Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 322: 117581, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38103845

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Borneol is a long-established traditional Chinese medicine that has been found to be effective in treating pain and itchy skin. However, whether borneol has a therapeutic effect on chronic itch and its related mechanisms remain unclear. AIM OF THE STUDY: To investigate the antipruritic effect of borneol and its molecular mechanism. MATERIALS AND METHODS: DrugBAN framework and molecular docking were applied to predict the targets of borneol, and the calcium imaging or patch-clamp recording analysis were used to detect the effects of borneol on TRPA1, TRPM8 or TRPV3 channels in HEK293T cells. In addition, various mouse models of acute itch and chronic itch were established to evaluate the antipruritic effects of borneol on C57BL/6J mice. Then, the borneol-induced pruritic relief was further investigated in Trpa1-/-, Trpm8-/-, or Trpa1-/-/Trpm8-/- mice. The effects of borneol on the activation of TRPM8 and the inhibition of TRPA1 were also measured in dorsal root ganglia neurons of wild-type (WT), Trpm8-/- and Trpv1-/- mice. Lastly, a randomized, double-blind study of adult patients was conducted to evaluate the clinical antipruritic effect of borneol. RESULTS: TRPA1, TRPV3 and TRPM8 are the potential targets of borneol according to the results of DrugBAN algorithm and molecular docking. Calcium imaging and patch-clamp recording analysis demonstrated that borneol activates TRPM8 channel-induced cell excitability and inhibits TRPA1 channel-mediated cell excitability in transfected HEK293T cells. Animal behavior analysis showed that borneol can significantly reduce acute and chronic itch behavior in C57BL/6J mice, but this effect was eliminated in Trpa1-/-, Trpm8-/- mice, or at least in Trpa1-/-/Trpm8-/- mice. Borneol elicits TRPM8 channel induced [Ca2+]i responses but inhibits AITC or SADBE-induced activation of TRPA1 channels in dorsal root ganglia neurons of WT and Trpv1-/- mice, respectively. Furthermore, the clinical results indicated that borneol could reduce itching symptoms in patients and its efficacy is similar to that of menthol. CONCLUSION: Borneol has therapeutic effects on multiple pruritus models in mice and patients with chronic itch, and the mechanism may be through inhibiting TRPA1 and activating TRPM8.


Asunto(s)
Canfanos , Proteínas de la Membrana , Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Humanos , Ratones , Animales , Canales de Potencial de Receptor Transitorio/genética , Antipruriginosos/farmacología , Antipruriginosos/uso terapéutico , Calcio/metabolismo , Células HEK293 , Simulación del Acoplamiento Molecular , Ratones Endogámicos C57BL , Canal Catiónico TRPA1/genética , Prurito/tratamiento farmacológico , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPV/genética , Ganglios Espinales
3.
Nat Commun ; 14(1): 3997, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414766

RESUMEN

Uranium (U) is a well-known nephrotoxicant which forms precipitates in the lysosomes of renal proximal tubular epithelial cells (PTECs) after U-exposure at a cytotoxic dose. However, the roles of lysosomes in U decorporation and detoxification remain to be elucidated. Mucolipin transient receptor potential channel 1 (TRPML1) is a major lysosomal Ca2+ channel regulating lysosomal exocytosis. We herein demonstrate that the delayed administration of the specific TRPML1 agonist ML-SA1 significantly decreases U accumulation in the kidney, mitigates renal proximal tubular injury, increases apical exocytosis of lysosomes and reduces lysosomal membrane permeabilization (LMP) in renal PTECs of male mice with single-dose U poisoning or multiple-dose U exposure. Mechanistic studies reveal that ML-SA1 stimulates intracellular U removal and reduces U-induced LMP and cell death through activating the positive TRPML1-TFEB feedback loop and consequent lysosomal exocytosis and biogenesis in U-loaded PTECs in vitro. Together, our studies demonstrate that TRPML1 activation is an attractive therapeutic strategy for the treatment of U-induced nephrotoxicity.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Uranio , Masculino , Ratones , Animales , Uranio/toxicidad , Uranio/metabolismo , Lisosomas/metabolismo , Exocitosis , Canales de Potencial de Receptor Transitorio/metabolismo , Calcio/metabolismo
4.
Ann Anat ; 250: 152132, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37454827

RESUMEN

BACKGROUND: Decreased estrogen levels can cause abnormal thermosensitivity of the preoptic area (POA) in the hypothalamus during menopause, which may cause hot flashes. Thermosensitive transient receptors (ThermoTRPs) affect the thermosensitivity of neurons. It is worth exploring whether ThermoTRPs change under low estrogen state and participate in the abnormal thermoregulation of POA. METHODS: Adult female Sprague-Dawley rats were randomly divided into sham operation (SHAM), ovariectomy (OVX) and estrogen treatment after ovariectomy (OVX+E) groups. Under 10 â„ƒ, 18 â„ƒ, 25 â„ƒ, 37 â„ƒ and 45 â„ƒ incubations, their skin temperature was monitored and the expression of TRPA1, TRPM8, TRPM2, and TRPV1 in POA were investigated. RESULTS: The skin temperature of ovariectomized rats changed faster and more dramatically under different incubation temperatures. The results at mRNA level show that only the expression of TRPM2 decreased in POA of OVX group compared with the other two groups at 25 â„ƒ, TRPA1 expression in POA of the three groups increased at 10 â„ƒ, TRPM8 increased at 10 â„ƒ and 18 â„ƒ, TRPV1 increased at 10 â„ƒ and 45 â„ƒ, while the expression of TRPM2 decreased at 10 â„ƒ and 18 â„ƒ and increased at 37 â„ƒ and 45 â„ƒ. In all these cases, the magnitudes of the changes were less in the OVX group relative to the other two groups. The further immunohistochemical and Western blot results of TRPM2 and the activated TRPM2 positive cells labeled by c-Fos were consistent with the results of mRNA level. CONCLUSIONS: The expression and thermosensitivity of TRPM2 in POA changed greatly under different incubation temperatures, but the changes in ovariectomized rats were less. This may be the key factor triggering thermoregulation dysfunction under low estrogen and may cause hot flashes.


Asunto(s)
Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Ratas , Femenino , Animales , Humanos , Área Preóptica/metabolismo , Sofocos , Ratas Sprague-Dawley , Canales de Potencial de Receptor Transitorio/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Estradiol , Hipotálamo/metabolismo , Menopausia , Estrógenos , Regulación de la Temperatura Corporal , ARN Mensajero/metabolismo , Ovariectomía
5.
Eur J Pharmacol ; 953: 175833, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290679

RESUMEN

Borneol has been used successfully for the treatment of itchy skin in traditional Chinese medicine. However, the antipruritic effect of borneol has rarely been studied, and the mechanism is unclear. Here, we showed that topical application of borneol on skin substantially suppressed pruritogen chloroquine- and compound 48/80-induced itching in mice. The potential targets of borneol, including transient receptor potential cation channel subfamily V member 3 (TRPV3), transient receptor potential cation channel subfamily A member 1 (TRPA1), transient receptor potential cation channel subfamily M member 8 (TRPM8), and gamma-aminobutyric acid type A (GABAA) receptor were pharmacologically inhibited or genetically knocked out one by one in mouse. Itching behavior studies demonstrated that the antipruritic effect of borneol is largely independent of TRPV3 and GABAA receptor, and TRPA1 and TRPM8 channels are responsible for a major portion of the effect of borneol on chloroquine-induced nonhistaminergic itching. Borneol activates TRPM8 and inhibits TRPA1 in sensory neurons of mice. Topical co-application of TRPA1 antagonist and TRPM8 agonist mimicked the effect of borneol on chloroquine-induced itching. Intrathecal injection of a group II metabotropic glutamate receptor antagonist partially attenuated the effect of borneol and completely abolished the effect of TRPM8 agonist on chloroquine-induced itching, suggesting that a spinal glutamatergic mechanism is involved. In contrast, the effect of borneol on compound 48/80-induced histaminergic itching occurs through TRPA1-and TRPM8-independent mechanisms. Our work demonstrates that borneol is an effective topical itch reliever, and TRPA1 inhibition and TRPM8 activation in peripheral nerve terminals account for its antipruritic effect.


Asunto(s)
Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Ratones , Animales , Antipruriginosos/farmacología , Antipruriginosos/uso terapéutico , Canal Catiónico TRPA1 , Canales Catiónicos TRPM/fisiología , Prurito/inducido químicamente , Prurito/tratamiento farmacológico , Células Receptoras Sensoriales , Cloroquina/farmacología , Nervios Periféricos , Canales Catiónicos TRPV
6.
Poult Sci ; 102(8): 102782, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37276706

RESUMEN

Two trials were performed to evaluate the association of hypothalamic abundances of thermosensitive transient receptor potential (TRP) ion channels with thermoregulation in broiler chickens. In trial 1, temporal changes in body temperatures, and hypothalamic expression patterns of TRP channels and thermoregulatory neurotransmitter concentrations were assessed from 3 to 42 d of age. In trial 2, the same variables were compared at 2 age stages between 2 distinct types of birds with high or low rectal temperatures (HRT or LRT). The core-to-brain temperature difference exhibited a rapid increase after hatching, arriving at a steady state in the fourth week (P < 0.01). The hypothalamus saw a progressive decrease of TRPV4 protein expression through 28 d (P < 0.01), followed by a great increase in the abundance of other channels right up to the end (P < 0.05). Compared to LRT birds, a decline in hypothalamic content of TRPV4 (P < 0.05), together with a bigger core-to-brain temperature difference (P < 0.01), was evident in the HRT counterpart at 33 d. In both trials, the core-to-brain and core-to-surface temperature differences were controlled in a synchronous and coordinated manner. These results allow concluding that developmental changes in the thermal sensitivity of hypothalamic neurons, determined by brain cooling capacity, involve a neuro-genomic mechanism, which regulates the ratio between thermosensitive TRP ion channels to attain a lower proportion of TRPV4 in comparison with other channels.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Animales , Canales de Potencial de Receptor Transitorio/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Pollos/fisiología , Hipotálamo/metabolismo , Encéfalo/metabolismo
7.
Cells ; 12(11)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37296632

RESUMEN

Background: Transient receptor potential ankyrin 1 (TRPA1) activation is implicated in neuropathic pain-like symptoms. However, whether TRPA1 is solely implicated in pain-signaling or contributes to neuroinflammation in multiple sclerosis (MS) is unknown. Here, we evaluated the TRPA1 role in neuroinflammation underlying pain-like symptoms using two different models of MS. Methods: Using a myelin antigen, Trpa1+/+ or Trpa1-/- female mice developed relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) (Quil A as adjuvant) or progressive experimental autoimmune encephalomyelitis (PMS)-EAE (complete Freund's adjuvant). The locomotor performance, clinical scores, mechanical/cold allodynia, and neuroinflammatory MS markers were evaluated. Results: Mechanical and cold allodynia detected in RR-EAE, or PMS-EAE Trpa1+/+ mice, were not observed in Trpa1-/- mice. The increased number of cells labeled for ionized calcium-binding adapter molecule 1 (Iba1) or glial fibrillary acidic protein (GFAP), two neuroinflammatory markers in the spinal cord observed in both RR-EAE or PMS-EAE Trpa1+/+ mice, was reduced in Trpa1-/- mice. By Olig2 marker and luxol fast blue staining, prevention of the demyelinating process in Trpa1-/- induced mice was also detected. Conclusions: Present results indicate that the proalgesic role of TRPA1 in EAE mouse models is primarily mediated by its ability to promote spinal neuroinflammation and further strengthen the channel inhibition to treat neuropathic pain in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Neuralgia , Canales de Potencial de Receptor Transitorio , Femenino , Animales , Ratones , Esclerosis Múltiple/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Canal Catiónico TRPA1/metabolismo , Hiperalgesia/tratamiento farmacológico , Nocicepción , Canales de Potencial de Receptor Transitorio/metabolismo , Enfermedades Neuroinflamatorias , Médula Espinal/metabolismo , Neuralgia/tratamiento farmacológico
8.
Nat Commun ; 14(1): 2498, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120615

RESUMEN

The survival of malignant tumors is highly dependent on their intrinsic self-defense pathways such as heat shock protein (HSP) during cancer therapy. However, precisely dismantling self-defenses to amplify antitumor potency remains unexplored. Herein, we demonstrate that nanoparticle-mediated transient receptor potential vanilloid member 1 (TRPV1) channel blockade potentiates thermo-immunotherapy via suppressing heat shock factor 1 (HSF1)-mediated dual self-defense pathways. TRPV1 blockade inhibits hyperthermia-induced calcium influx and subsequent nuclear translocation of HSF1, which selectively suppresses stressfully overexpressed HSP70 for enhancing thermotherapeutic efficacy against a variety of primary, metastatic and recurrent tumor models. Particularly, the suppression of HSF1 translocation further restrains the transforming growth factor ß (TGFß) pathway to degrade the tumor stroma, which improves the infiltration of antitumor therapeutics (e.g. anti-PD-L1 antibody) and immune cells into highly fibrotic and immunosuppressive pancreatic cancers. As a result, TRPV1 blockade retrieves thermo-immunotherapy with tumor-eradicable and immune memory effects. The nanoparticle-mediated TRPV1 blockade represents as an effective approach to dismantle self-defenses for potent cancer therapy.


Asunto(s)
Antineoplásicos , Hipertermia Inducida , Canales de Potencial de Receptor Transitorio , Humanos , Recurrencia Local de Neoplasia , Respuesta al Choque Térmico , Inmunoterapia , Factores de Transcripción del Choque Térmico/genética , Canales Catiónicos TRPV/genética
9.
Phytother Res ; 37(7): 2759-2770, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36762415

RESUMEN

Eugenol is a major component of clove oil. A recent study found that inhalation of eugenol promoted the appetite of mice. However, whether oral ingestion of eugenol promoted appetite is unclear and its mechanism await study. Here, mice were divided into four treatments (n = 20) and fed a basal diet supplemented with 0%, 0.005%, 0.01% and 0.02% eugenol for 4 weeks. In addition, mice (n = 7) were injected intraperitoneally with 3 mg/kg body weight eugenol. Our data showed that feeding mice with 0.01% and 0.02% eugenol promoted their appetite. In addition, the short-term intraperitoneal injection of eugenol enhanced the feed intake in mice within 1 h. Further studies found that dietary eugenol increased orexigenic factors expression and decreased anorexigenic factors expression in mice. We then carried out N38 cell experiments to explore the transient receptor potential (TRP) channels-dependent mechanism of eugenol in promoting appetite. We found that eugenol activated the TRP channels mediated-CaMKK2/AMPK signaling pathway in the hypothalamus and N38 cells. Besides, the inhibition of TRPV1 and AMPK eliminated the upregulation of eugenol on the agouti-related protein level in N38 cells. In conclusion, the study suggested that eugenol promotes appetite through TRPV1 mediated-CaMKK2/AMPK signaling pathway.


Asunto(s)
Apetito , Canales de Potencial de Receptor Transitorio , Ratones , Animales , Eugenol/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Transducción de Señal
10.
Biochem Pharmacol ; 208: 115368, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36493846

RESUMEN

Chronic itch is the most prominent feature of atopic dermatitis (AD), and antihistamine treatment is often less effective in reducing clinical pruritus severity in AD. Multiple studies have shown that histamine-independent itch pathway is thought to predominate in AD-induced chronic itch. Mas-related G-protein-coupled receptor (Mrgpr) A3+ sensory neurons have been identified as one of the major itch-sensing neuron populations, and transient receptor potential (TRP) channel A1 is the key downstream of MrgprA3-mediated histamine-independent itch. MrgprA3-TRPA1 signal pathway is necessary for the development of chronic itch and may be the potentially promising target of chronic itch in AD. Dictamnine is one of the main quinoline alkaloid components of Cortex Dictamni (a traditional Chinese medicine widely used in clinical treatment of skin diseases). However, the anti-inflammatory and anti-pruritic effect of dictamnine on AD have not been reported. In this study, we used the 2,4-dinitrofluorobenzene (DNFB)-induced AD mouse model to observe the scratching behavior, inflammatory manifestations, and to detect the expression of MrgprA3 and TRPA1 in skin and DRG. The data demonstrated that dictamnine effectively inhibited AD-induced chronic itch, inflammation symptoms, epidermal thickening, inflammatory cell infiltration, and downregulated the expression of MrgprA3 and TRPA1. Furthermore, dictamnine restrained the excitability of MrgprA3+ and TRPA1+ neurons. Molecular docking also indicated that dictamnine has better binding affinity with MrgprA3. These results suggest that dictamnine may inhibit chronic itch caused by AD through the MrgprA3-TRPA1 mediated histamine-independent itch pathway, and may have a potential utility in AD treatment.


Asunto(s)
Dermatitis Atópica , Quinolinas , Canales de Potencial de Receptor Transitorio , Ratones , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Dinitrofluorobenceno , Histamina/metabolismo , Simulación del Acoplamiento Molecular , Prurito/inducido químicamente , Prurito/tratamiento farmacológico , Prurito/metabolismo , Quinolinas/farmacología , Canales de Potencial de Receptor Transitorio/metabolismo , Células Receptoras Sensoriales , Receptores Acoplados a Proteínas G/metabolismo
11.
Lasers Med Sci ; 37(9): 3681-3692, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36227520

RESUMEN

The effect of near infrared (NIR) laser irradiation on proliferation and osteogenic differentiation of buccal fat pad-derived stem cells and the role of transient receptor potential (TRP) channels was investigated in the current research. After stem cell isolation, a 940 nm laser with 0.1 W, 3 J/cm2 was used in pulsed and continuous mode for irradiation in 3 sessions once every 48 h. The cells were cultured in the following groups: non-osteogenic differentiation medium/primary medium (PM) and osteogenic medium (OM) groups with laser-irradiated (L +), without irradiation (L -), laser treated + Capsazepine inhibitor (L + Cap), and laser treated + Skf96365 inhibitor (L + Skf). Alizarin Red staining and RT-PCR were used to assess osteogenic differentiation and evaluate RUNX2, Osterix, and ALP gene expression levels. The pulsed setting showed the best viability results (P < 0.05) and was used for osteogenic differentiation evaluations. The results of Alizarin red staining were not statistically different between the four groups. Osterix and ALP expression increased in the (L +) group. This upregulation abrogated in the presence of Capsazepine, TRPV1 inhibitor (L + Cap); however, no significant effect was observed with Skf96365 (L + Skf).


Asunto(s)
Tejido Adiposo , Células Madre , Canales de Potencial de Receptor Transitorio , Humanos , Tejido Adiposo/efectos de la radiación , Diferenciación Celular/genética , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Células Cultivadas , Osteogénesis/genética , Osteogénesis/efectos de la radiación , Células Madre/efectos de la radiación , Canales de Potencial de Receptor Transitorio/metabolismo , Rayos Infrarrojos
12.
J Smooth Muscle Res ; 58(0): 50-62, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35944979

RESUMEN

Pulmonary arterial hypertension (PAH) is an intractable vascular disease characterized by a progressive increase in pulmonary vascular resistance caused by pulmonary vascular remodeling, which ultimately leads to right-sided heart failure. PAH remains incurable, despite the development of PAH-targeted therapeutics centered on pulmonary artery relaxants. It is necessary to identify the target molecules that contribute to pulmonary artery remodeling. Transient receptor potential (TRP) channels have been suggested to modulate pulmonary artery remodeling. Our study focused on the transient receptor potential ion channel subfamily M, member 7, or the TRPM7 channel, which modulates endothelial-to-mesenchymal transition and smooth muscle proliferation in the pulmonary artery. In this review, we summarize the role and expression profile of TRPM7 channels in PAH progression and discuss TRPM7 channels as possible therapeutic targets. In addition, we discuss the therapeutic effect of a Chinese herbal medicine, Ophiocordyceps sinensis (OCS), on PAH progression, which partly involves TRPM7 inhibition.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Proliferación Celular , Hipertensión Pulmonar Primaria Familiar/metabolismo , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Serina-Treonina Quinasas , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Arteria Pulmonar/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/uso terapéutico , Remodelación Vascular
13.
Br J Pharmacol ; 179(20): 4792-4808, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35771623

RESUMEN

BACKGROUND AND PURPOSE: Atopic dermatitis (AD) is one of the most common chronic inflammatory cutaneous diseases with unmet clinical needs. As a common ingredient found in several medicinal herbs with efficacy on cutaneous inflammatory diseases, Scutellarein (Scu) has been shown to possess anti-inflammatory and anti-proliferative activities. We aimed to evaluate the therapeutic efficacy of Scu against AD and its underlying molecular mechanism. EXPERIMENTAL APPROACH: Efficacy of Scu on AD was evaluated in 2,4-dinitrofluorobenzene (DNFB) and carvacrol-induced dermatitis mouse models. Cytokine mRNA and serum IgE levels were examined using qPCR and ELISA, respectively. Voltage clamp recordings were used to measure currents mediated by transient receptor potential (TRP) channels. In silico docking, site-direct mutagenesis, and covalent modification were used to explore the binding pocket of Scu on TRPV3. KEY RESULTS: Subcutaneous administration of Scu efficaciously suppresses DNFB and carvacrol-induced pruritus, epidermal hyperplasia and skin inflammation in wild type mice but has no additional benefit in Trpv3 knockout mice in the carvacrol model. Scu is a potent and selective TRPV3 channel allosteric negative modulator with an apparent affinity of 1.18 µM. Molecular docking coupled with site-direct mutagenesis and covalent modification of incorporated cysteine residues demonstrate that Scu targets the cavity formed between the pore helix and transmembrane helix S6. Moreover, Scu attenuates endogenous TRPV3 activity in human keratinocytes and inhibits carvacrol-induced proliferative and proinflammatory responses. CONCLUSION AND IMPLICATIONS: Collectively, these data demonstrate that Scu ameliorates carvacrol-induced skin inflammation by directly inhibiting TRPV3, and TRPV3 represents a viable therapeutic target for AD treatment.


Asunto(s)
Dermatitis Atópica , Canales de Potencial de Receptor Transitorio , Animales , Antiinflamatorios/uso terapéutico , Apigenina , Cimenos , Cisteína , Citocinas/metabolismo , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dinitrofluorobenceno/uso terapéutico , Humanos , Inmunoglobulina E , Inflamación/tratamiento farmacológico , Ratones , Ratones Noqueados , Simulación del Acoplamiento Molecular , ARN Mensajero , Canales Catiónicos TRPV/metabolismo
14.
Phytomedicine ; 104: 154250, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35752074

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder involving the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Cellular clearance mechanisms, including the autophagy-lysosome pathway, are commonly affected in the pathogenesis of PD. The lysosomal Ca2+ channel mucolipin TRP channel 1 (TRPML1) is one of the most important proteins involved in the regulation of autophagy. Artemisia argyi Lev. et Vant., is a traditional Chinese herb, that has diverse therapeutic properties and is used to treat patients with skin diseases and oral ulcers. However, the neuroprotective effects of A. argyi are not explored yet. HYPOTHESIS: This study aims is to investigate the neuroprotective effects of A. argyi in promoting the TRPML1-mediated autophagy/mitophagy-enhancing effect METHODS: In this study, we used 1-methyl-4-phenyl-pyridinium (MPP+)-induced PD model established in an SH-SY5Y human neuroblastoma cell line as well as in a 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced PD model in C57BL/6 J mice. MTT assay was conducted to measure the cell viability and further MitoSoX and DCFDA assay were used to measure the ROS. Western blot analysis was used to access levels of TRPML1, p-DRP1 (ser616), p-AKT, PI3K, and ß-catenin, Additionally, IF and IHC analysis to investigate the expression of TRPML1, LC3B, ß-catenin, TH+, α-synuclein. Mitotracker stain was used to check mitophagy levels and a lysosomal intracellular activity kit was used to measure the lysosomal dysfunction. Behavioral studies were conducted by rotarod and grip strength experiments to check motor functions. RESULTS: In our in vitro study, A. argyi rescued the MPP+-induced loss of cell viability and reduced the accumulation of mitochondrial and total reactive oxygen species (ROS). Subsequently, it increased the expression of TRPML1 protein, thereby inducing autophagy, which facilitated the clearance of toxic accumulation of α-synuclein. Furthermore, A. argyi played a neuroprotective role by activating the PI3K/AKT/ß-catenin cell survival pathway. MPP+-mediated mitochondrial damage was overcome by upregulation of mitophagy and downregulation of the mitochondrial fission regulator p-DRP1 (ser616) in SH-SY5Y cells. In the in vivo study, A. argyi ameliorated impaired motor function and rescued TH+ neurons in the SNpc region. Similar to the results of the in vitro study, TRPML1, LC3B, and ß-catenin expression was enhanced in the SNpc region in the A. argyi-treated mice brain. CONCLUSION: Thus, our results first demonstrate that A. argyi can exert neuroprotective effects by stimulating TRPML1 and rescuing neuronal cells by boosting autophagy/mitophagy and upregulating a survival pathway, suggesting that A. argyi can further be exploited to slow the progression of PD.


Asunto(s)
Artemisia , Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Canales de Potencial de Receptor Transitorio/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Autofagia , Neuronas Dopaminérgicas , Humanos , Ratones , Ratones Endogámicos C57BL , Mitofagia , Neuroblastoma/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , alfa-Sinucleína/metabolismo , beta Catenina/metabolismo
15.
Phytother Res ; 36(7): 2952-2963, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35537691

RESUMEN

This study investigated the vasorelaxant effects of schwarzinicine A, an alkaloid recently reported from Ficus schwarzii Koord. Regulation of calcium homeostasis in vascular smooth muscle cells (VSMC) is viewed as one of the main mechanisms for controlling blood pressure. L-type voltage-gated calcium channel (VGCC) blockers are commonly used for controlling hypertension. Recently, the transient receptor potential canonical (TRPC) channels were found in blood vessels of different animal species with evidence of their roles in the regulation of vascular contractility. In this study, we studied the mechanism of actions of schwarzinicine A focusing on its regulation of L-type VGCC and TRPC channels. Schwarzinicine A exhibited the highest vasorelaxant effect (123.1%) compared to other calcium channel blockers. It also overtly attenuated calcium-induced contractions of the rat isolated aortae in a calcium-free environment showing its mechanism to inhibit calcium influx. Fluorometric intracellular calcium recordings confirmed its inhibition of hTRPC3-, hTRPC4-, hTRPC5- and hTRPC6-mediated calcium influx into HEK cells with IC50 values of 3, 17, 19 and 7 µM, respectively. The evidence gathered in this study suggests that schwarzinicine A blocks multiple TRPC channels and L-type VGCC to exert a significant vascular relaxation response.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Vasodilatación , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/farmacología , Ratas , Canales de Potencial de Receptor Transitorio/farmacología , Vasodilatadores/farmacología
16.
J Therm Biol ; 106: 103191, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35636879

RESUMEN

Anxiety resulting from psychogenic stimuli elicit stress-induced hyperthermia in rats, often called "psychogenic fever", which is part of a coordinated response to situations seen as novel or distressing. Brain transient receptor potential vanilloid 1 (TRPV1) channels modulate both thermoregulation and animal behavior; however, the role of peripheral TRPV1 channels in regulating these responses during exposure to an anxiogenic environment has not been determined. Thus, the present study aimed to investigate the involvement of abdominal TRPV1 channels in stress-induced hyperthermia and behavior in rats subjected to an unconditioned anxiety test. Desensitized rats (peripheral desensitization of TRPV1 channels with resiniferatoxin; RTX) and their respective controls were subjected to a 15-min open field (OF) test. The core body temperature (Tcore), tail skin temperature (Tskin), and rats' movements inside the arena were recorded. The OF test induced a similar increase in Tcore in both groups throughout the exposure time; however, at the recovery period, the RTX-treated rats had a slower reduction in Tcore due to lower tail skin heat loss. Tskin decreased significantly in both groups during exposure to OF but, during recovery, the RTX-treated rats showed impaired skin vasodilation. Also, RTX-treated rats entered fewer times and spent less time in the OF center square, suggesting an anxiety-related behavior. Our findings indicate that, under stressful conditions, peripheral TRPV1 channels modulate thermoregulatory and behavioral responses. The TRPV1 desensitization induces a more prolonged hyperthermic response due to lower cutaneous heat dissipation, alongside a more evident anxiety-like behavior in rats subjected to the OF apparatus.


Asunto(s)
Hipertermia Inducida , Canales de Potencial de Receptor Transitorio , Animales , Regulación de la Temperatura Corporal/fisiología , Ratas , Canales Catiónicos TRPV/fisiología
17.
J Ethnopharmacol ; 293: 115217, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35337920

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cigarette smoke (CS) is a common environmental irritant and a risk factor for asthma, as it induces as well as aggravates asthmatic attacks. The injured airway epithelial tight junctions (TJs) aggravate asthma. CS can aggravate asthma by activating the transient receptor potential ankyrin A1 (TRPA1) channel and enhancing TJs destruction. Houpo Mahuang decoction (HPMHD) is a classic traditional Chinese prescription for the treatment of asthma. However, its underlying action mechanism is unclear. AIM OF THE STUDY: The present study aimed to evaluate the effect of HPMHD on the asthma phenotype and the regulation of TRPA1 and TJs in a CS-induced mouse model of aggravated asthma. MATERIALS AND METHODS: Under optimized chromatographic and mass spectrometry conditions, the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) technique was used to detect and analyze the major chemical components of HPMHD. C57BL/6 female mice were randomly divided into seven groups, viz, normal saline (NS) group, ovalbumin (OVA) + CS group, dexamethasone group, HPMHD high-dose group and low-dose groups, n-butanol extract group, and ethyl acetate extract group, with 10 mice in each group. OVA sensitization and challenge, and CS exposure were used to establish the aggravated asthma model. As the main indices to evaluate the protective effect of HPMHD, the eosinophils count in peripheral blood, percentages of inflammatory cells classified and the levels of interleukin (IL)-4, IL-5, IL-13 in the bronchoalveolar lavage fluid (BALF), airway responsiveness enhanced pause (Penh), and changes in lung histopathology were determined and compared among the groups. The mRNA and protein expression of TRPA1 and TJs in lung tissue was also examined. RESULTS: Using UPLC-QTOF-MS, the chemical components of HPMHD, including ephedrine, pseudoephedrine, laetrile, and amygdalin amide, were identified by 51 signal peaks. Compared with those in the NS group, the eosinophil number in the peripheral blood and the eosinophils and neutrophils percentages in BALF of the OVA + CS group were remarkably increased. Following the inhalation of 50 µl of acetylcholine chloride (ACH) at doses of 25 and 50 mg/mL, the Penh increased significantly (p < 0.01). Moreover, in the OVA + CS group, hematoxylin and eosin (H&E) staining of lung tissue showed a significant number of infiltrated inflammatory cells, increased mucus secretion in the lumen, damaged bronchial mucosa, increased thickness of tracheal wall, and increased score of lung damage (p < 0.01). The IL-4/5/13 levels were also remarkably increased (p < 0.01). The protein as well as gene expression of both ZO-1 and occludin decreased markedly in the lung tissue, while the expression of TRPA1 and claudin-2 was increased (p < 0.05, p < 0.01). Next, the OVA + CS group and the treatment groups were compared. The inflammatory cells, Penh value, and levels of IL-4/5/13 were significantly reduced, and less lung injury was observed in the treatment groups. The gene and protein levels of TRPA1 and TJs were corrected (p < 0.05, p < 0.01); the effects on the HPMHD high-dose and ethyl acetate extract groups were particularly remarkable. CONCLUSIONS: HPMHD reduced airway hyperresponsiveness, inflammatory cell recruitment and Th2 cytokine secretion in CS-induced aggravated asthma mice, in a manner potentially dependent on regulation of the expression of TRPA1 and TJ proteins. Both the n-butanol and ethyl acetate extracts contained the active ingredients, especially the ethyl acetate extract.


Asunto(s)
Asma , Fumar Cigarrillos , Canales de Potencial de Receptor Transitorio , 1-Butanol/farmacología , Animales , Ancirinas/efectos adversos , Ancirinas/metabolismo , Asma/inducido químicamente , Asma/tratamiento farmacológico , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Femenino , Interleucina-4/metabolismo , Pulmón , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ovalbúmina/farmacología , Canal Catiónico TRPA1 , Uniones Estrechas/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
18.
Biochem Pharmacol ; 197: 114933, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35093393

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is becoming an increasingly serious disease worldwide. Unfortunately, no specific drug has been approved to treat NAFLD. Accumulating evidence suggests that lipotoxicity, which is induced by an excess of intracellular triacylglycerols (TAGs), is a potential mechanism underlying the ill-defined progression of NAFLD. Under physiological conditions, a balance is maintained between TAGs and free fatty acids (FFAs) in the liver. TAGs are catabolized to FFAs through neutral lipolysis and/or lipophagy, while FFAs can be anabolized to TAGs through an esterification reaction. However, in the livers of patients with NAFLD, lipophagy appears to fail. Reversing this abnormal state through several lipophagic molecules (mTORC1, AMPK, PLIN, etc.) facilitates NAFLD amelioration; therefore, restoring failed lipophagy may be a highly efficient therapeutic strategy for NAFLD. Here, we outline the lipophagy phases with the relevant important proteins and discuss the roles of lipophagy in the progression of NAFLD. Additionally, the potential candidate drugs with therapeutic value targeting these proteins are discussed to show novel strategies for future treatment of NAFLD.


Asunto(s)
Autofagia/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/fisiología , Berberina/administración & dosificación , Ácidos Grasos no Esterificados/antagonistas & inhibidores , Ácidos Grasos no Esterificados/metabolismo , Factores de Crecimiento de Fibroblastos/administración & dosificación , Humanos , Metabolismo de los Lípidos/fisiología , Lipólisis/efectos de los fármacos , Lipólisis/fisiología , Hígado/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/administración & dosificación , Canales de Potencial de Receptor Transitorio/administración & dosificación , Triglicéridos/antagonistas & inhibidores , Triglicéridos/metabolismo
19.
Pharmacol Ther ; 231: 107980, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34481811

RESUMEN

Overcoming refractory epilepsy's resistance to the combination of antiepileptic drugs (AED), mitigating side effects, and preventing sudden unexpected death in epilepsy are critical goals for therapy of this disorder. Current therapeutic strategies are based primarily on neurocentric mechanisms, overlooking the participation of astrocytes and microglia in the pathophysiology of epilepsy. This review is focused on a set of non-selective membrane channels (permeable to ions and small molecules), including channels and ionotropic receptors of neurons, astrocytes, and microglia, such as: the hemichannels formed by Cx43 and Panx1; the purinergic P2X7 receptors; the transient receptor potential vanilloid (TRPV1 and TRPV4) channels; calcium homeostasis modulators (CALHMs); transient receptor potential canonical (TRPC) channels; transient receptor potential melastatin (TRPM) channels; voltage-dependent anion channels (VDACs) and volume-regulated anion channels (VRACs), which all have in common being activated by epileptic activity and the capacity to exacerbate seizure intensity. Specifically, we highlight evidence for the activation of these channels/receptors during epilepsy including neuroinflammation and oxidative stress, discuss signaling pathways and feedback mechanisms, and propose the functions of each of them in acute and chronic epilepsy. Studying the role of these non-selective membrane channels in epilepsy and identifying appropriate blockers for one or more of them could provide complementary therapies to better alleviate the disease.


Asunto(s)
Epilepsia , Canales de Potencial de Receptor Transitorio , Conexinas/metabolismo , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Humanos , Microglía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Convulsiones/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
20.
J Ethnopharmacol ; 282: 114546, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34418512

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bacopa monnieri L. (Scrophulariaceae) is commonly known as Brahmi and traditionally used as a neuroprotective herbal medicine. Recently, Bacopa monnieri exhibited significant therapeutic activity against animal model of neuropathic pain. However, the therapeutic potential of methanolic extract of Bacopa monnieri in experimental animal model is yet to establish. AIM OF THE STUDY: The present study was designed to evaluate the anti-nociceptive potential of standardized methanolic extract of Bacopa monnieri in experimental adult zebrafish (Danio rerio) model of pain. MATERIALS AND METHODS: The methanolic extract of Bacopa monnieri (BME) was standardized to bacoside-A using chromatographic method. Subsequently, BME (0.75, 1.25 and 5.0 mg/ml) was evaluated for anti-nociceptive activity using adult zebrafish model. RESULTS: Standardized BME showed antioxidant effect through radical quenching activity in in vitro study. BME at 1.25 mg/ml significantly decreased the nociceptive effect induced by different noxious agents like acetic acid where as BME at 2.5 mg/ml exhibited significant antinociceptive activity against glutamate, formalin, capsaicin, cinnamaldehyde when compared to control and sham group animals. CONCLUSION: BME exerted antinociceptive activity in adult zebrafish. It could be presumed that BME may involve glutamatergic receptor, ASIC and TRP channel activity in its anti-nociceptive effect. BME could be considered as a potential therapeutic option in the management of pain.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Analgésicos/farmacología , Bacopa , Neuralgia , Extractos Vegetales/farmacología , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Plantas Medicinales , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA