Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Ethnopharmacol ; 323: 117667, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38159821

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Stephania cephalantha Hayata is an important traditional medicinal plant widely used in traditional medicine to treat cancer. Cepharanthine (CEP) was extracted from the roots of Stephania cephalantha Hayata. It has been found to exhibit anticancer activity in different types of cancer cells. Nevertheless, the activity of CEP against nasopharyngeal carcinoma (NPC) and its underlying mechanism warrant further investigation. AIMS OF THE STUDY: NPC is an invasive and highly metastatic malignancy that affects the head and neck region. This research aimed to investigate the pharmacological properties and underlying mechanism of CEP against NPC, aiming to offer novel perspectives on treating NPC using CEP. MATERIALS AND METHODS: In vitro, the pharmacological activity of CEP against NPC was evaluated using the CCK-8 assay. To predict and elucidate the anticancer mechanism of CEP against NPC, we employed network pharmacology, conducted molecular docking analysis, and performed Western blot experiments. In vivo validation was performed through a nude mice xenograft model of human NPC, Western blot and immunohistochemical (IHC) assays to confirm pharmacological activity and the mechanism. RESULTS: In a dose-dependent manner, the proliferation and clonogenic capacity of NPC cells were significantly inhibited by CEP. Additionally, NPC cell migration was suppressed by CEP. The results obtained from network pharmacology experiments revealed that anti-NPC effect of CEP was associated with 8 core targets, including EGFR, AKT1, PIK3CA, and mTOR. By performing molecular docking, the binding capacity of CEP to the candidate core proteins (EGFR, AKT1, PIK3CA, and mTOR) was predicted, resulting in docking energies of -10.0 kcal/mol for EGFR, -12.4 kcal/mol for PIK3CA, -10.8 kcal/mol for AKT1, and -8.6 kcal/mol for mTOR. The Western blot analysis showed that CEP effectively suppressed the expression of EGFR and the phosphorylation levels of downstream signaling proteins, including PI3K, AKT, mTOR, and ERK. After CEP intervention, a noteworthy decrease in tumor size, without inducing any toxicity, was observed in NPC xenograft nude mice undergoing in vivo treatment. Additionally, IHC analysis demonstrated a significant reduction in the expression levels of EGFR and Ki-67 following CEP treatment. CONCLUSION: CEP exhibits significant pharmacological effects on NPC, and its mechanistic action involves restraining the activation of the EGFR/PI3K/AKT pathway. CEP represents a promising pharmaceutical agent for addressing and mitigating NPC.


Asunto(s)
Benzodioxoles , Bencilisoquinolinas , Neoplasias Nasofaríngeas , Proteínas Proto-Oncogénicas c-akt , Stephania , Animales , Ratones , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Simulación del Acoplamiento Molecular , Ratones Desnudos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Farmacología en Red , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/uso terapéutico , Receptores ErbB
2.
Neoplasma ; 70(5): 633-644, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38053374

RESUMEN

Radiotherapy is widely used as the first-line treatment for nasopharyngeal carcinoma (NPC). However, the resistance of some patients to treatment lowers its clinical effectiveness. Compared to typical epithelial cells, NPC markedly lowers the Ras-association domain family 1A (RASSF1A) protein expression. RASSF1A overexpression sensitizes NPC cells to radiotherapy. Mechanistically, RASSF1A promotes the expression of Forkhead box O3a (FoxO3a) in the nucleus and inhibits the Nuclear factor E2-related factor 2 (Nrf2) signaling pathway via binding to the Kelch-like ECH-associated protein 1 (Keap1) promoter. Through elevating intracellular ROS levels, RASSF1A overexpression inhibits the expression of thioredoxin reductase 1 (TXNRD1), a crucial Nrf2 target gene, and increases NPC sensitivity to radiation. Immunohistochemical staining of NPC tissue sections revealed that the expression of RASSF1A is negatively correlated with that of TXNRD1. The traditional Chinese medicine component andrographolide (AGP), which induces RASSF1A expression, increased the sensitivity of NPC cells to radiotherapy in vitro and in vivo. Our findings implied that RASSF1A increases the sensitivity of NPC to radiation by increasing FoxO3a expression in the nucleus, inhibiting the Nrf2/TXNRD1 signaling pathway, and elevating intracellular ROS levels. AGP targets RASSF1A and may be a promising adjuvant sensitizer for enhancing radiosensitivity in NPC.


Asunto(s)
Neoplasias Nasofaríngeas , Tiorredoxina Reductasa 1 , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2 , Neoplasias Nasofaríngeas/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Tolerancia a Radiación , Línea Celular Tumoral
3.
Phytomedicine ; 115: 154833, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37137203

RESUMEN

BACKGROUND & AIMS: Excessive autophagy induces cell death and is regarded as the treatment of cancer therapy. We have confirmed that the anti-cancer mechanism of curcumol is related to autophagy induction. As the main target protein of curcumol, RNA binding protein nucleolin (NCL) interacted with many tumor promoters accelerating tumor progression. However, the role of NCL in cancer autophagy and in curcumol's anti-tumor effects haven't elucidated. The purpose of the study is to identify the role of NCL in nasopharyngeal carcinoma autophagy and reveal the immanent mechanisms of NCL played in cell autophagy. METHODS & RESULTS: In the current study, we have found that NCL was markedly upregulated in nasopharyngeal carcinoma (NPC) cells. NCL overexpression effectively attenuated the level of autophagy in NPC cells, and NCL silence or curcumol treatment obviously aggravated the autophagy of NPC cells. Moreover, the attenuation of NCL by curcumol lead a significant suppression on PI3K/AKT/mTOR signaling pathway in NPC cells. Mechanistically, NCL was found to be directly interact with AKT and accelerate AKT phosphorylation, which caused the activation of the PI3K/AKT/mTOR pathway. Meanwhile, the RNA Binding Domain (RBD) 2 of NCL interacts with Akt, which was also influenced by curcumol. Notably, the RBDs of NCL delivered AKT expression was related with cell autophagy in the NPC. CONCLUSION: The results demonstrated that NCL regulated cell autophagy was related with interaction of NCL and Akt in NPC cells. The expression of NCL play an important role in autophagy induction and further found that was associated with its effect on NCL RNA-binding domain 2. This study may provide a new perspective on the target protein studies for natural medicines and confirm the effect of curcumol not only regulating the expression of its target protein, but also influencing the function domain of its target protein.


Asunto(s)
Neoplasias Nasofaríngeas , Proteínas Proto-Oncogénicas c-akt , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión al ARN/metabolismo , Autofagia , Motivos de Unión al ARN , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Proliferación Celular , Nucleolina
4.
Biochem Biophys Res Commun ; 667: 111-119, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216826

RESUMEN

Nasopharyngeal carcinoma (NPC) is a highly recurrent and metastatic malignant tumor affecting a large number of individuals in southern China. Traditional Chinese herbal medicine has been found to be a rich source of natural compounds with mild therapeutic effects and minimal side effects, making them increasingly popular for treating various diseases. Trifolirhizin, a natural flavonoid derived from leguminous plants, has gained significant attention for its therapeutic potential. In this study, we confirmed that trifolirhizin could effectively inhibit the proliferation, migration and invasion of nasopharyngeal carcinoma 6-10B and HK1 cells. Furthermore, our findings demonstrated that trifolirhizin achieves this by suppressing the PI3K/Akt signaling pathway. The findings of the present study provides a valuable perspective on the potential therapeutic applications of trifolirhizin for the treatment of nasopharyngeal carcinoma.


Asunto(s)
Neoplasias Nasofaríngeas , Proteínas Proto-Oncogénicas c-akt , Humanos , Carcinoma Nasofaríngeo/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Transducción de Señal , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
5.
J Tradit Chin Med ; 42(5): 687-692, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36083474

RESUMEN

OBJECTIVE: To confirm the anti-NPC effect of sanguinarine (SA) through a series of wet experiments. METHODS: NPC cell viability was determined by proliferation experiment. Cell clone formation experiment, cell scratch test, transwell migration and invasion experiment and flow cytometry-based cell apoptosis assay were further performed. In addition, Western blotting was performed to investigate the cell signaling pathway. All the relevant experimental data were statistically processed using SPSS 16.0 software. RESULTS: The results showed that sanguinarine represented a time and dose dependent inhibition effects on NPC cell proliferation including the low differentiated CNE2 cells and high metastatic 5-8F cells, along with the cell cloning ability reduction. In addition, sanguinarine has a certain inhibitory effect on the invasion and migration of NPC cells. Mechanistically, sanguinarine displayed the anti-NPC effects mainly involved into the suppression of mTOR signaling and cell apoptosis, which is closely associated with the tumor growth and metastatic malignancy. CONCLUSIONS: Collectively, we discover that sanguinarine is a new high-efficiency anti-NPC monomer of Chinese medicine, with a value for the follow-up pre-clinical research.


Asunto(s)
Neoplasias Nasofaríngeas , Apoptosis , Benzofenantridinas , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , Isoquinolinas , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
6.
Phytomedicine ; 102: 154192, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35636179

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a type of malignant squamous cell tumour originating from the nasopharynx epithelium. Pentagalloylglucose (PGG) is a natural polyphenolic compound that exerts anticancer effects in many types of tumours. However, the role and underlying mechanism of PGG in NPC cells have not been fully defined. PURPOSE: This study aimed to investigate the anticancer activity of PGG as well as the potential mechanism in NPC cells. METHODS: The effects of PGG on the proliferation, apoptosis and cell cycle distribution of CNE1 and CNE2 cells were assessed by MTT and flow cytometry assays. Cell migration was evaluated using wound healing and transwell assays. The expression of microtubule-associated protein 1 light chain 3 beta (LC3B) was observed by immunofluorescence staining. Western blotting was used to explore the levels of related proteins and signalling pathway components. Furthermore, the effects of PGG on NPC cell growth were analysed in a xenograft mouse model in vivo using cisplatin as a positive control. RESULTS: PGG dose-dependently inhibited the proliferation of CNE1 and CNE2 cells. PGG regulated the cell cycle by altering p53, cyclin D1, CDK2, and cyclin E1 protein levels. PGG induced apoptosis and autophagy in NPC cells and elevated the Bax/Bcl-2 ratio and the protein levels of LC3B. Moreover, PGG decreased NPC cell migration by increasing E-cadherin and decreasing N-cadherin, vimentin and CD44 protein levels. Mechanistically, PGG treatment downregulated p-mTOR and ß-catenin expression but upregulated p-p38 MAPK and p-GSK3ß expression. In addition, PGG significantly inhibited NPC cell tumour growth and lung metastasis in vivo. CONCLUSION: PGG may suppress cell proliferation, induce apoptosis and autophagy, and decrease the metastatic capacity of NPC cells through the p38 MAPK/mTOR and Wnt/ß-catenin pathways. The present study provides evidence for PGG as a potential therapy for NPC.


Asunto(s)
Taninos Hidrolizables , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Taninos Hidrolizables/farmacología , Ratones , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Serina-Treonina Quinasas TOR/metabolismo , beta Catenina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Phytomedicine ; 101: 154133, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35504052

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is highly prevalent in southern China. The remote metastasis of advanced NPC requires chemotherapeutic treatments to reduce the mortality. Our previous work revealed that saucerneol (SN) showed cytotoxicity against several nasopharyngeal carcinoma (NPC) cells. This work aims to investigate the effect of SN in NPC growth and exploring the mechanism of action. STUDY DESIGN: Applying in vivo study, in vitro study and in silico study to indicate the mechanism of SN in inhibiting NPC growth. METHODS: Saucerneol (SN) toxicity was measured with MTT assay. NPC proliferation was measured with EdU and colony formation assays, cell cycle was detected with flow cytometry. NPC migration and invasion were measured with scratch assay and matrigel transwell method. Further, human NPC xenograft tumor models were established in nude mice to evaluate the therapeutic efficacy of SN in vivo. Toxicological analysis was performed on H&E staining and IHC. Quantitative real-time PCR and Western blot analyses were used to evaluate the expression levels of key molecules in PI3K/AKT/mTOR, MAPK, NF-κB, and HIF-1α signal pathways. Target predicting was conducted using computational method, and target identification was carried out by ATPase assay and TSA. RESULTS: SN, a potent NPC inhibitor that was previously isolated from Saururus chinensis in our lab, is proven to inhibit the proliferation and metastasis of HONE1 cell lines and inhibit the growth of human NPC xenografts in nude mice. Moreover, we further articulate the molecular mechanism of action for SN and, reveal that SN promotes the expression of cell cycle-dependent kinase inhibitory protein p21 Waf1/Cip1 through targeting Grp94 and then inhibiting PI3K/AKT signaling pathway as well as up-regulating p53 to disrupt the progression of HONE1 cells. CONCLUSION: SN significantly inhibits NPC cells proliferation and metastasis in vitro and in vivo via selectively inhibit Grp94 and then blocking PI3K/AKT/mTOR/HIF-1α signaling pathway. This study firstly provides a novel selective Grp94 inhibitor as a NPC candidate.


Asunto(s)
Furanos/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Lignanos/farmacología , Proteínas de la Membrana/metabolismo , Neoplasias Nasofaríngeas , Fosfatidilinositol 3-Quinasas , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
8.
Cell Death Dis ; 13(4): 331, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35411000

RESUMEN

As the first rate-limiting enzyme in fatty acid oxidation (FAO), CPT1 plays a significant role in metabolic adaptation in cancer pathogenesis. FAO provides an alternative energy supply for cancer cells and is required for cancer cell survival. Given the high proliferation rate of cancer cells, nucleotide synthesis gains prominence in rapidly proliferating cells. In the present study, we found that CPT1A is a determining factor for the abnormal activation of FAO in nasopharyngeal carcinoma (NPC) cells. CPT1A is highly expressed in NPC cells and biopsies. CPT1A dramatically affects the malignant phenotypes in NPC, including proliferation, anchorage-independent growth, and tumor formation ability in nude mice. Moreover, an increased level of CPT1A promotes core metabolic pathways to generate ATP, inducing equivalents and the main precursors for nucleotide biosynthesis. Knockdown of CPT1A markedly lowers the fraction of 13C-palmitate-derived carbons into pyrimidine. Periodic activation of CPT1A increases the content of nucleoside metabolic intermediates promoting cell cycle progression in NPC cells. Targeting CPT1A-mediated FAO hinders the cell cycle G1/S transition. Our work verified that CPT1A links FAO to cell cycle progression in NPC cellular proliferation, which supplements additional experimental evidence for developing a therapeutic mechanism based on manipulating lipid metabolism.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Neoplasias Nasofaríngeas , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Proliferación Celular , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/fisiología , Ratones , Ratones Desnudos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Nucleósidos/metabolismo , Nucleótidos/metabolismo , Oxidación-Reducción
9.
Molecules ; 26(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34770993

RESUMEN

Ginkgo biloba L. has been used in traditional Chinese medicine (TCM) for thousands of years. However, the anti-cancer properties of ginkgolic acids (GAS) isolated from G. biloba have not been investigated in human nasopharyngeal carcinoma cells. In this study, GAS exhibited an inhibitory effect on the ATPase activity of heat shock protein 90 (Hsp90) and anti-proliferative activities against four human cancer cell lines, with IC50 values ranging from 14.91 to 23.81 µg·mL-1. In vivo experiments confirmed that GAS inhibited tumor growth in CNE-2Z cell-xenografted nude mice with low hepatotoxicity. We further demonstrated that GAS suppressed migration and invasion and induced the apoptosis of CNE-2Z cells by inducing the degradation of Hsp90 client proteins (MMP-2, MMP-9, Her-2, c-Raf, Akt, and Bcl-2). Together, GAS are new Hsp90 inhibitors by binding to Hsp90 (hydrogen bond and hydrophobic interaction). Thus, GAS from G. biloba might represent promising Hsp90 inhibitors for the development of anti-nasopharyngeal carcinoma agents.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Ginkgo biloba/química , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Salicilatos/farmacología , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Salicilatos/química , Salicilatos/aislamiento & purificación , Células Tumorales Cultivadas
10.
Biochem Pharmacol ; 192: 114742, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34428442

RESUMEN

Metastasis is a major cause of recurrence and death in patients with EBV-positive Nasopharyngeal carcinoma (NPC). Previous reports documented that curcumol has both anti-cancer and anti-viral effects, but there is little literature systematically addressing the mechanism of curcumol in EBV-positive tumors. Previously we found that nucelolin (NCL) is a target protein of curcumol in CNE2 cells, an EBV-negative NPC, and in this experiment, we reported a critical role for NCL in promoting migration and invasion of C666-1 cells, an EBV-positive NPC, and found that the expression of NCL determined the level of curcumol's efficacy. Mechanistically, NCL interacted with Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) to activate VEGFA/VEGFR1/PI3K/AKT signaling pathway, which in turn promoted NPC cell invasion and metastasis. Moreover, further study showed that the differential expression of NCL and curcumol intervention only had a regulatory effect on the nuclear accumulation of VEGFR1, which strengthened the anti-cancer effect of curcumol mediated through NCL. Our findings indicated that curcumol exerted anti EBV-positive NPC invasion and metastasis by downregulating EBNA1 and inhibiting VEGFA/VEGFR1/PI3K/AKT signaling by targeting NCL, which provides a novel pharmacological basis for curcumol's clinical use in treating patients with EBV-positive NPC.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Herpesvirus Humano 4/efectos de los fármacos , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Sesquiterpenos/uso terapéutico , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Medicamentos Herbarios Chinos/farmacología , Antígenos Nucleares del Virus de Epstein-Barr/biosíntesis , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/patología , Invasividad Neoplásica/patología , Sesquiterpenos/farmacología
11.
Cells ; 10(6)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064109

RESUMEN

Targeting the activities of endoplasmic reticulum (ER)-mitochondrial-dependent metabolic reprogramming is considered one of the most promising strategies for cancer treatment. Here, we present biochemical subcellular fractionation, coimmunoprecipitation, gene manipulation, and pharmacologic evidence that induction of mitochondria-localized phospho (p)-cyclin dependent kinase 1 (CDK1) (Thr 161)-cyclin B1 complexes by apigenin in nasopharyngeal carcinoma (NPC) cells impairs the ER-mitochondrial bioenergetics and redox regulation of calcium (Ca++) homeostasis through suppressing the B cell lymphoma 2 (BCL-2)/BCL-2/B-cell lymphoma-extra large (BCL-xL)-modulated anti-apoptotic and metabolic functions. Using a specific inducer, inhibitor, or short hairpin RNA for acid sphingomyelinase (ASM) demonstrated that enhanced lipid raft-associated ASM activity confers alteration of the lipid composition of lipid raft membranes, which leads to perturbation of protein trafficking, and induces formation of p110α free p85α-unphosphorylated phosphatase and tensin homolog deleted from chromosome 10 complexes in the lipid raft membranes, causing disruption of phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-GTP-ras-related C3 botulinum toxin substrate 1 (Rac1)-mediated signaling, thus triggering the p-CDK1 (Thr 161))-cyclin B1-mediated BCL-2 (Thr 69/Ser 87)/BCL-xL (Ser 62) phosphorylation and accompanying impairment of ER-mitochondria-regulated bioenergetic, redox, and Ca++ homeostasis. Inhibition of apigenin-induced reactive oxygen species (ROS) generation by a ROS scavenger N-acetyl-L-cysteine blocked the lipid raft membrane localization and activation of ASM and formation of ceramide-enriched lipid raft membranes, returned PI3K-Akt-GTP-Rac1-modulated CDK1-cyclin B1 activity, and subsequently restored the BCL-2/BCL-xL-regulated ER-mitochondrial bioenergetic activity. Thus, this study reveals a novel molecular mechanism of the pro-apoptotic activity of ASM controlled by oxidative stress to modulate the ER-mitochondrial bioenergetic metabolism, as well as suggests the disruption of CDK1-cyclin B1-mediated BCL-2/BCL-xL oncogenic activity by triggering oxidative stress-ASM-induced PI3K-Akt-GTP-Rac1 inactivation as a therapeutic approach for NPC.


Asunto(s)
Proteína Quinasa CDC2/fisiología , Ciclina B1/fisiología , Retículo Endoplásmico/metabolismo , Mitocondrias , Carcinoma Nasofaríngeo/metabolismo , Adulto , Línea Celular Tumoral , Retículo Endoplásmico/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Estrés Oxidativo
12.
Oncol Rep ; 46(2)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34165177

RESUMEN

Nasopharyngeal carcinoma (NPC) is an indicator disease in Asia due to its unique geographical and ethnic distribution. Dehydrocrenatidine (DC) is a ß­carboline alkaloid abundantly present in Picrasma quassioides (D. Don) Benn, a deciduous shrub or small tree native to temperate regions of southern Asia, and ß­carboline alkaloids play anti­inflammatory and antiproliferative roles in various cancers. However, the mechanism and function of DC in human NPC cells remain only partially explored. The present study aimed to examine the cytotoxicity and biochemical role of DC in human NPC cells. The MTT method, cell cycle analysis, DAPI determination, Annexin V/PI double staining, and mitochondrial membrane potential examination were performed to evaluate the effects of DC treatment on human NPC cell lines. In addition, western blotting analysis was used to explore the effect of DC on apoptosis and signaling pathways in related proteins. The analysis results confirmed that DC significantly reduced the viability of NPC cell lines in a dose­ and time­dependent manner and induced apoptosis through internal and external apoptotic pathways (including cell cycle arrest, altered mitochondrial membrane potential, and activated death receptors). Western blot analysis illustrated that DC's effect on related proteins in the mitogen­activated protein kinase pathway can induce apoptosis by enhancing ERK phosphorylation and inhibiting Janus kinase (JNK) phosphorylation. Notably, DC induced apoptosis by affecting the phosphorylation of JNK and ERK, and DC and inhibitors (SP600125 and U0126) in combination restored the overexpression of p­JNK and p­ERK. To date, this is the first study to confirm the apoptosis pathway induced by DC phosphorylation of p­JNK and p­REK in human NPC. On the basis of evidence obtained from this study, DC targeting the inhibition of NPC cell lines may be a promising future strategy for NPC treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carbolinas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Picrasma/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Fosforilación/efectos de los fármacos , Extractos Vegetales/química
13.
Mol Med Rep ; 24(1)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34080657

RESUMEN

Nasopharyngeal carcinoma (NPC) is a common malignant tumor in South China and is characterized by a high death rate. Ophiopogonin B (OP­B) is a bioactive component of Radix Ophiopogon japonicus, which is frequently used in traditional Chinese medicine to treat cancer. The present study aimed to examine the anti­cancer properties of OP­B on NPC cells. Cell viability and cell proliferation were measured using MTT and EdU assays. Flow cytometry was used to measure cell apoptosis, reactive oxygen species and mitochondrial membrane potential. Western blotting was used to investigate the expression of apoptosis and Hippo signaling pathway proteins. OP­B inhibited the proliferation of NPC cells by inducing apoptosis and disturbing the mitochondrial integrity. OP­B enhanced ROS accumulation. In addition, OP­B promoted the expression of mammalian STE20­like kinase 1, large tumor suppressor 1 and phosphorylated yes­associated protein (YAP) and suppressed the expression of YAP and transcriptional enhanced associate domain in NPC cells. OP­B increased the expression of forkhead box transcription factor O1 in the nuclear fraction. In conclusion, OP­B has therapeutic potential and feasibility in the development of novel YAP inhibitors for NPC.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saponinas/farmacología , Espirostanos/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Vía de Señalización Hippo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neoplasias Nasofaríngeas/patología , Transducción de Señal/efectos de los fármacos
14.
J Ethnopharmacol ; 271: 113879, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33524509

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sophora Tonkinensis Gagnep. (STG) has been used as a folk medicine for the treatment of different cancers, especially for nasopharyngeal carcinoma, cervical cancer, liver cancer, stomach cancer, lung cancer and leukemia in China. However, the main chemical composition and anticancer mechanism of chloroform extract of STG (CESTG) were still not very clear. AIM OF STUDY: This work was carried out to investigate the anticancer effects and mechanisms of chloroform extract of STG (CESTG) on NPC. METHODS: Cultured NPC CNE1, CNE2 and Np69 cells were treated with CESTG. Cells were subjected to cell proliferation, colony-forming, migration and invasion assays. Cell cycle and apoptosis were measured by flow cytometry. Western blotting and morphological analysis were also performed. Tumor xenografts and drug treatments were made in BALB/c nude mice. The main compounds of CESTG was separated by HPLC. RESULTS: CESTG inhibited cell viability, clonal growth and induced cell apoptosis in a dose-dependent manner by silencing the PI3K/AKT/mTOR signaling pathway, which is associated with upregulation of cleaved PARP, caspase 3/7/8/9, cleaved caspase 3/7/8/9, Bax and downregulation of PARP, P-PI3K, PI3K, P-AKT, AKT, P-mTOR, mTOR and Bcl-2. In addition, CESTG arrested cell cycle in the G1/S phase, correlating with decreased levels of cyclin D1/B1, CDK 4 and 6. CESTG decreased cell migration and invasion which correlated with decreased expression of ß-catenin, vimentin and snail. CESTG significantly inhibited the tumor growth without toxicity. CONCLUSION: The results presented here suggest that CESTG could be use as a potential source of NPC therapeutic drug.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Sophora/química , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cloroformo/química , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Phytomedicine ; 79: 153341, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32992086

RESUMEN

BACKGROUND: Curcumin (CUR) is a natural diarylheptanoid with marked anti-tumor activities. Recent investigations demonstrate that CUR combines with some other phytochemicals exerts advantages over its single application manifested as lower toxicity, higher efficacy or more significant reversal of multidrug resistance. PURPOSE: This study aimed to elucidate a new biflavonoid (wikstroflavone B, WFB) isolated from Wikstroemia indica and to assess the synergistic inhibition of combined CUR and WFB (CUR/WFB) on human nasopharyngeal carcinoma (NPC) cell lines proliferation and metastasis. METHODS: WFB was obtained through sequential chromatographic methods including silica gel, Sephadex LH-20 and preparative HPLC. Its structure was determined by HRESIMS, 1D and 2D NMR spectroscopic analysis. The absolute configuration of WFB was assigned through comparison of experimental and calculated optical rotation (OR) values. Changes in cellular viability, migration and invasion were assessed by MTT, colony formation, wound healing and Transwell assays. The nature of synergistic interaction of CUR/WFB was determined through the combination index (CI) method under the median-effect analysis. Expression levels of indicated mRNAs and proteins were measured by qRT-PCR and Western blotting assays, respectively. RESULTS: WFB was isolated and structural elucidated. Compared with CUR or WFB used alone, CUR/WFB treatment inhibited more effectively on the cell viability, colony formation, cell migration and invasion. Both CI and dose reduction index (DRI) values indicated the significant synergistic effects existed between CUR and WFB. Besides, CUR/WFB showed the marked modulation on the genes involved in cell proliferation (survivin, cyclin D1, p53 and p21) and metastasis (MMP-2, MMP-9 and FAK). CUR/WFB treatment was also found to restrain the phosphorylation of FAK and STAT3 proteins. When pretreatment with a FAK inhibitor, the cell viability and metastasis were significantly attenuated. CONCLUSION: The results indicate that WFB can synergistically increase the inhibitory effects of CUR on NPC cells proliferation and metastasis, and these findings may afford a rational approach for developing the antitumor medications.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Biflavonoides/aislamiento & purificación , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Biflavonoides/administración & dosificación , Biflavonoides/química , Biflavonoides/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Curcumina/administración & dosificación , Curcumina/farmacología , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Metaloproteinasas de la Matriz/metabolismo , Estructura Molecular , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Wikstroemia/química
16.
Med Sci Monit Basic Res ; 26: e923431, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32448862

RESUMEN

BACKGROUND Nasopharyngeal carcinoma (NPC) is a common head and neck cancer epidemic in southern China and southeast Asia. LeiGongTeng has been widely used for the treatment of cancers. The purpose of this study was to determine the pharmacological mechanism of action of LeiGongTeng in the treatment of NPC using a network pharmacological approach. MATERIAL AND METHODS The traditional Chinese medicine systems pharmacology (TCMSP) database was used to identify active ingredients and associated target proteins for LeiGongTeng. Cytoscape was utilized to create a drug-disease network and topology analysis was conducted to analyze the degree of each ingredient. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) online tool was applied for the construction and analysis of the protein-protein interaction (PPI) network, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) functional analyses were utilized to determine drug-disease common genes. RESULTS 22 active ingredients including kaempferol, nobiletin, and beta-sitosterol, and 30 drug-disease common genes including VEGFA, CASP3, ESR1, and RELA were identified. GO analysis indicated that 94 biological processes, including RNA polymerase II, apoptotic process, response to drug, cell adhesion, and response to hypoxia, were found to be associated with NPC. The KEGG enrichment analysis showed that 58 pathways, including the PI3K-Akt signaling pathway, microRNAs in cancer, tumor necrosis factor (TNF) signaling pathway and pathways in cancer were found to be associated with NPC. CONCLUSIONS LeiGongTeng exerts its therapeutic effect through various biological processes and signaling pathways since it acts on several target genes. Systematic pharmacology can be used to predict the underlying function of LeiGongTeng and its mechanism of action in NPC.


Asunto(s)
Carcinoma Nasofaríngeo/tratamiento farmacológico , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , China , Biología Computacional/métodos , Bases de Datos Factuales , Ontología de Genes , Humanos , Medicina Tradicional China/métodos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , Mapas de Interacción de Proteínas/genética , Transducción de Señal/efectos de los fármacos , Tripterygium/genética , Tripterygium/metabolismo
17.
Cancer Chemother Pharmacol ; 85(6): 1097-1108, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32449143

RESUMEN

PURPOSE: Brusatol, a natural quassinoid that is isolated from a traditional Chinese herbal medicine known as Bruceae Fructus, possesses biological activity in various types of human cancers, but its effects in nasopharyngeal carcinoma (NPC) have not been reported. This study aimed to explore the effect and molecular mechanism of brusatol in NPC in vivo and in vitro. METHODS: The antiproliferative effect of brusatol was assessed by MTT and colony formation assays. Apoptosis was determined by flow cytometry. The expression of mitochondrial apoptosis, cell cycle arrest, and Akt/mTOR pathway proteins were determined by western blot analysis. Further in vivo confirmation was performed in a nude mouse model. RESULTS: Brusatol showed antiproliferative activity against four human NPC cell lines (CNE-1, CNE-2, 5-8F, and 6-10B) in a dose-dependent manner. This antiproliferative effect was accompanied by mitochondrial apoptosis and cell cycle arrest through the modulation of several key molecular targets, such as Bcl-xl, Bcl-2, Bad, Bax, PARP, Caspase-9, Caspase-7, Caspase-3, Cdc25c, Cyclin B1, Cdc2 p34, and Cyclin D1. In addition, we found that brusatol inhibited the activation of Akt, mTOR, 4EBP1, and S6K, suggesting that the Akt/mTOR pathway is a key underlying mechanism by which brusatol inhibits growth and promotes apoptosis. Further in vivo nude mouse models proved that brusatol significantly inhibited the growth of CNE-1 xenografts with no significant toxicity. CONCLUSIONS: These observations indicate that brusatol is a promising antitumor drug candidate or a supplement to current chemotherapeutic therapies to treat NPC.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Cuassinas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Apoptosis , Biomarcadores de Tumor , Movimiento Celular , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Biochem Biophys Res Commun ; 527(3): 770-777, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32446561

RESUMEN

Nasopharyngeal carcinoma (NPC) is relatively sensitive to ionizing radiation, and radiotherapy is the main treatment modality for non-metastatic NPC. Radiation therapy generates overproduction of reactive oxygen species (ROS), which can cause DNA damage and induce apoptosis in tumors, thereby killing the malignant cells. Although dietary antioxidant supplementation reduces oxidative stress and promotes tumor progression, the effects of antioxidants on the NPC cells upon radiation have not been reported. In the present study, we showed that antioxidants (ß-Carotene, NAC, GSH) played an anti-apoptotic role in response to radiation via decreasing ROS production and inhibiting MAPK pathway in NPC cells. Based on that, we conclude that the use of supplemental antioxidants during radiotherapy should be avoided because of the possibility of tumor protection and reduced treatment efficacy.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Línea Celular Tumoral , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Anticancer Drugs ; 31(9): 932-941, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32282369

RESUMEN

Nasopharyngeal carcinoma (NPC) is a malignant tumor which is commonly found in East Asia and Africa. The present clinical treatment of NPC is still mainly based on chemotherapeutics and is prone to drug resistance and adverse reactions. Shikonin has been demonstrated to play the antitumor effect in various cancers. However, the specific effects and related regulatory mechanism of Shikonin in NPC have not been clearly declared yet. Cell viability was valued through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation was detected through colony formation assay and Bromodeoxyuridine (BrdU) assay. Hochest 33258 staining was used to value cell apoptosis. Cell migration and invasion were valued through wound healing and transwell invasion assay, respectively. Glucose uptake, lactate release, ATP level and pyruvate kinase M2 isoform (PKM2) activity were measured using corresponding assay kits. Western blotting was used to examine the expression of proteins related to cell proliferation, cell apoptosis, cell migration and the phosphatidylinositol 3 kinase (PI3K)/AKT signal pathway. We found that Shikonin treatment effectively suppressed cell proliferation and induced obvious cell apoptosis compared with the control. Besides, Shikonin treatment suppressed cell migration and invasion effectively. The detection about glycolysis showed that Shikonin treatment suppressed cell glucose uptake, lactate release and ATP level. The activity of PKM2 was also largely inhibited by Shikonin. Further study revealed that the PI3K/AKT signal pathway was inactivated by Shikonin treatment. In addition, the inducer of the PI3K/AKT signal pathway largely abolished the antitumor effect of Shikonin on cell proliferation, cell apoptosis, cell mobility and aerobic glycolysis in NPC cells. Shikonin inhibits growth and invasion of NPC cells through inactivating the PI3K/AKT signal pathway.


Asunto(s)
Naftoquinonas/farmacología , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apoptosis/efectos de los fármacos , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Glucólisis/efectos de los fármacos , Humanos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Invasividad Neoplásica , Transducción de Señal/efectos de los fármacos
20.
Phytomedicine ; 63: 153058, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31394414

RESUMEN

BACKGROUND: Sulforaphane (SFN), a natural compound present in cruciferous vegetable, has been shown to possess anti-cancer activities. Cancer stem cell (CSC) in bulk tumor is generally considered as treatment resistant cell and involved in cancer recurrence. The effects of SFN on nasopharyngeal carcinoma (NPC) CSCs have not yet been explored. PURPOSE: The present study aims to examine the anti-tumor activities of SFN on NPC cells with CSC-like properties and the underlying mechanisms. METHODS: NPC cells growing in monolayer culture, CSCs-enriched NPC tumor spheres, and also the NPC nude mice xenograft were used to study the anti-tumor activities of SFN on NPC. The population of cells expressing CSC-associated markers was evaluated using flow cytometry and aldehyde dehydrogenase (ALDH) activity assay. The effect of DNA methyltransferase 1 (DNMT1) on the growth of NPC cells was analyzed by using small interfering RNA (siRNA)-mediated silencing method. RESULTS: SFN was found to inhibit the formation of CSC-enriched NPC tumor spheres and reduce the population of cells with CSC-associated properties (SRY (Sex determining Region Y)-box 2 (SOX2) and ALDH). In the functional study, SFN was found to restore the expression of Wnt inhibitory factor 1 (WIF1) and the effect was accompanied with the downregulation of DNMT1. The functional activities of WIF1 and DNMT1 were confirmed using exogenously added recombinant WIF1 and siRNA knockdown of DNMT1. Moreover, SFN was found to inhibit the in vivo growth of C666-1 cells and enhance the anti-tumor effects of cisplatin. CONCLUSION: Taken together, we demonstrated that SFN could suppress the growth of NPC cells via the DNMT1/WIF1 axis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos Fitogénicos/farmacología , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Isotiocianatos/farmacología , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Brassicaceae/química , Línea Celular Tumoral , Cisplatino/administración & dosificación , ADN (Citosina-5-)-Metiltransferasa 1/genética , Humanos , Isotiocianatos/administración & dosificación , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Sulfóxidos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA