Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 40(44): 8543-8555, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33020214

RESUMEN

A rare mutation affecting the Forkhead-box protein P2 (FOXP2) transcription factor causes a severe monogenic speech and language disorder. Mice carrying an identical point mutation to that observed in affected patients (Foxp2+/R552H mice) display motor deficits and impaired synaptic plasticity in the striatum. However, the consequences of the mutation on neuronal function, in particular in the cerebral cortex, remain little studied. Foxp2 is expressed in a subset of Layer VI cortical neurons. Here, we used Ntsr1-EGFP mice to identify Foxp2+ neurons in the mouse auditory cortex ex vivo. We studied the functional impact of the R552H mutation on the morphologic and functional properties of Layer VI cortical neurons from Ntsr1-EGFP; Foxp2+/R552H male and female mice. The complexity of apical, but not basal dendrites was significantly lower in Foxp2+/R552H cortico-thalamic neurons than in control Foxp2+/+ neurons. Excitatory synaptic inputs, but not inhibitory synaptic inputs, were decreased in Foxp2+/R552H mice. In response, homeostatic mechanisms would be expected to increase neuronal gain, i.e., the conversion of a synaptic input into a firing output. However, the intrinsic excitability of Foxp2+ cortical neurons was lower in Foxp2+/R552H neurons. A-type and delayed-rectifier (DR) potassium currents, two putative transcriptional targets of Foxp2, were not affected by the mutation. In contrast, GABAB/GIRK signaling, another presumed target of Foxp2, was increased in mutant neurons. Blocking GIRK channels strongly attenuated the difference in intrinsic excitability between wild-type (WT) and Foxp2+/R552H neurons. Our results reveal a novel role for Foxp2 in the control of neuronal input/output homeostasis.SIGNIFICANCE STATEMENT Mutations of the Forkhead-box protein 2 (FOXP2) gene in humans are the first known monogenic cause of a speech and language disorder. The Foxp2 mutation may directly affect neuronal development and function in neocortex, where Foxp2 is expressed. Brain imaging studies in patients with a heterozygous mutation in FOXP2 showed abnormalities in cortical language-related regions relative to the unaffected members of the same family. However, the role of Foxp2 in neocortical neurons is poorly understood. Using mice with a Foxp2 mutation equivalent to that found in patients, we studied functional modifications in auditory cortex neurons ex vivo We found that mutant neurons exhibit alterations of synaptic input and GABAB/GIRK signaling, reflecting a loss of neuronal homeostasis.


Asunto(s)
Corteza Cerebral/fisiología , Factores de Transcripción Forkhead/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Neuronas/fisiología , Receptores de GABA-B/fisiología , Proteínas Represoras/genética , Tálamo/fisiología , Animales , Corteza Cerebral/citología , Canales de Potasio de Tipo Rectificador Tardío/fisiología , Espinas Dendríticas/fisiología , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Antagonistas del GABA/farmacología , Masculino , Ratones , Ratones Transgénicos , Mutación , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Sinapsis/fisiología , Tálamo/citología
2.
J Neurosci ; 37(36): 8667-8677, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28821664

RESUMEN

Activation of somatic µ-opioid receptors (MORs) in hypothalamic proopiomelanocortin (POMC) neurons leads to the activation of G-protein-coupled inward rectifier potassium (GIRK) channels and hyperpolarization, but in response to continued signaling MORs undergo acute desensitization resulting in robust reduction in the peak GIRK current after minutes of agonist exposure. We hypothesized that the attenuation of the GIRK current would lead to a recovery of neuronal excitability whereby desensitization of the receptor would lead to a new steady state of POMC neuron activity reflecting the sustained GIRK current observed after the initial decline from peak with continued agonist exposure. However, electrophysiologic recordings and GCaMP6f Ca2+ imaging in POMC neurons in mouse brain slices indicate that maximal inhibition of cellular activity by these measures can be maintained after the GIRK current declines. Blockade of the GIRK current by Ba2+ or Tertiapin-Q did not disrupt the sustained inhibition of Ca2+ transients in the continued presence of agonist, indicating the activation of an effector other than GIRK channels. Use of an irreversible MOR antagonist and Furchgott analysis revealed a low receptor reserve for the activation of GIRK channels but a >90% receptor reserve for the inhibition of Ca2+ events. Altogether, the data show that somatodendritic MORs in POMC neurons inhibit neuronal activity through at least two effectors with distinct levels of receptor reserve and that differentially reflect receptor desensitization. Thus, in POMC cells, the decline in the GIRK current during prolonged MOR agonist exposure does not reflect an increase in cellular activity as expected.SIGNIFICANCE STATEMENT Desensitization of the µ-opioid receptor (MOR) is thought to underlie the development of cellular tolerance to opiate therapy. The present studies focused on MOR desensitization in hypothalamic proopiomelanocortin (POMC) neurons as these neurons produce the endogenous opioid ß-endorphin and are heavily regulated by opioids. Prolonged activation of somatic MORs in POMC neurons robustly inhibited action potential firing and Ca2+ activity despite desensitization of the MOR and reduced activation of a potassium current over the same time course. The data show that somatic MORs in POMC neurons couple to multiple effectors that have differential sensitivity to desensitization of the receptor. Thus, in these cells, the cellular consequence of MOR desensitization cannot be defined by the activity of a single effector system.


Asunto(s)
Potenciales de Acción/fisiología , Hipotálamo/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Proopiomelanocortina/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Animales , Sensibilización del Sistema Nervioso Central/efectos de los fármacos , Sensibilización del Sistema Nervioso Central/fisiología , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/efectos de los fármacos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Hipotálamo/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos
3.
J Neurosci ; 35(45): 14957-65, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26558769

RESUMEN

Melatonin supplementation has been used as a therapeutic agent for several diseases, yet little is known about the underlying mechanisms by which melatonin synchronizes circadian rhythms. G-protein signaling plays a large role in melatonin-induced phase shifts of locomotor behavior and melatonin receptors activate G-protein-coupled inwardly rectifying potassium (GIRK) channels in Xenopus oocytes. The present study tested the hypothesis that melatonin influences circadian phase and electrical activity within the central clock in the suprachiasmatic nucleus (SCN) through GIRK channel activation. Unlike wild-type littermates, GIRK2 knock-out (KO) mice failed to phase advance wheel-running behavior in response to 3 d subcutaneous injections of melatonin in the late day. Moreover, in vitro phase resetting of the SCN circadian clock by melatonin was blocked by coadministration of a GIRK channel antagonist tertiapin-q (TPQ). Loose-patch electrophysiological recordings of SCN neurons revealed a significant reduction in the average action potential rate in response to melatonin. This effect was lost in SCN slices treated with TPQ and SCN slices from GIRK2 KO mice. The melatonin-induced suppression of firing rate corresponded with an increased inward current that was blocked by TPQ. Finally, application of ramelteon, a potent melatonin receptor agonist, significantly decreased firing rate and increased inward current within SCN neurons in a GIRK-dependent manner. These results are the first to show that GIRK channels are necessary for the effects of melatonin and ramelteon within the SCN. This study suggests that GIRK channels may be an alternative therapeutic target for diseases with evidence of circadian disruption, including aberrant melatonin signaling. SIGNIFICANCE STATEMENT: Despite the widespread use of melatonin supplementation for the treatment of sleep disruption and other neurological diseases such as epilepsy and depression, no studies have elucidated the molecular mechanisms linking melatonin-induced changes in neuronal activity to its therapeutic effects. Here, we used behavioral and electrophysiological techniques to address this scientific gap. Our results show that melatonin and ramelteon, a potent and clinically relevant melatonin receptor agonist, significantly affect the neurophysiological function of suprachiasmatic nucleus neurons through activation of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Given the importance of GIRK channels for neuronal excitability (with >600 publications on these channels to date), our study should generate broad interest from neuroscientists in fields such as epilepsy, addiction, and cognition.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Melatonina/farmacología , Núcleo Supraquiasmático/fisiología , Animales , Venenos de Abeja/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Indenos/farmacología , Masculino , Melatonina/agonistas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Bloqueadores de los Canales de Potasio/farmacología , Núcleo Supraquiasmático/efectos de los fármacos
4.
Eur J Pain ; 18(1): 29-38, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23740773

RESUMEN

BACKGROUND: Although the efficacy of peripherally administered opioid has been demonstrated in preclinical and clinical studies, the underlying mechanisms of its anti-hyperalgesic effects are poorly understood. G protein-coupled inwardly rectifying potassium (GIRK) channels are linked to opioid receptors in the brain. However, the role of peripheral GIRK channels in analgesia induced by peripherally administered opioid, especially in trigeminal system, is not clear. METHODS: Expression of GIRK subunits in rat trigeminal ganglia (TG) was examined with reverse transcription-polymerase chain reaction, Western blot and immunohistochemistry. Chemical profiles of GIRK-expressing neurons in TG were further characterized. Behavioural and Fos experiments were performed to examine the functional involvement of GIRK channels in δ-opioid receptor (DOR)-mediated anti-hyperalgesia under an acute myositis condition. RESULTS: TG expressed mRNA and proteins for GIRK1 and GIRK2 subunits. Majority of GIRK1- and GIRK2-expressing neurons were non-peptidergic afferents. Inhibition of peripheral GIRK using Tertiapin-Q (TPQ) attenuated antinociceptive effects of peripherally administered DOR agonist, [D-Pen(2), D-Pen(6) ]-enkephalin (DPDPE), on mechanical hypersensitivity in masseter muscle. Furthermore, TPQ attenuated the suppressive effects of peripheral DPDPE on neuronal activation in the subnucleus caudalis of the trigeminal nucleus (Vc) following masseteric injection of capsaicin. CONCLUSIONS: Our data indicate that peripheral DOR agonist-induced suppression of mechanical hypersensitivity in the masseter muscle involves the activity of peripheral GIRK channels. These results could provide a rationale for developing a novel therapeutic approach using peripheral GIRK channel openers to mimic or supplement the effects of peripheral opioid agonist.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Hiperalgesia/fisiopatología , Músculo Masetero/fisiopatología , Receptores Opioides delta/fisiología , Analgésicos Opioides/farmacología , Animales , Conducta Animal/fisiología , Western Blotting , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Capsaicina/farmacología , Encefalina D-Penicilamina (2,5)/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/efectos de los fármacos , Genes fos , Inmunohistoquímica , Masculino , Estimulación Física , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Fármacos del Sistema Sensorial/farmacología , Ganglio del Trigémino/citología , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/fisiología
5.
J Neurosci ; 33(2): 424-9, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23303922

RESUMEN

Networks that produce persistent firing in response to novel input patterns are thought to be important in working memory and other information storage functions. One possible mechanism for maintaining persistent firing is dendritic voltage bistability in which the depolarized state depends on the voltage dependence of the NMDA conductance at recurrent synapses. In previous models, the hyperpolarized state is dependent on voltage-independent conductances, including GABA(A). The interplay of these conductances leads to bistability, but its robustness is limited by the fact that the conductance ratio must be within a narrow range. The GABA(B) component of inhibitory transmission was not considered in previous analyses. Here, we show that the voltage dependence of the inwardly rectifying potassium (KIR) conductance activated by GABA(B) receptors adds substantial robustness to network simulations of bistability and the persistent firing that it underlies. The hyperpolarized state is robust because, at hyperpolarized potentials, the GABA(B)/KIR conductance is high and the NMDA conductance is low; the depolarized state is robust because, at depolarized potentials, the NMDA conductance is high and the GABA(B)/KIR conductance is low. Our results suggest that this complementary voltage dependence of GABA(B)/KIR and NMDA conductances makes them a "perfect couple" for producing voltage bistability.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Receptores de GABA-B/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Algoritmos , Simulación por Computador , Fenómenos Electrofisiológicos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Humanos , Memoria a Corto Plazo/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Sinapsis/fisiología
6.
Neuroscience ; 170(4): 981-91, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-20801197

RESUMEN

The thalamus conveys sensory information from peripheral and subcortical regions to the neocortex in a dynamic manner that can be influenced by several neuromodulators. Alterations in dopamine (DA) receptor function in thalami of Schizophrenic patients have recently been reported. In addition, schizophrenia is associated with sensory gating abnormalities and sleep-wake disturbances, thus we examined the role of DA on neuronal excitability in somatosensory thalamus. The ventrobasal (VB) thalamus receives dopaminergic innervation and expresses DA receptors; however, the action of DA on VB neurons is unknown. In the present study, we performed whole cell current- and voltage-clamp recordings in rat brain slices to investigate the role of DA on excitability of VB neurons. We found that DA increased action potential discharge and elicited membrane depolarization via activation of different receptor subtypes. Activation of D2-like receptors (D(2R)) leads to enhanced action potential discharge, whereas the membrane depolarization was mediated by D1-like receptors (D(1R)). The D(2R-mediated) increase in spike discharge was mimicked and occluded by α-dendrotoxin (α-DTX), indicating the involvement of a slowly inactivating K(+) channels. The D1R-mediated membrane depolarization was occluded by barium, suggesting the involvement of a G protein-coupled K(+) channel or an inwardly rectifying K(+) channel. Our results indicate that DA produces dual modulatory effects acting on subtypes of DA receptors in thalamocortical relay neurons, and likely plays a significant role in the modulation of sensory information.


Asunto(s)
Dopamina/fisiología , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Potenciales de Acción , Animales , Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2 , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Técnicas In Vitro , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D2/agonistas , Corteza Somatosensorial/citología , Tálamo/citología , Tálamo/efectos de los fármacos
7.
J Neurophysiol ; 96(1): 465-70, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16687621

RESUMEN

Direct interactions between the presynaptic N-type calcium channel and the beta subunit of the heterotrimeric G-protein complex cause voltage-dependent inhibition of N-type channel activity, crucially influencing neurotransmitter release and contributing to analgesia caused by opioid drugs. Previous work using chimeras of the G-protein beta subtypes Gbeta1 and Gbeta5 identified two 20-amino acid stretches of structurally contiguous residues on the Gbeta1 subunit as critical for inhibition of the N-type channel. To identify key modulation determinants within these two structural regions, we performed scanning mutagenesis in which individual residues of the Gbeta1 subunit were replaced by corresponding Gbeta5 residues. Our results show that Gbeta1 residue Ser189 is critical for N-type calcium channel modulation, whereas none of the other Gbeta1 mutations caused statistically significant effects on the ability of Gbeta1 to inhibit N-type channels. Structural modeling shows residue 189 is surface exposed, consistent with the idea that it may form a direct contact with the N-type calcium channel alpha1 subunit during binding interactions.


Asunto(s)
Canales de Calcio Tipo N/fisiología , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/fisiología , Serina/análisis , Serina/fisiología , Línea Celular , ADN Complementario/análisis , ADN Complementario/genética , Electrofisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Subunidades beta de la Proteína de Unión al GTP/genética , Humanos , Mutagénesis , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA