Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Photochem Photobiol ; 94(2): 199-212, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29164625

RESUMEN

Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.


Asunto(s)
Terapia por Luz de Baja Intensidad , Mitocondrias/efectos de la radiación , Animales , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/efectos de la radiación , Humanos , Canales Iónicos/efectos de la radiación , Potencial de la Membrana Mitocondrial/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , Células Madre/efectos de la radiación , Factores de Transcripción/efectos de la radiación
2.
J Plant Physiol ; 168(15): 1753-60, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21546115

RESUMEN

The biological clock regulates a wide range of physiological processes in plants. Here we show circadian variation of the Clivia miniata responses to electrical stimulation. The biologically closed electrochemical circuits in the leaves of C. miniata (Kaffir lily), which regulate its physiology, were analyzed in vivo using the charge stimulation method. The electrostimulation was provided with different voltages and electrical charges. Resistance between Ag/AgCl electrodes in the leaf of C. miniata was higher at night than during the day or the following day in the darkness. The biologically closed electrical circuits with voltage gated ion channels in C. miniata are activated the next day, even in the darkness. C. miniata memorizes daytime and nighttime. At continuous light, C. miniata recognizes nighttime and increases the input resistance to the nighttime value even under light. These results show that the circadian clock can be maintained endogenously and has electrochemical oscillators, which can activate voltage gated ion channels in biologically closed electrochemical circuits. The activation of voltage gated channels depends on the applied voltage, electrical charge and speed of transmission of electrical energy from the electrostimulator to the C. miniata leaves. We present the equivalent electrical circuits in C. miniata and its circadian variation to explain the experimental data.


Asunto(s)
Ritmo Circadiano/fisiología , Canales Iónicos/fisiología , Liliaceae/fisiología , Relojes Biológicos , Ritmo Circadiano/efectos de la radiación , Oscuridad , Conductividad Eléctrica , Estimulación Eléctrica , Canales Iónicos/efectos de la radiación , Cinética , Luz , Liliaceae/efectos de la radiación , Modelos Biológicos , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Transducción de Señal , Factores de Tiempo
3.
J Neurophysiol ; 94(6): 3872-83, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16093340

RESUMEN

The contributions of the hyperpolarization-activated current, I(h), to generation of rhythmic activities are well described for various central neurons, particularly in thalamocortical circuits. In the present study, we investigated effects of a general anesthetic, propofol, on native I(h) in neurons of thalamus and cortex and on the corresponding cloned HCN channel subunits. Whole cell voltage-clamp recordings from mouse brain slices identified neuronal I(h) currents with fast activation kinetics in neocortical pyramidal neurons and with slower kinetics in thalamocortical relay cells. Propofol inhibited the fast-activating I(h) in cortical neurons at a clinically relevant concentration (5 microM); inhibition of I(h) involved a hyperpolarizing shift in half-activation voltage (DeltaV1/2 approximately -9 mV) and a decrease in maximal available current (approximately 36% inhibition, measured at -120 mV). With the slower form of I(h) expressed in thalamocortical neurons, propofol had no effect on current activation or amplitude. In heterologous expression systems, 5 muM propofol caused a large shift in V1/2 and decrease in current amplitude in homomeric HCN1 and linked heteromeric HCN1-HCN2 channels, both of which activate with fast kinetics but did not affect V1/2 or current amplitude of slowly activating homomeric HCN2 channels. With GABA(A) and glycine receptor channels blocked, propofol caused membrane hyperpolarization and suppressed action potential discharge in cortical neurons; these effects were occluded by the I(h) blocker, ZD-7288. In summary, these data indicate that propofol selectively inhibits HCN channels containing HCN1 subunits, such as those that mediate I(h) in cortical pyramidal neurons-and they suggest that anesthetic actions of propofol may involve inhibition of cortical neurons and perhaps other HCN1-expressing cells.


Asunto(s)
Anticonvulsivantes/farmacología , Corteza Cerebral/citología , Canales Iónicos/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Propofol/farmacología , Células Piramidales/efectos de los fármacos , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Femenino , Antagonistas del GABA/farmacología , Glicinérgicos/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Activación del Canal Iónico/efectos de la radiación , Canales Iónicos/clasificación , Canales Iónicos/fisiología , Canales Iónicos/efectos de la radiación , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Ratones , Inhibición Neural/fisiología , Vías Nerviosas/citología , Oocitos , Técnicas de Placa-Clamp/métodos , Canales de Potasio , Pirimidinas/farmacología , Ratas , Estricnina/farmacología , Tálamo/citología , Factores de Tiempo , Xenopus
4.
Bioelectromagnetics ; Suppl 4: 102-9, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10334719

RESUMEN

The question of minimum detection limits for biological processes sensitive to membrane potential perturbations has arisen in various contexts. Of special interest are the prediction of theoretical limits for sensory perception processes and for possible biological effects of environmental or therapeutic electric and magnetic fields. A new method is presented here, addressing the particular case in which perturbations of membrane potential affect the gating rate probability of voltage-sensitive ion channels. Using a two-state model for channel gating, the influence of the perturbing potential on the mean fraction of open channels is approximated by a Boltzmann distribution, and integrated over time to obtain a quantity proportional to the net change in expected charge transfer through the membrane. This change in net charge transfer (the signal, S) is compared to the expected root mean variance in charge transfer (the noise, N) due to random channel gating. Using a nominal criterion of S/N = 1, a model is developed for predicting the minimum time and number of ion channels necessary to detect a given membrane potential. Example calculations, carried out for a gating charge of 6, indicate that a 1 microV induced membrane potential can be detected after 10 ms by an ensemble of less than 10(8) ion channels.


Asunto(s)
Activación del Canal Iónico/efectos de la radiación , Canales Iónicos/efectos de la radiación , Potenciales de la Membrana/efectos de la radiación , Algoritmos , Terapia por Estimulación Eléctrica , Electroquímica , Electrofisiología , Transferencia de Energía , Predicción , Humanos , Magnetismo/uso terapéutico , Modelos Biológicos , Sensación/efectos de la radiación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA