CBD, THC, CBDV, CBN, or LN for 24 h from 5 to 6 days postfertilization. Following exposure, total distance traveled was measured in a ViewPoint Zebrabox to determine if these compounds reduced seizure-like activity. Cannabidiol (0.6 and 1 µM) and THC (1 and 4 µM) significantly reduced PTZ-induced total distance moved. At the highest THC concentration, the significant reduction in PTZ-induced behavior was likely the result of sedation as opposed to antiseizure activity. In the DS model, CBD (0.6 µM), THC (1 µM), CBN (0.6 and 1 µM), and LN (4 µM) significantly reduced total distance traveled. Cannabinol was the most effective at reducing total distance relative to controls. In addition to CBD, other cannabis-derived compounds showed promise in reducing seizure-like activity in zebrafish. Specifically, four of the five compounds were effective in the DS model, whereas in the PTZ model, only CBD and THC were, suggesting a divergence in the mode of action among the cannabis constituents.


Asunto(s)
Cannabidiol/uso terapéutico , Cannabinoides/uso terapéutico , Cannabinol/uso terapéutico , Dronabinol/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones/genética , Proteínas de Pez Cebra/genética , Monoterpenos Acíclicos/uso terapéutico , Animales , Animales Modificados Genéticamente , Anticonvulsivantes/uso terapéutico , Cannabis , Relación Dosis-Respuesta a Droga , Pentilenotetrazol/toxicidad , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Pez Cebra
8.
Proc Natl Acad Sci U S A ; 117(12): 6836-6843, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32144139

RESUMEN

Visuomotor impairments characterize numerous neurological disorders and neurogenetic syndromes, such as autism spectrum disorder (ASD) and Dravet, Fragile X, Prader-Willi, Turner, and Williams syndromes. Despite recent advances in systems neuroscience, the biological basis underlying visuomotor functional impairments associated with these clinical conditions is poorly understood. In this study, we used neuroimaging connectomic approaches to map the visuomotor integration (VMI) system in the human brain and investigated the topology approximation of the VMI network to the Allen Human Brain Atlas, a whole-brain transcriptome-wide atlas of cortical genetic expression. We found the genetic expression of four genes-TBR1, SCN1A, MAGEL2, and CACNB4-to be prominently associated with visuomotor integrators in the human cortex. TBR1 gene transcripts, an ASD gene whose expression is related to neural development of the cortex and the hippocampus, showed a central spatial allocation within the VMI system. Our findings delineate gene expression traits underlying the VMI system in the human cortex, where specific genes, such as TBR1, are likely to play a central role in its neuronal organization, as well as on specific phenotypes of neurogenetic syndromes.


Asunto(s)
Canales de Calcio/genética , Corteza Motora/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Trastornos del Neurodesarrollo/patología , Proteínas/genética , Proteínas de Dominio T Box/genética , Corteza Visual/fisiopatología , Adulto , Anciano , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Mapeo Encefálico , Estudios de Cohortes , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/genética , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patología , Desempeño Psicomotor , Percepción Visual
9.
Epilepsia ; 60(11): 2224-2234, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31625159

RESUMEN

OBJECTIVE: Cannabidiol (CBD) has been approved by the US Food and Drug Administration (FDA) to treat intractable childhood epilepsies, such as Dravet syndrome and Lennox-Gastaut syndrome. However, the intrinsic anticonvulsant activity of CBD has been questioned due to a pharmacokinetic interaction between CBD and a first-line medication, clobazam. This recognized interaction has led to speculation that the anticonvulsant efficacy of CBD may simply reflect CBD augmenting clobazam exposure. The present study aimed to address the nature of the interaction between CBD and clobazam. METHODS: We examined whether CBD inhibits human CYP3A4 and CYP2C19 mediated metabolism of clobazam and N-desmethylclobazam (N-CLB), respectively, and performed studies assessing the effects of CBD on brain and plasma pharmacokinetics of clobazam in mice. We then used the Scn1a+/- mouse model of Dravet syndrome to examine how CBD and clobazam interact. We compared anticonvulsant effects of CBD-clobazam combination therapy to monotherapy against thermally-induced seizures, spontaneous seizures and mortality in Scn1a+/- mice. In addition, we used Xenopus oocytes expressing γ-aminobutyric acid (GABA)A receptors to investigate the activity of GABAA receptors when treated with CBD and clobazam together. RESULTS: CBD potently inhibited CYP3A4 mediated metabolism of clobazam and CYP2C19 mediated metabolism of N-CLB. Combination CBD-clobazam treatment resulted in greater anticonvulsant efficacy in Scn1a+/- mice, but only when an anticonvulsant dose of CBD was used. It is important to note that a sub-anticonvulsant dose of CBD did not promote greater anticonvulsant effects despite increasing plasma clobazam concentrations. In addition, we delineated a novel pharmacodynamic mechanism where CBD and clobazam together enhanced inhibitory GABAA receptor activation. SIGNIFICANCE: Our study highlights the involvement of both pharmacodynamic and pharmacokinetic interactions between CBD and clobazam that may contribute to its efficacy in Dravet syndrome.


Asunto(s)
Anticonvulsivantes/farmacocinética , Cannabidiol/farmacocinética , Clobazam/farmacocinética , Epilepsias Mioclónicas/metabolismo , Animales , Anticonvulsivantes/administración & dosificación , Cannabidiol/administración & dosificación , Clobazam/administración & dosificación , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Interacciones Farmacológicas/fisiología , Quimioterapia Combinada , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Humanos , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1/genética
10.
JAAPA ; 32(3): 16-18, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30817475
11.
Epilepsy Res ; 150: 7-16, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30605865

RESUMEN

The present study was carried out to evaluate: the antiepileptic effect of dietary curcumin, and the effect of epileptic state and curcumin on the molecular expression of voltage-activated Na+ channel subtypes Nav1.1 and Nav1.6 in the iron-induced experimental epilepsy in the rat. Rats were divided into four groups; Group I (control rats), Group II (epileptic rats), Group III (curcumin-fed epileptic rats), and Group IV (curcumin-fed rats). Curcumin was fed chronically to rats approximately at the dose of 100 mg/kg body wt. The animals were made epileptic by intracortical injection of FeCl3. The mRNA and protein expressions of Nav1.1 and Nav1.6 were examined by RT-PCR analysis and immuno-histochemistry. Results showed a significant increase (upregulation) in the expression of both Nav1.1 and Nav1.6 with seizure activity in the cortex and hippocampus of epileptic rats. Epileptic rats fed with curcumin showed a marked decrease in epileptiform activity, and reduced mRNA and protein levels of Nav1.1. It appears that the antiepileptic action of curcumin may be associated with the downregulation of Nav1.1 in the cortex.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Curcumina/uso terapéutico , Epilepsia/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/inducido químicamente , Hierro/toxicidad , Masculino , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
12.
PLoS One ; 12(7): e0180154, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28683073

RESUMEN

Ion channels regulate a variety of physiological processes and represent an important class of drug target. Among the many methods of studying ion channel function, patch clamp electrophysiology is considered the gold standard by providing the ultimate precision and flexibility. However, its utility in ion channel drug discovery is impeded by low throughput. Additionally, characterization of endogenous ion channels in primary cells remains technical challenging. In recent years, many automated patch clamp (APC) platforms have been developed to overcome these challenges, albeit with varying throughput, data quality and success rate. In this study, we utilized SyncroPatch 768PE, one of the latest generation APC platforms which conducts parallel recording from two-384 modules with giga-seal data quality, to push these 2 boundaries. By optimizing various cell patching parameters and a two-step voltage protocol, we developed a high throughput APC assay for the voltage-gated sodium channel Nav1.7. By testing a group of Nav1.7 reference compounds' IC50, this assay was proved to be highly consistent with manual patch clamp (R > 0.9). In a pilot screening of 10,000 compounds, the success rate, defined by > 500 MΩ seal resistance and >500 pA peak current, was 79%. The assay was robust with daily throughput ~ 6,000 data points and Z' factor 0.72. Using the same platform, we also successfully recorded endogenous voltage-gated potassium channel Kv1.3 in primary T cells. Together, our data suggest that SyncroPatch 768PE provides a powerful platform for ion channel research and drug discovery.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Potenciales de la Membrana/fisiología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Técnicas de Placa-Clamp/métodos , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Animales , Células CHO , Cricetulus , Evaluación Preclínica de Medicamentos , Expresión Génica , Ensayos Analíticos de Alto Rendimiento/instrumentación , Canal de Potasio Kv1.3/deficiencia , Canal de Potasio Kv1.3/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.3/genética , Canal de Sodio Activado por Voltaje NAV1.3/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , Técnicas de Placa-Clamp/instrumentación , Cultivo Primario de Células , Ratas , Canales de Sodio/genética , Canales de Sodio/metabolismo , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Transgenes
13.
Exp Neurol ; 293: 159-171, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28373025

RESUMEN

Mutations in the voltage-gated sodium channel (VGSC) gene SCN1A, encoding the Nav1.1 channel, are responsible for a number of epilepsy disorders including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS). Patients with SCN1A mutations often experience prolonged early-life febrile seizures (FSs), raising the possibility that these events may influence epileptogenesis and lead to more severe adult phenotypes. To test this hypothesis, we subjected 21-23-day-old mice expressing the human SCN1A GEFS+ mutation R1648H to prolonged hyperthermia, and then examined seizure and behavioral phenotypes during adulthood. We found that early-life FSs resulted in lower latencies to induced seizures, increased severity of spontaneous seizures, hyperactivity, and impairments in social behavior and recognition memory during adulthood. Biophysical analysis of brain slice preparations revealed an increase in epileptiform activity in CA3 pyramidal neurons along with increased action potential firing, providing a mechanistic basis for the observed worsening of adult phenotypes. These findings demonstrate the long-term negative impact of early-life FSs on disease outcomes. This has important implications for the clinical management of this patient population and highlights the need for therapeutic interventions that could ameliorate disease progression.


Asunto(s)
Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones Febriles/complicaciones , Convulsiones Febriles/genética , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Factores de Edad , Animales , Animales Recién Nacidos , Arginina/genética , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Femenino , Flurotilo/toxicidad , Hipocampo/patología , Histidina/genética , Humanos , Hipertermia Inducida/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/genética , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Convulsiones Febriles/etiología , Convulsiones Febriles/patología
14.
Neurology ; 88(17): 1659-1665, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28356460

RESUMEN

OBJECTIVE: Dravet syndrome is a rare neurodevelopmental disorder characterized by seizures and other neurologic problems. SCN1A mutations account for ∼80% of cases. Animal studies have implicated mutation-related dysregulated cortical inhibitory networks in its pathophysiology. We investigated such networks in people with the condition. METHODS: Transcranial magnetic stimulation using single and paired pulse paradigms was applied to people with Dravet syndrome and to 2 control groups to study motor cortex excitability. RESULTS: Short interval intracortical inhibition (SICI), which measures GABAergic inhibitory network behavior, was undetectable in Dravet syndrome, but detectable in all controls. Other paradigms, including those testing excitatory networks, showed no difference between Dravet and control groups. CONCLUSIONS: There were marked differences in inhibitory networks, detected using SICI paradigms, while other inhibitory and excitatory paradigms yielded normal results. These human data showing reduced GABAergic inhibition in vivo in people with Dravet syndrome support established animal models.


Asunto(s)
Epilepsias Mioclónicas/fisiopatología , Corteza Motora/fisiopatología , Inhibición Neural/fisiología , Adulto , Análisis de Varianza , Epilepsias Mioclónicas/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/genética , Vías Nerviosas/fisiopatología , Encuestas y Cuestionarios , Estimulación Magnética Transcraneal/métodos , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
15.
Epilepsia ; 57(7): 1027-35, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27270488

RESUMEN

On April 21, 2015, the first SCN8A Encephalopathy Research Group convened in Washington, DC, to assess current research into clinical and pathogenic features of the disorder and prepare an agenda for future research collaborations. The group comprised clinical and basic scientists and representatives of patient advocacy groups. SCN8A encephalopathy is a rare disorder caused by de novo missense mutations of the sodium channel gene SCN8A, which encodes the neuronal sodium channel Nav 1.6. Since the initial description in 2012, approximately 140 affected individuals have been reported in publications or by SCN8A family groups. As a result, an understanding of the severe impact of SCN8A mutations is beginning to emerge. Defining a genetic epilepsy syndrome goes beyond identification of molecular etiology. Topics discussed at this meeting included (1) comparison between mutations of SCN8A and the SCN1A mutations in Dravet syndrome, (2) biophysical properties of the Nav 1.6 channel, (3) electrophysiologic effects of patient mutations on channel properties, (4) cell and animal models of SCN8A encephalopathy, (5) drug screening strategies, (6) the phenotypic spectrum of SCN8A encephalopathy, and (7) efforts to develop a bioregistry. A panel discussion of gaps in bioregistry, biobanking, and clinical outcomes data was followed by a planning session for improved integration of clinical and basic science research. Although SCN8A encephalopathy was identified only recently, there has been rapid progress in functional analysis and phenotypic classification. The focus is now shifting from identification of the underlying molecular cause to the development of strategies for drug screening and prioritized patient care.


Asunto(s)
Encefalopatías/genética , Epilepsia/etiología , Epilepsia/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Simbiosis/genética , Animales , Anticonvulsivantes/uso terapéutico , Encefalopatías/complicaciones , Encefalopatías/tratamiento farmacológico , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Epilepsia/tratamiento farmacológico , Humanos , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Fenotipo
16.
Neurobiol Dis ; 77: 141-54, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25766678

RESUMEN

Dravet Syndrome (DS) is caused by heterozygous loss-of-function mutations in voltage-gated sodium channel NaV1.1. Our mouse genetic model of DS recapitulates its severe seizures and premature death. Sleep disturbance is common in DS, but its mechanism is unknown. Electroencephalographic studies revealed abnormal sleep in DS mice, including reduced delta wave power, reduced sleep spindles, increased brief wakes, and numerous interictal spikes in Non-Rapid-Eye-Movement sleep. Theta power was reduced in Rapid-Eye-Movement sleep. Mice with NaV1.1 deleted specifically in forebrain interneurons exhibited similar sleep pathology to DS mice, but without changes in circadian rhythm. Sleep architecture depends on oscillatory activity in the thalamocortical network generated by excitatory neurons in the ventrobasal nucleus (VBN) of the thalamus and inhibitory GABAergic neurons in the reticular nucleus of the thalamus (RNT). Whole-cell NaV current was reduced in GABAergic RNT neurons but not in VBN neurons. Rebound firing of action potentials following hyperpolarization, the signature firing pattern of RNT neurons during sleep, was also reduced. These results demonstrate imbalance of excitatory vs. inhibitory neurons in this circuit. As predicted from this functional impairment, we found substantial deficit in homeostatic rebound of slow wave activity following sleep deprivation. Although sleep disorders in epilepsies have been attributed to anti-epileptic drugs, our results show that sleep disorder in DS mice arises from loss of NaV1.1 channels in forebrain GABAergic interneurons without drug treatment. Impairment of NaV currents and excitability of GABAergic RNT neurons are correlated with impaired sleep quality and homeostasis in these mice.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/patología , Interneuronas/patología , Trastornos del Sueño-Vigilia/etiología , Tálamo/patología , Factores de Edad , Animales , Animales Recién Nacidos , Estimulación Eléctrica , Epilepsias Mioclónicas/genética , Neuronas GABAérgicas/patología , Glutamato Descarboxilasa/metabolismo , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Técnicas de Placa-Clamp , Privación de Sueño/fisiopatología , Grabación en Video , Vigilia/genética
17.
Neurobiol Dis ; 77: 35-48, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25725421

RESUMEN

Dravet syndrome (DS) is characterized by severe infant-onset myoclonic epilepsy along with delayed psychomotor development and heightened premature mortality. A primary monogenic cause is mutation of the SCN1A gene, which encodes the voltage-gated sodium channel subunit Nav1.1. The nature and timing of changes caused by SCN1A mutation in the hippocampal dentate gyrus (DG) network, a core area for gating major excitatory input to hippocampus and a classic epileptogenic zone, are not well known. In particularly, it is still not clear whether the developmental deficit of this epileptogenic neural network temporally matches with the progress of seizure development. Here, we investigated the emerging functional and structural deficits of the DG network in a novel mouse model (Scn1a(E1099X/+)) that mimics the genetic deficit of human DS. Scn1a(E1099X/+) (Het) mice, similarly to human DS patients, exhibited early spontaneous seizures and were more susceptible to hyperthermia-induced seizures starting at postnatal week (PW) 3, with seizures peaking at PW4. During the same period, the Het DG exhibited a greater reduction of Nav1.1-expressing GABAergic neurons compared to other hippocampal areas. Het DG GABAergic neurons showed altered action potential kinetics, reduced excitability, and generated fewer spontaneous inhibitory inputs into DG granule cells. The effect of reduced inhibitory input to DG granule cells was exacerbated by heightened spontaneous excitatory transmission and elevated excitatory release probability in these cells. In addition to electrophysiological deficit, we observed emerging morphological abnormalities of DG granule cells. Het granule cells exhibited progressively reduced dendritic arborization and excessive spines, which coincided with imbalanced network activity and the developmental onset of spontaneous seizures. Taken together, our results establish the existence of significant structural and functional developmental deficits of the DG network and the temporal correlation between emergence of these deficits and the onset of seizures in Het animals. Most importantly, our results uncover the developmental deficits of neural connectivity in Het mice. Such structural abnormalities likely further exacerbate network instability and compromise higher-order cognitive processing later in development, and thus highlight the multifaceted impacts of Scn1a deficiency on neural development.


Asunto(s)
Giro Dentado/patología , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Red Nerviosa/patología , Convulsiones/fisiopatología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Factores de Edad , Animales , Animales Recién Nacidos , Giro Dentado/crecimiento & desarrollo , Modelos Animales de Enfermedad , Glutamato Descarboxilasa/metabolismo , Hipertermia Inducida/efectos adversos , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Modelos Moleculares , Neuronas/ultraestructura , Convulsiones/etiología , Convulsiones/genética , Ácido gamma-Aminobutírico/metabolismo
18.
Neurobiol Dis ; 73: 106-17, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25281316

RESUMEN

Dominant loss-of-function mutations in voltage-gated sodium channel NaV1.1 cause Dravet Syndrome, an intractable childhood-onset epilepsy. NaV1.1(+/-) Dravet Syndrome mice in C57BL/6 genetic background exhibit severe seizures, cognitive and social impairments, and premature death. Here we show that Dravet Syndrome mice in pure 129/SvJ genetic background have many fewer seizures and much less premature death than in pure C57BL/6 background. These mice also have a higher threshold for thermally induced seizures, fewer myoclonic seizures, and no cognitive impairment, similar to patients with Genetic Epilepsy with Febrile Seizures Plus. Consistent with this mild phenotype, mutation of NaV1.1 channels has much less physiological effect on neuronal excitability in 129/SvJ mice. In hippocampal slices, the excitability of CA1 Stratum Oriens interneurons is selectively impaired, while the excitability of CA1 pyramidal cells is unaffected. NaV1.1 haploinsufficiency results in increased rheobase and threshold for action potential firing and impaired ability to sustain high-frequency firing. Moreover, deletion of NaV1.1 markedly reduces the amplification and integration of synaptic events, further contributing to reduced excitability of interneurons. Excitability is less impaired in inhibitory neurons of Dravet Syndrome mice in 129/SvJ genetic background. Because specific deletion of NaV1.1 in forebrain GABAergic interneuons is sufficient to cause the symptoms of Dravet Syndrome in mice, our results support the conclusion that the milder phenotype in 129/SvJ mice is caused by lesser impairment of sodium channel function and electrical excitability in their forebrain interneurons. This mild impairment of excitability of interneurons leads to a milder disease phenotype in 129/SvJ mice, similar to Genetic Epilepsy with Febrile Seizures Plus in humans.


Asunto(s)
Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Inhibición Neural/genética , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Fenómenos Biofísicos/genética , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/etiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Miedo/psicología , Hipocampo/citología , Hipertermia Inducida/efectos adversos , Técnicas In Vitro , Lidocaína/análogos & derivados , Lidocaína/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Bloqueadores de los Canales de Sodio/farmacología
19.
Pharmacogenomics J ; 14(2): 135-41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23752739

RESUMEN

This study was designed to analyze the gender-related association between SCN1A polymorphisms (voltage-gated sodium channels; α-subunit) and time-to-recurrence (TTR) in patients with colorectal cancer (CRC) treated with 5-fluoruracil (5-FU)-based adjuvant chemotherapy. We enrolled from a prospective database patients with stage II and III CRC treated with adjuvant 5-FU-based chemotherapy. Genotypes for SCN1A rs3812718 and rs229877 were determined by direct DNA sequencing. One hundred twenty-seven males and 107 females were included in the study. In the univariate and multivariate analysis, the shortest TTR was associated with female patients carrying the rs3812718-TT genotype (hazard ratio (HR): 2.26 (95% confidence interval (CI): 0.89, 5.70), P=0.039) but with male patients carrying the rs3812718-CC genotype (HR: 0.49 (95% CI: 0.18, 1.38), P=0.048). For rs229877 the CT genotype was associated with a trend for shorter TTR in both gender populations. The study validated gender-dependent association between genomic SCN1A rs3812718 polymorphism and TTR in CRC patients treated with adjuvant 5-FU-based chemotherapy. This study confirms that voltage-gated Na+ channels may be a potential therapeutic target and a useful predictive biomarker before 5-FU infusion.


Asunto(s)
Neoplasias Colorrectales/genética , Fluorouracilo/efectos adversos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Caracteres Sexuales , Adulto , Anciano , Anciano de 80 o más Años , Quimioterapia Adyuvante/efectos adversos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Supervivencia sin Enfermedad , Femenino , Fluorouracilo/administración & dosificación , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Polimorfismo Genético , Polimorfismo de Nucleótido Simple , Pronóstico
20.
Nat Commun ; 4: 2410, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24002024

RESUMEN

Dravet syndrome is a catastrophic pediatric epilepsy with severe intellectual disability, impaired social development and persistent drug-resistant seizures. One of its primary monogenic causes are mutations in Nav1.1 (SCN1A), a voltage-gated sodium channel. Here we characterize zebrafish Nav1.1 (scn1Lab) mutants originally identified in a chemical mutagenesis screen. Mutants exhibit spontaneous abnormal electrographic activity, hyperactivity and convulsive behaviours. Although scn1Lab expression is reduced, microarray analysis is remarkable for the small fraction of differentially expressed genes (~3%) and lack of compensatory expression changes in other scn subunits. Ketogenic diet, diazepam, valproate, potassium bromide and stiripentol attenuate mutant seizure activity; seven other antiepileptic drugs have no effect. A phenotype-based screen of 320 compounds identifies a US Food and Drug Administration-approved compound (clemizole) that inhibits convulsive behaviours and electrographic seizures. This approach represents a new direction in modelling pediatric epilepsy and could be used to identify novel therapeutics for any monogenic epilepsy disorder.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Bencimidazoles/uso terapéutico , Evaluación Preclínica de Medicamentos , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Animales , Anticonvulsivantes/farmacología , Bencimidazoles/farmacología , Bromuros/farmacología , Diazepam/farmacología , Dioxolanos/farmacología , Epilepsias Mioclónicas/tratamiento farmacológico , Perfilación de la Expresión Génica , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/genética , Compuestos de Potasio/farmacología , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Ácido Valproico/farmacología , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA