Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 25(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962000

RESUMEN

The Japanese traditional medicine maobushisaishinto (MBST) has been prescribed for treating upper respiratory tract infections, such as a common cold. However, its mode of action is poorly understood, especially concerning the MBST constituent Asiasari Radix (AR). In this study, we focused on AR, with an objective of clarifying its bioavailable active ingredients and role within MBST by performing pharmacokinetic and pharmacological studies. Firstly, we performed qualitative non-targeted analysis utilizing high-resolution mass spectrometry to explore the bioavailable ingredients of AR as well as quantitative targeted analysis to reveal plasma concentrations following oral administration of MBST in rats. Secondly, we performed in vitro pharmacological study of bioavailable AR ingredients in addition to other ingredients of MBST to confirm any agonistic activities against transient receptor potential (TRP) channels. As a result, methyl kakuol and other compounds derived from AR were detected in the rat plasma and showed agonistic activity against TRPA1. This study suggests that methyl kakuol as well as other compounds have the potential to be an active ingredient in AR and thus presumably would contribute in part to the effects exerted by MBST.


Asunto(s)
Medicamentos Herbarios Chinos/química , Espectrometría de Masas en Tándem/métodos , Canales de Potencial de Receptor Transitorio/química , Animales , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/metabolismo , Semivida , Masculino , Medicina Tradicional , Óxido Nítrico/metabolismo , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Ratas , Ratas Sprague-Dawley , Canales de Potencial de Receptor Transitorio/metabolismo
2.
CNS Neurol Disord Drug Targets ; 15(8): 987-994, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27071783

RESUMEN

Eleven compounds belonging to the chalcone family were tested for their ability to activate and subsequently desensitize the rat transient receptor potential ankyrin 1 cation channel, subfamily A, member 1 (TRPA1) in a heterologous expression system. Four of the tested compounds were more potent than the TRPA1 agonist mustard oil, and showed also a strong desensitizing effect. Some chalcone compounds were not pungent in the eye-wiping assay and quite remarkably inhibited in a long-lasting and dose-dependent manner the pain response in the formalin test. Chalcones can be considered as novel candidates for the development of antihyperalgesic preparations based on TRPA1 desensitization.


Asunto(s)
Analgésicos/química , Analgésicos/uso terapéutico , Antiinflamatorios/uso terapéutico , Chalconas/uso terapéutico , Inflamación/tratamiento farmacológico , Dolor/tratamiento farmacológico , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Antiinflamatorios/química , Calcio/metabolismo , Chalconas/química , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Formaldehído/toxicidad , Células HEK293 , Humanos , Inflamación/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Planta de la Mostaza/toxicidad , Dolor/inducido químicamente , Dimensión del Dolor , Aceites de Plantas/toxicidad , Ratas , Relación Estructura-Actividad , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/química
3.
PLoS One ; 9(9): e106776, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25181545

RESUMEN

The transient receptor potential ion channel TRPA1 confers the ability to detect tissue damaging chemicals to sensory neurons and as a result mediates chemical nociception in vivo. Mouse TRPA1 is activated by electrophilic compounds such as mustard-oil and several physical stimuli such as cold temperature. Due to its sensory function inhibition of TRPA1 activity might provide an effective treatment against chronic and inflammatory pain. Therefore, TRPA1 has become a target for the development of analgesic drugs. 6-Methyl-5-(2-(trifluoromethyl)phenyl)-1H-indazole (Compound 31) has been identified by a chemical screen and lead optimization as an inhibitor of chemical activation of TRPA1. However, the structures or domains of TRPA1 that mediate the inhibitory effect of Compound 31 are unknown. Here, we screened 12,000 random mutant clones of mouse TRPA1 for their sensitivity to mustard-oil and the ability of Compound 31 to inhibit chemical activation by mustard-oil. In addition, we separately screened this mutant library while stimulating it with cold temperatures. We found that the single-point mutation I624N in the N-terminus of TRPA1 specifically affects the sensitivity to mustard-oil, but not to cold temperatures. This is evidence that sensitivity of TRPA1 to chemicals and cold temperatures is conveyed by separable mechanisms. We also identified five mutations located within the pore domain that cause loss of inhibition by Compound 31. This result demonstrates that the pore-domain is a regulator of chemical activation and suggests that Compound 31 might be acting directly on the pore-domain.


Asunto(s)
Analgésicos/farmacología , Indazoles/farmacología , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/química , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Planta de la Mostaza , Aceites de Plantas/farmacología , Mutación Puntual , Porosidad , Estructura Terciaria de Proteína , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/genética
4.
Nat Commun ; 4: 2399, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24008932

RESUMEN

Transient receptor potential ankyrin 1 (TRPA1) protein is a nonselective cation channel. Although many studies suggest that TRPA1 is involved in inflammatory and neuropathic pain, its mechanism remains unclear. Here we identify an alternative splice variant of the mouse Trpa1 gene. TRPA1a (full-length) and TRPA1b (splice variant) physically interact with each other and TRPA1b increases the expression of TRPA1a in the plasma membrane. TRPA1a and TRPA1b co-expression significantly increases current density in response to different agonists without affecting their single-channel conductance. Exogenous overexpression of Trpa1b gene in wild-type and TRPA1KO DRG neurons also increases TRPA1a-mediated AITC responses. Moreover, expression levels of Trpa1a and Trpa1b mRNAs change dynamically in two pain models (complete Freund's adjuvant-induced inflammatory pain and partial sciatic nerve ligation-induced neuropathic pain models). These results suggest that TRPA1 may be regulated through alternative splicing under these pathological conditions.


Asunto(s)
Empalme Alternativo/genética , Canales de Potencial de Receptor Transitorio/genética , Empalme Alternativo/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Conducta Animal/efectos de los fármacos , Compuestos de Boro/farmacología , Capsaicina/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Clonación Molecular , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Inmunohistoquímica , Activación del Canal Iónico/efectos de los fármacos , Isotiocianatos/farmacología , Ratones , Modelos Animales , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/metabolismo
5.
Food Chem ; 141(3): 2044-51, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23870926

RESUMEN

Transient receptor potential (TRP) channels represent interesting molecular target structures involved in a number of different physiological and pathophysiological systems. In particular, TRPA1 channel is involved in nociception and in sensory perception of many pungent chemesthetic compounds, which are widespread in spices and food plants, including Perilla frutescens. A natural compound from P. frutescens (isoegomaketone) and 16 synthetic derivatives of perillaketone have been prepared and tested in vitro on rTRPA1 expressed in HEK293 cells and their potency, efficacy and desensibilisation activity measured. Most derivatives proved to be high potency agonists of TRPA1, with a potency higher than most natural agonists reported in the literature. These furylketones derivatives, represent a new class of chemical structures active on TRPA1 with many potential applications in the agrifood and pharmaceutical industry.


Asunto(s)
Monoterpenos/química , Perilla/química , Extractos Vegetales/química , Canales de Potencial de Receptor Transitorio/agonistas , Animales , Células HEK293 , Humanos , Cinética , Estructura Molecular , Monoterpenos/síntesis química , Extractos Vegetales/síntesis química , Ratas , Canales de Potencial de Receptor Transitorio/química
6.
Proc Natl Acad Sci U S A ; 108(46): E1184-91, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21930928

RESUMEN

Transient receptor potential (TRP) channels are polymodal signal detectors that respond to a wide array of physical and chemical stimuli, making them important components of sensory systems in both vertebrate and invertebrate organisms. Mammalian TRPA1 channels are activated by chemically reactive irritants, whereas snake and Drosophila TRPA1 orthologs are preferentially activated by heat. By comparing human and rattlesnake TRPA1 channels, we have identified two portable heat-sensitive modules within the ankyrin repeat-rich aminoterminal cytoplasmic domain of the snake ortholog. Chimeric channel studies further demonstrate that sensitivity to chemical stimuli and modulation by intracellular calcium also localize to the N-terminal ankyrin repeat-rich domain, identifying this region as an integrator of diverse physiological signals that regulate sensory neuron excitability. These findings provide a framework for understanding how restricted changes in TRPA1 sequence account for evolution of physiologically diverse channels, also identifying portable modules that specify thermosensitivity.


Asunto(s)
Proteínas de Drosophila/química , Canales Catiónicos TRPC/química , Canales de Potencial de Receptor Transitorio/química , Animales , Crotalus , Citoplasma/metabolismo , Dimerización , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Electrofisiología/métodos , Calor , Humanos , Canales Iónicos , Oocitos/metabolismo , Mutación Puntual , Estructura Terciaria de Proteína , ARN Complementario/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Xenopus , Xenopus laevis/metabolismo , Pez Cebra
7.
Pain Pract ; 10(3): 185-200, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20230457

RESUMEN

In ancient times, physicians had a limited number of therapies to provide pain relief. Not surprisingly, plant extracts applied topically often served as the primary analgesic plan. With the discovery of the capsaicin receptor (transient receptor potential cation channel, subfamily V, member 1 [TRPV1]), the search for "new" analgesics has returned to compounds used by physicians thousands of years ago. One such compound, capsaicin, couples the paradoxical action of nociceptor activation (burning pain) with subsequent analgesia following repeat or high-dose application. Investigating this "paradoxical" action of capsaicin has revealed several overlapping and complementary mechanisms to achieve analgesia including receptor desensitization, nociceptor dysfunction, neuropeptide depletion, and nerve terminal destruction. Moreover, the realization that TRPV1 is both sensitized and activated by endogenous products of inflammation, including bradykinin, H+, adenosine triphosphate, fatty acid derivatives, nerve growth factor, and trypsins, has renewed interest in TRPV1 as an important site of analgesia. Building on this foundation, a new series of preclinical and clinical studies targeting TRPV1 has been reported. These include trials using brief exposure to high-dose topical capsaicin in conjunction with prior application of a local anesthetic. Clinical use of resiniferatoxin, another ancient but potent TRPV1 agonist, is also being explored as a therapy for refractory pain. The development of orally administered high-affinity TRPV1 antagonists holds promise for pioneering a new generation of analgesics capable of blocking painful sensations at the site of inflammation and tissue injury. With the isolation of other members of the TRP channel family such as TRP cation channel, subfamily A, member 1, additional opportunities are emerging in the development of safe and effective analgesics.


Asunto(s)
Analgésicos/uso terapéutico , Inflamación/metabolismo , Manejo del Dolor , Dolor/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Analgésicos/historia , Animales , Historia Antigua , Humanos , Inflamación/terapia , Modelos Moleculares , Nociceptores/metabolismo , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/clasificación
9.
Nature ; 445(7127): 541-5, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17237762

RESUMEN

The nervous system senses peripheral damage through nociceptive neurons that transmit a pain signal. TRPA1 is a member of the Transient Receptor Potential (TRP) family of ion channels and is expressed in nociceptive neurons. TRPA1 is activated by a variety of noxious stimuli, including cold temperatures, pungent natural compounds, and environmental irritants. How such diverse stimuli activate TRPA1 is not known. We observed that most compounds known to activate TRPA1 are able to covalently bind cysteine residues. Here we use click chemistry to show that derivatives of two such compounds, mustard oil and cinnamaldehyde, covalently bind mouse TRPA1. Structurally unrelated cysteine-modifying agents such as iodoacetamide (IA) and (2-aminoethyl)methanethiosulphonate (MTSEA) also bind and activate TRPA1. We identified by mass spectrometry fourteen cytosolic TRPA1 cysteines labelled by IA, three of which are required for normal channel function. In excised patches, reactive compounds activated TRPA1 currents that were maintained at least 10 min after washout of the compound in calcium-free solutions. Finally, activation of TRPA1 by disulphide-bond-forming MTSEA is blocked by the reducing agent dithiothreitol (DTT). Collectively, our data indicate that covalent modification of reactive cysteines within TRPA1 can cause channel activation, rapidly signalling potential tissue damage through the pain pathway.


Asunto(s)
Cisteína/metabolismo , Disulfuros/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Noxas/farmacología , Canales de Potencial de Receptor Transitorio/agonistas , Canales de Potencial de Receptor Transitorio/metabolismo , Acroleína/análogos & derivados , Acroleína/química , Acroleína/metabolismo , Acroleína/farmacología , Animales , Cisteína/química , Disulfuros/química , Ditiotreitol/farmacología , Conductividad Eléctrica , Metanosulfonato de Etilo/análogos & derivados , Metanosulfonato de Etilo/química , Metanosulfonato de Etilo/metabolismo , Metanosulfonato de Etilo/farmacología , Humanos , Ratones , Planta de la Mostaza/química , Planta de la Mostaza/metabolismo , Noxas/química , Noxas/metabolismo , Dolor/inducido químicamente , Dolor/fisiopatología , Aceites de Plantas/química , Aceites de Plantas/metabolismo , Aceites de Plantas/farmacología , Canales de Potencial de Receptor Transitorio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA