Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1052-1063, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621912

RESUMEN

The mechanism of total polyphenols of Cydonia oblonga Miller(TPCOM) against kidney cancer was elucidated through a combination of network pharmacology, bioinformatics, and experimental verification. The active polyphenolic compounds from C. oblonga were screened by network pharmacological techniques and kidney cancer-related targets were collected through the database. The differential gene expression analysis was performed on RNA sequencing data from tumor tissue and normal tissue of kidney cancer patients obtained from the Gene Expression Omnibus(GEO) database. The results of network pharmacology predictions and differential gene expression analysis were used to identify the core genes targeted by TPCOM in kidney cancer. Survival analysis was conducted to identify key targets that could impact patient survival, followed by Kyoto Encyclopedia of Genes and Genomes(KEGG) and Gene Ontology(GO) enrichment analyses. Cell proliferation and activity experiments(cell counting kit-8) were conducted using TPCOM at concentrations ranging from 20 to 640 µg·mL~(-1) on 786-O and Renca cells. Additionally, TPCOM at concentrations of 40, 80, and 160 µg·mL~(-1) was applied to kidney cancer cells to assess its effect on cell migration and its regulation of protein expression levels related to the protein kinase B(Akt), mammalian target of rapamycin(mTOR), and phosphoinositide 3-kinase(PI3K) signaling pathways. Network pharmacology predicted eight active polyphenolic compounds from C. oblonga. Survival analysis revealed 15 significantly differentially expressed genes in kidney cancer that were affected by TPCOM and had a significant impact on patient survival. KEGG and GO analysis results indicated that these 15 targets were primarily associated with the PI3K/Akt signaling pathway, cell migration, and proliferation. The results showed that TPCOM could inhibit the proliferation of 786-O and Renca cells, with IC_(50) values of 121.4 and 137.9 µg·mL~(-1), respectively. TPCOM was also found to inhibit the migration of these cells and suppress the PI3K/Akt/mTOR signaling pathway. TPCOM may exert its anti-kidney cancer effects by inhibiting the activation of the PI3K/Akt/mTOR signaling pathway, thereby restraining the proliferation and migration of kidney cancer cells. This study provides a foundation for the research on the anti-tumor effects of natural product C. oblonga, particularly in Xinjiang, and holds significance for further promoting its development and utilization.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Serina-Treonina Quinasas TOR/genética , Proliferación Celular , Simulación del Acoplamiento Molecular
2.
Cancer Genomics Proteomics ; 21(2): 203-212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38423595

RESUMEN

BACKGROUND/AIM: A genomic analysis based on next-generation sequencing is important for deciding cancer treatment strategies. Cancer tissue sometimes displays intratumor heterogeneity and a pathologic specimen may contain more than two tumor grades. Although tumor grades are very important for the cancer prognosis, the impact of higher tumor grade distribution in a specimen used for a genomic analysis is unknown. PATIENTS AND METHODS: We retrospectively analyzed the data of 61 clear cell carcinoma and 46 prostate cancer patients that were diagnosed between December 2018 and August 2022 using the GeneRead Human Comprehensive Cancer Panel or SureSelect PrePool custom Tier2. Genome annotation and curation were performed using the GenomeJack software. RESULTS: Tumor mutation burden (TMB) was increased in proportion to the higher tumor grade distribution in grade 2 clear cell renal cell carcinoma (ccRCC). In PC, Grade Group 3/4 specimens that included an increased distribution of Gleason pattern 4 had more frequent gene mutations. CONCLUSION: Our results suggest the importance of selecting the maximum distribution of higher tumor grade areas to obtain results on the precise gene alterations for genomics-focused treatments.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Neoplasias de la Próstata , Masculino , Humanos , Carcinoma de Células Renales/genética , Estudios Retrospectivos , Neoplasias de la Próstata/genética , Mutación , Neoplasias Renales/genética
3.
Phytomedicine ; 124: 155310, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215574

RESUMEN

BACKGROUND: Renal cancer is insensitive to radiotherapy or most chemotherapies. While the loss of the XPC gene was correlated with drug resistance in colon cancer, the expression of XPC and its role in the drug resistance of renal cancer have not yet been elucidated. With the fact that natural small-molecules have been adopted in combinational therapy with classical chemotherapeutic agents to increase the drug sensitivity and reduce adverse effects, the use of herbal compounds to tackle drug-resistance in renal cancer is advocated. PURPOSE: To correlate the role of XPC gene deficiency to drug-resistance in renal cancer, and to identify natural small-molecules that can reverse drug-resistance in renal cancer via up-regulation of XPC. METHODS: IHC was adopted to analyze the XPC expression in human tumor and adjacent tissues. Clinical data extracted from The Cancer Genome Atlas (TCGA) database were further analysed to determine the relationship between XPC gene expression and tumor staging of renal cancer. Two types of XPC-KD renal cancer cell models were established to investigate the drug-resistant phenotype and screen XPC gene enhancers from 134 natural small-molecules derived from herbal plants. Furthermore, the identified XPC enhancers were verified in single or in combination with FDA-approved chemotherapy drugs for reversing drug-resistance in renal cancer using MTT cytotoxicity assay. Drug resistance gene profiling, ROS detection assay, immunocytochemistry and cell live-dead imaging assay were adopted to characterize the XPC-related drug resistant mechanism. RESULTS: XPC gene expression was significantly reduced in renal cancer tissue compared with its adjacent tissue. Clinical analysis of TCGA database also identified the downregulated level of XPC gene in renal tumor tissue of stage IV patients with cancer metastasis, which was also correlated with their lower survival rate. 6 natural small-molecules derived from herbal plants including tectorigenin, pinostilbene, d-pinitol, polygalasaponin F, atractylenolide III and astragaloside II significantly enhanced XPC expression in two renal cancer cell types. Combinational treatment of the identified natural compound with the treatment of FDA-approved drug, further confirmed the up-regulation of XPC gene expression can sensitize the two types of XPC-KD drug-resistant renal cancer cells towards the FDA-approved drugs. Mechanistic study confirmed that GSTP1/ROS axis was activated in drug resistant XPC-KD renal cancer cells. CONCLUSION: XPC gene deficiency was identified in patient renal tumor samples, and knockdown of the XPC gene was correlated with a drug-resistant phenotype in renal cancer cells via activation of the GSTP1/ROS axis. The 6 identified natural small molecules were confirmed to have drug sensitizing effects via upregulation of the XPC gene. Therefore, the identified active natural small molecules may work as an adjuvant therapy for circumventing the drug-resistant phenotype in renal cancer via enhancement of XPC expression.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Xerodermia Pigmentosa , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Especies Reactivas de Oxígeno , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Resistencia a Medicamentos
4.
Sci Rep ; 13(1): 20567, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996508

RESUMEN

Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Functional assays showed NER deficiency in ccRCC cells. Some cell lines showed irofulven sensitivity at a concentration that is well tolerated by patients. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. ccRCC cell line-based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Sesquiterpenos , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Reparación del ADN , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Daño del ADN , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo D/genética
5.
BMC Cancer ; 23(1): 972, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828458

RESUMEN

BACKGROUND: In recent years, hyperthermia has been widely applied as a novel strategy for cancer treatment due to its multiple antitumour effects. In particular, the potential influences of hyperthermia on the tumour immune microenvironment may improve the efficacy of immunotherapies. However, the effect of hyperthermia on renal cell carcinoma (RCC) has not been well characterized until now. METHODS: In the present study, we primarily evaluated the effects of hyperthermia on cellular function via cellular proliferation, migration, invasion and apoptosis assays. In addition, the influence of hyperthermia on the immunogenicity of RCC cells was analysed using flow cytometry analysis, enzyme-linked immunosorbent assays, and immunofluorescent (IF) staining. RESULTS: Our results demonstrate that hyperthermia significantly inhibits RCC cell proliferation, migration, and invasion and promotes cell apoptosis. In addition, we verified that hyperthermia improves the immunogenicity of RCC cells by inducing immunogenic cell death. CONCLUSION: Our findings suggest that hyperthermia is a promising therapeutic strategy for RCC.


Asunto(s)
Carcinoma de Células Renales , Hipertermia Inducida , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Muerte Celular Inmunogénica , Proliferación Celular , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral
6.
Medicine (Baltimore) ; 102(35): e34929, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37657024

RESUMEN

This study aims to analyze the potential biomarkers using bioinformatics technology, explore the pathogenesis, and investigate potential Chinese herbal ingredients for the Clear cell renal cell carcinoma (ccRCC), which could provide theoretical basis for early diagnosis and effective treatment of ccRCC. The gene expression datasets GSE6344 and GSE53757 were obtained from the Gene Expression Omnibus database to screen differentially expressed genes (DEGs) involved in ccRCC carcinogenesis and disease progression. Enrichment analyses, protein-protein interaction networks construction, survival analysis and herbal medicines screening were performed with related software and online analysis platforms. Moreover, network pharmacology analysis has also been performed to screen potential target drugs of ccRCC and molecular docking analysis has been used to validate their effects. Total 274 common DEGs were extracted through above process, including 194 up-regulated genes and 80 down-regulated genes. The enrichment analysis revealed that DEGs were significantly focused on multiple amino acid metabolism and HIF signaling pathway. Ten hub genes, including FLT1, BDNF, LCP2, AGXT2, PLG, SLC13A3, SLC47A2, SLC22A8, SLC22A7, and SLC13A3, were screened. Survival analysis showed that FLT1, BDNF, AGXT2, PLG, SLC47A2, SLC22A8, and SLC12A3 were closely correlated with the overall survival of ccRCC, and AGXT2, SLC47A2, SLC22A8, and SLC22A7 were closely associated with DFS. The potential therapeutic herbs that have been screened were Danshen, Baiguo, Yinxing, Huangqin and Chuanshanlong. The active compounds which may be effective in ccRCC treatment were kaempferol, Scillaren A and (-)-epigallocatechin-3-gallate.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Factor Neurotrófico Derivado del Encéfalo , Simulación del Acoplamiento Molecular , Farmacología en Red , Biomarcadores , Biología Computacional , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Miembro 3 de la Familia de Transportadores de Soluto 12
7.
PLoS One ; 18(8): e0290681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37647320

RESUMEN

PURPOSE: Dovitinib is a receptor tyrosine kinase inhibitor of VEGFR1-3, PDGFR, FGFR1/3, c-KIT, FLT3 and topoisomerase 1 and 2. The drug response predictor (DRP) biomarker algorithm or DRP-Dovitinib is being developed as a companion diagnostic to dovitinib and was applied retrospectively. PATIENTS AND METHODS: Archival tumor samples were obtained from consenting patients in a phase 3 trial comparing dovitinib to sorafenib in renal cell carcinoma patients and the DRP-Dovitinib was applied. The biomarker algorithm combines the expression of 58 messenger RNAs relevant to the in vitro sensitivity or resistance to dovitinib, including genes associated with FGFR, PDGF, VEGF, PI3K/Akt/mTOR and topoisomerase pathways as well as ABC drug transport, and provides a likelihood score between 0-100%. RESULTS: The DRP-Dovitinib divided the dovitinib treated RCC patients into two groups, sensitive (n = 49, DRP score >50%) or resistant (n = 86, DRP score ≤ 50%) to dovitinib. The DRP sensitive population was compared to the unselected sorafenib arm (n = 286). Median progression-free survival (PFS) was 3.8 months in the DRP sensitive dovitinib arm and 3.6 months in the sorafenib arm (hazard ratio 0.71, 95% CI 0.51-1.01). Median overall survival (OS) was 15.0 months in the DRP sensitive dovitinib arm and 11.2 months in the sorafenib arm (hazard ratio 0.69, 95% CI 0.48-0.99). The observed clinical benefit increased with increasing DRP score. At a cutoff of 67% the median OS was 20.6 months and the median PFS was 5.7 months in the dovitinib arm. The results were confirmed in five smaller phase II trials of dovitinib which showed a similar trend. CONCLUSION: The DRP-Dovitinib shows promise as a potential biomarker for identifying advanced RCC patients most likely to experience clinical benefit from dovitinib treatment, subject to confirmation in an independent prospective trial of dovitinib in RCC patients.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Sorafenib/farmacología , Sorafenib/uso terapéutico , ARN Mensajero , Selección de Paciente , Fosfatidilinositol 3-Quinasas , Estudios Prospectivos , Estudios Retrospectivos , Biomarcadores , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética
8.
Front Immunol ; 14: 1038651, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033923

RESUMEN

Background: Regarding the global coronavirus disease 2019 (COVID)-19 pandemic, kidney clear cell carcinoma (KIRC) has acquired a higher infection probability and may induce fatal complications and death following COVID-19 infection. However, effective treatment strategies remain unavailable. Berberine exhibits significant antiviral and antitumour effects. Thus, this study aimed to provide a promising and reliable therapeutic strategy for clinical decision-making by exploring the therapeutic mechanism of berberine against KIRC/COVID-19. Methods: Based on large-scale data analysis, the target genes, clinical risk, and immune and pharmacological mechanisms of berberine against KIRC/COVID-19 were systematically investigated. Results: In total, 1,038 and 12,992 differentially expressed genes (DEGs) of COVID-19 and KIRC, respectively, were verified from Gene Expression Omnibus and The Cancer Genome Atlas databases, respectively, and 489 berberine target genes were obtained from official websites. After intersecting, 26 genes were considered potential berberine therapeutic targets for KIRC/COVID-19. Berberine mechanism of action against KIRC/COVID-19 was revealed by protein-protein interaction, gene ontology, and Kyoto Encyclopedia of Genes and Genomes with terms including protein interaction, cell proliferation, viral carcinogenesis, and the PI3K/Akt signalling pathway. In COVID-19 patients, ACOX1, LRRK2, MMP8, SLC1A3, CPT1A, H2AC11, H4C8, and SLC1A3 were closely related to disease severity, and the general survival of KIRC patients was closely related to ACOX1, APP, CPT1A, PLK1, and TYMS. Additionally, the risk signature accurately and sensitively depicted the overall survival and patient survival status for KIRC. Numerous neutrophils were enriched in the immune system of COVID-19 patients, and the lives of KIRC patients were endangered due to significant immune cell infiltration. Molecular docking studies indicated that berberine binds strongly to target proteins. Conclusion: This study demonstrated berberine as a potential treatment option in pharmacological, immunological, and clinical practice. Moreover, its therapeutic effects may provide potential and reliable treatment options for patients with KIRC/COVID-19.


Asunto(s)
Berberina , COVID-19 , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Berberina/farmacología , Berberina/uso terapéutico , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Riñón
9.
Mol Oncol ; 17(7): 1379-1401, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36810959

RESUMEN

The efficacy of anti-angiogenic treatment by targeting VEGF/VEGF receptors in metastatic clear cell renal cell carcinoma (ccRCC) varies from patient to patient. Discovering the reasons behind this variability could lead to the identification of relevant therapeutic targets. Thus, we investigated the novel splice variants of VEGF that are less efficiently inhibited by anti-VEGF/VEGFR targeting than the conventional isoforms. By in silico analysis, we identified a novel splice acceptor in the last intron of the VEGF gene resulting in an insertion of 23 bp in VEGF mRNA. Such an insertion can shift the open-reading frame in previously described splice variants of VEGF (VEGFXXX ), leading to a change in the C-terminal part of the VEGF protein. Next, we analysed the expression of these alternatively spliced VEGF new isoforms (VEGFXXX/NF ) in normal tissues and in RCC cell lines by qPCR and ELISA, and we investigated the role of VEGF222/NF (equivalent to VEGF165 ) in physiological and pathological angiogenesis. Our in vitro data demonstrated that recombinant VEGF222/NF stimulated endothelial cell proliferation and vascular permeability by activating VEGFR2. In addition, VEGF222/NF overexpression enhanced proliferation and metastatic properties of RCC cells, whereas downregulation of VEGF222/NF resulted in cell death. We also generated an in vivo model of RCC by implanting RCC cells overexpressing VEGF222/NF in mice, which we treated with polyclonal anti-VEGFXXX/NF antibodies. VEGF222/NF overexpression enhanced tumour formation with aggressive properties and a fully functional vasculature, while treatment with anti-VEGFXXX/NF antibodies slowed tumour growth by inhibiting tumour cell proliferation and angiogenesis. In a patient cohort from the NCT00943839 clinical trial, we investigated the relationship between plasmatic VEGFXXX/NF levels, resistance to anti-VEGFR therapy and survival. High plasmatic VEGFXXX/NF levels correlated with shorter survival and lower efficacy of anti-angiogenic drugs. Our data confirmed the existence of new VEGF isoforms that could serve as novel therapeutic targets in patients with RCC that are resistant to anti-VEGFR therapy.


Asunto(s)
Carcinoma de Células Renales , Ratones , Animales , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Proliferación Celular/genética
10.
Genet Res (Camb) ; 2023: 2355891, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741922

RESUMEN

Chinese herbal medicine (CHM), which includes herbal slices and proprietary products, is widely used in China. Shenqi Dihuang (SQDH) is a traditional Chinese medicine (TCM) formula with ingredients that affect tumor growth. Despite recent advances in prognosis, patients with renal cell carcinoma (RCC) cannot currently receive curative treatment. The present study aimed to explore the potential target genes closely associated with SQDH. The gene expression data for SQDH and RCC were obtained from the TCMSP and TCGA databases. The SQDH-based prognostic prediction model reveals a strong correlation between RCC and SQDH. In addition, the immune cell infiltration analysis indicated that SQDH might be associated with the immune response of RCC patients. Based on this, we successfully built the prognostic prediction model using SQDH-related genes. The results demonstrated that CCND1 and NR3C2 are closely associated with the prognosis of RCC patients. Finally, the pathways enrichment analysis revealed that response to oxidative stress, cyclin binding, programmed cell death, and immune response are the most enriched pathways in CCND1. Furthermore, transcription regulator activity, regulation of cell population proliferation, and cyclin binding are closely associated with the NR3C2.


Asunto(s)
Carcinoma de Células Renales , Medicamentos Herbarios Chinos , Neoplasias Renales , Humanos , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Medicina Tradicional China , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo
11.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674417

RESUMEN

Targeted therapeutics made significant advances in the treatment of patients with advanced clear cell renal cell carcinoma (ccRCC). Resistance and serious adverse events associated with standard therapy of patients with advanced ccRCC highlight the need to identify alternative 'druggable' targets to those currently under clinical development. Although the Von Hippel-Lindau (VHL) and Polybromo1 (PBRM1) tumor-suppressor genes are the two most frequently mutated genes and represent the hallmark of the ccRCC phenotype, stable expression of hypoxia-inducible factor-1α/2α (HIFs), microRNAs-210 and -155 (miRS), transforming growth factor-beta (TGF-ß), nuclear factor erythroid 2-related factor 2 (Nrf2), and thymidine phosphorylase (TP) are targets overexpressed in the majority of ccRCC tumors. Collectively, these altered biomarkers are highly interactive and are considered master regulators of processes implicated in increased tumor angiogenesis, metastasis, drug resistance, and immune evasion. In recognition of the therapeutic potential of the indicated biomarkers, considerable efforts are underway to develop therapeutically effective and selective inhibitors of individual targets. It was demonstrated that HIFS, miRS, Nrf2, and TGF-ß are targeted by a defined dose and schedule of a specific type of selenium-containing molecules, seleno-L-methionine (SLM) and methylselenocystein (MSC). Collectively, the demonstrated pleiotropic effects of selenium were associated with the normalization of tumor vasculature, and enhanced drug delivery and distribution to tumor tissue, resulting in enhanced efficacy of multiple chemotherapeutic drugs and biologically targeted molecules. Higher selenium doses than those used in clinical prevention trials inhibit multiple targets altered in ccRCC tumors, which could offer the potential for the development of a new and novel therapeutic modality for cancer patients with similar selenium target expression. Better understanding of the underlying mechanisms of selenium modulation of specific targets altered in ccRCC could potentially have a significant impact on the development of a more efficacious and selective mechanism-based combination for the treatment of patients with cancer.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Selenio , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Selenio/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Biomarcadores , MicroARNs/genética , MicroARNs/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
12.
Exp Cell Res ; 423(1): 113455, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584744

RESUMEN

Predator species of animal can absorb plant microRNA that can regulate target gene expression and physiological function across species. The herb Lycium barbarum, a traditional Chinese medicine, has a wide range of antitumor effects. However, there are no reports on the effects of microRNA derived from it on the cross-border regulation of renal cell carcinoma (RCC). We performed in vitro and in vivo experiments to explore the role and mechanism of the L. barbarum-derived microRNA miR166a (Lb-miR166a) in cross-border regulation of RCC. Our mRNA sequencing analysis showed that Lb-miR166a regulates the expression of various genes in tumor cells, including 1232 upregulated genes and 581 downregulated genes, which were enriched to 1094 Gene Ontology entries and 43 Kyoto Encyclopedia of Genes and Genomes pathways. In vitro cell experiments confirmed that Lb-miR166a can inhibit the proliferation of RCC cells, promote the apoptosis of tumor cells, and inhibit the invasion and metastasis of tumor cells by regulating the expression of related genes. Furthermore, our in vivo tumor-bearing experiment showed that subcutaneous tumor formation volume decreased in Lb-miR166a mice, along with the number of liver metastases. This study elucidates the role and mechanism of Lb-miR166a in RCC treatment (Fig. 1). Our results further mechanistically confirm the antitumor properties of L. barbarum. Our study may contribute to the clinical development of a targeted drug for RCC treatment.


Asunto(s)
Carcinoma de Células Renales , Medicamentos Herbarios Chinos , Neoplasias Renales , Lycium , MicroARNs , Ratones , Animales , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Medicamentos Herbarios Chinos/farmacología , MicroARNs/genética
13.
Chin J Integr Med ; 29(8): 699-706, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36477451

RESUMEN

OBJECTIVE: To explore the effect of curcumin on the proliferation of renal cell carcinoma and analyze its regulation mechanism. METHODS: In RCC cell lines of A498 and 786-O, the effects of curcumin (2.5, 5, 10 µ mo/L) on the proliferation were analyzed by Annexin V+PI staining. Besides, A498 was inoculated into nude mice to establish tumorigenic models, and the model mice were treated with different concentrations of curcumin (100, 200, and 400 mg/kg), once daily for 30 days. Then the tumor diameter was measured, the tumor cells were observed by hematoxylin-eosin staining, and the protein expressions of miR-148 and ADAMTS18 were detected by immunohistochemistry. In vitro, after transfection of miR-148 mimics, miR-148 inhibitor or si-ADAMTS18 in cell lines, the expression of ADAMTS18 was examined by Western blotting and the cell survival rate was analyzed using MTT. Subsequently, Western blot analysis was again used to examine the autophagy phenomenon by measuring the relative expression level of LC3-II/LC3-I; autophagy-associated genes, including those of Beclin-1 and ATG5, were also examined when miR-148 was silenced in both cell lines with curcumin treatment. RESULTS: Curcumin could inhibit the proliferation of RCC in cell lines and nude mice. The expression of miR-148 and ADAMTS18 was upregulated after curcumin treatment both in vitro and in vivo (P<0.05). The cell survival rate was dramatically declined upon miR-148 or ADAMTS18 upregulated. However, si-ADAMTS18 treatment or miR-148 inhibitor reversed these results, that is, both of them promoted the cell survival rate. CONCLUSION: Curcumin can inhibit the proliferation of renal cell carcinoma by regulating the miR-148/ ADAMTS18 axis through the suppression of autophagy in vitro and in vivo. There may exist a positive feedback loop between miR-148 and ADAMTS18 gene in RCC.


Asunto(s)
Carcinoma de Células Renales , Curcumina , Neoplasias Renales , MicroARNs , Animales , Ratones , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , MicroARNs/genética , MicroARNs/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Autofagia , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo
14.
J Exp Clin Cancer Res ; 41(1): 250, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35974388

RESUMEN

BACKGROUND: Tyrosine kinase inhibitors (TKIs) such as sunitinib are multitarget antiangiogenic agents in clear cell renal cell carcinoma (ccRCC). They are widely used in the treatment of advanced/metastatic renal cancer. However, resistance to TKIs is common in the clinic, particularly after long-term treatment. YTHDC1 is the main nuclear reader protein that binds with m6A to regulate the splicing, export and stability of mRNA. However, the specific role and corresponding mechanism of YTHDC1 in renal cancer cells are still unclear. METHODS: The Cancer Genome Atlas (TCGA) dataset was used to study the expression of YTHDC1 in ccRCC. Cell counting kit-8 (CCK-8), wound healing, Transwell and xenograft assays were applied to explore the biological function of YTHDC1 in ccRCC. Western blot, quantitative real time PCR (RT‒qPCR), RNA immunoprecipitation PCR (RIP-qPCR), methylated RIP-qPCR (MeRIP-qPCR) and RNA sequencing (RNA-seq) analyses were applied to study the YY1/HDAC2/YTHDC1/ANXA1 axis in renal cancer cells. The CCK-8 assay and xenograft assay were used to study the role of YTHDC1 in determining the sensitivity of ccRCC to sunitinib. RESULTS: Our results demonstrated that YTHDC1 is downregulated in ccRCC tissues compared with normal tissues. Low expression of YTHDC1 is associated with a poor prognosis in patients with ccRCC. Subsequently, we showed that YTHDC1 inhibits the progression of renal cancer cells via downregulation of the ANXA1/MAPK pathways. Moreover, we also showed that the YTHDC1/ANXA1 axis modulates the sensitivity of tyrosine kinase inhibitors. We then revealed that HDAC2 inhibitors resensitize ccRCC to tyrosine kinase inhibitors through the YY1/HDAC2 complex. We have identified a novel YY1/HDAC2/YTHDC1/ANXA1 axis modulating the progression and chemosensitivity of ccRCC. CONCLUSION: We identified a novel YY1/HDAC2/YTHDC1/ANXA1 axis modulating the progression and chemosensitivity of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Proteínas del Tejido Nervioso , Factores de Empalme de ARN , Anexina A1/genética , Anexina A1/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Inhibidores de Proteínas Quinasas , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Sunitinib/farmacología , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
15.
Altern Ther Health Med ; 28(6): 42-51, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35648698

RESUMEN

Aims: This study was conducted to establish the potential competing endogeneous RNA (ceRNA) network for predicting prognoses in kidney papillary renal cell carcinoma (KIRP) and explore novel therapeutic targets. Methods: The edgeR package in R was used to determine differentially expressed messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), based on data from The Cancer Gene Atlas Program (TCGA) and the Genotype Expression (GTEx) databases. Weighted gene co-expression network analysis (WGCNA) was performed to filter out the mRNAs or lncRNAs that were strongly related to KIRP. The miRNAs that possibly sponged by differentially expressed RNAs lncRNAs (DElncRNAs) were screened using miRcode. Starbase, miRDB, and TargetScan sets were utilized to predict target mRNAs to corresponding miRNAs. LASSO and multivariate Cox regression analyses were applied for the determination of potential prognostic significance. Finally, the lncRNA-miRNA-mRNA ceRNA network was constructed. Results: A total of 1739 DEmRNAs and 1599 DElncRNAs were identified in KIRP. WGCNA analysis suggested that DEmRNAs in the blue module and DElncRNAs in the turquoise module were closely correlated with KIRP. An 8-gene signature was constructed, which had prognostic significance and predictive value in KIRP. Of note, a lncRNA-miRNA-mRNA ceRNA network (including 18 lncRNAs, 5 miRNAs, and 7 mRNAs) was established. Conclusion: This investigation constructed a new lncRNA-miRNA-mRNA ceRNA network, and proposed some genes that may be novel targets, as well as a theoretical basis for the treatment of patients with KIRP.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , ARN Largo no Codificante , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Estimación de Kaplan-Meier , Riñón , Neoplasias Renales/genética , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Cancer Sci ; 113(8): 2738-2752, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35670054

RESUMEN

Renal cell carcinoma (RCC) features altered lipid metabolism and accumulated polyunsaturated fatty acids (PUFAs). Elongation of very long-chain fatty acid (ELOVL) family enzymes catalyze fatty acid elongation, and ELOVL5 is indispensable for PUFAs elongation, but its role in RCC progression remains unclear. Here, we show that higher levels of ELOVL5 correlate with poor RCC clinical prognosis. Liquid chromatography/electrospray ionization-tandem mass spectrometry analysis showed decreases in ELOVL5 end products (arachidonic acid and eicosapentaenoic acid) under CRISPR/Cas9-mediated knockout of ELOVL5 while supplementation with these fatty acids partially reversed the cellular proliferation and invasion effects of ELOVL5 knockout. Regarding cellular proliferation and invasion, CRISPR/Cas9-mediated knockout of ELOVL5 suppressed the formation of lipid droplets and induced apoptosis via endoplasmic reticulum stress while suppressing renal cancer cell proliferation and in vivo tumor growth. Furthermore, CRISPR/Cas9-mediated knockout of ELOVL5 inhibited AKT Ser473 phosphorylation and suppressed renal cancer cell invasion through chemokine (C-C motif) ligand-2 downregulation by AKT-mTOR-STAT3 signaling. Collectively, these results suggest that ELOVL5-mediated fatty acid elongation promotes not only cellular proliferation but also invasion in RCC.


Asunto(s)
Carcinoma de Células Renales , Elongasas de Ácidos Grasos , Neoplasias Renales , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Proliferación Celular/genética , Elongasas de Ácidos Grasos/genética , Ácidos Grasos , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Proteínas Proto-Oncogénicas c-akt
17.
Phytomedicine ; 102: 154182, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35636172

RESUMEN

Icariside II (ICS II) is an active flavonoid having anti-tumor properties. However, the role of ICS II in renal cell carcinoma (RCC) and its underlying mechanisms have not been investigated to date. In this study, we demonstrated that ICS II inhibited proliferation, migration, and invasion of RCC cells. Furthermore, ferroptosis, a novel form of cell death, induced in RCC cells by ICS II, accompanied by accumulation of Fe2+, MDA (lipid peroxidation), and ROS (reactive oxygen species), and reduced GSH levels. The underlying mechanism was found to be the downregulation of GPX4, independent of p53, that occurs during ICS II-induced ferroptosis. Overexpression of GPX4 reversed the ferroptosis induced by ICS II. Moreover, ICS II treatment resulted in the upregulation of miR-324-3p, which directly targets GPX4. Overall, our results suggested that ICS II-induced ferroptosis via the miR-324-3p/GPX4 axis in RCC cells could be a promising therapeutic agent for RCC.


Asunto(s)
Carcinoma de Células Renales , Ferroptosis , Flavonoides , Neoplasias Renales , MicroARNs , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Ferroptosis/efectos de los fármacos , Flavonoides/farmacología , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Int J Biol Sci ; 18(3): 995-1007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35173532

RESUMEN

Exploring the regulatory mechanism of PD-L1 in renal cancer is one of the key strategies to improve the response of renal cancer patients to checkpoint blockade therapy. In this study, the synergistic effect of ascorbic acid (vitamin C) supplementation and the impact of TET2 depletion on anti-PD-L1 therapy were determined in xenograft model experiments. Lymphocyte infiltration and chemokine expression were determined using flow cytometry and qRT-PCR. To determine the downstream targets of TET2, we performed hMeDip-seq and RNA-seq analyses. The molecular mechanism was further confirmed by hMeDip-qPCR, MeDip-qPCR, bisulfite sequencing, Western blotting, qRT-PCR and xenograft model experiments in vitro and in vivo. The present study demonstrated that ascorbic acid enhanced the efficacy of immunotherapy and that the loss of TET2 function enabled renal cancer cells to evade antitumor immunity. Ascorbic acid treatment significantly increased the intratumoral infiltration of T cells and the expression of cytokines and chemokines, while the loss of TET2 impaired the infiltration of T cells and the expression of cytokines and chemokines. TET2 was recruited to IRF1 by IFN-γ-STAT1 signaling, thereby maintaining IRF1 demethylation and ultimately inducing PD-L1 expression. These results suggest a new strategy of stimulating TET activity to improve immunotherapy for renal cell carcinoma.


Asunto(s)
Carcinoma de Células Renales , Dioxigenasas , Neoplasias Renales , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Antígeno B7-H1/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Quimiocinas , Citocinas , Proteínas de Unión al ADN , Dioxigenasas/genética , Activación Enzimática , Femenino , Humanos , Inmunoterapia/métodos , Neoplasias Renales/tratamiento farmacológico , Masculino
19.
Chin J Integr Med ; 28(5): 419-424, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33997938

RESUMEN

OBJECTIVE: To investigate the effect of curcumin on viability of clear cell renal cell carcinoma (ccRCC) and analyze its possible mechanism. METHODS: In cell lines of A498 and 786-O, the effects of curcumin (1.25, 2.5, 5 and 10 µ mol/L) on the viability of ccRCC were analyzed at 24, 48 and 72 h by MTT assay. The protein expression levels of ADAMTS18 gene, p65, phosphorylation p65 (pp65), AKT, phosphorylation AKT (pAKT) and matrix metallopeptidase 2 (MMP-2) before and after curcumin (10 µ mol/L) treatment were examined by Western blotting. Real-time PCR and methylation specific PCR (MSP) were applied to analyze the expression and methylation level of ADAMTS18 gene before and after curcumin treatment (10 µ mol/L). RESULTS: Curcumin significantly inhibited the viability of A498 and 786-O cell lines in a dose- and time-dependent manner (P<0.01). Up-regulation of ADAMTS18 gene expression with down-regulation of ADAMTS18 gene methylation was reflected after curcumin treatment, accompanied by down-regulation of nuclear factor κ B (NF-κ kB) related protein (p65 and pp65), AKT related protein (AKT and pAKT), and NF-κ B/AKT common related protein MMP-2. With ADAMTS18 gene overexpressed, the expression levels of p65, AKT and MMP2 were downregulated, of which were conversely up-regulated in silenced ADAMTS18 (sh-ADAMTS18). The expression of pp65, pAKT and MMP2 in sh-ADAMTS18 was down-regulated after being treated with PDTC (NF-κ B inhibitor) and LY294002 (AKT inhibitor). CONCLUSIONS: Curcumin could inhibit the viability of ccRCC by down-regulating ADAMTS18 gene methylation though NF-κ B and AKT signaling pathway.


Asunto(s)
Carcinoma de Células Renales , Curcumina , Neoplasias Renales , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Curcumina/farmacología , Metilación de ADN , Femenino , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
20.
Molecules ; 26(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834139

RESUMEN

BACKGROUND: Studies have shown that long non-coding RNAs (lncRNAs) play essential roles in tumor progression and can affect the response to radiotherapy, including in clear cell renal cell carcinoma (ccRCC). LINC02532 has been found to be upregulated in ccRCC. However, not much is known about this lncRNA. Hence, this study aimed to investigate the role of LINC02532 in ccRCC, especially in terms of radioresistance. METHODS: Quantitative real-time PCR was used to detect the expression of LINC02532, miR-654-5p, and YY1 in ccRCC cells. Protein levels of YY1, cleaved PARP, and cleaved-Caspase-3 were detected by Western blotting. Cell survival fractions, viability, and apoptosis were determined by clonogenic survival assays, CCK-8 assays, and flow cytometry, respectively. The interplay among LINC02532, miR-654-5p, and YY1 was detected by chromatin immunoprecipitation and dual-luciferase reporter assays. In addition, in vivo xenograft models were established to investigate the effect of LINC02532 on ccRCC radioresistance in 10 nude mice. RESULTS: LINC02532 was highly expressed in ccRCC cells and was upregulated in the cells after irradiation. Moreover, LINC02532 knockdown enhanced cell radiosensitivity both in vitro and in vivo. Furthermore, YY1 activated LINC02532 in ccRCC cells, and LINC02532 acted as a competing endogenous RNA that sponged miR-654-5p to regulate YY1 expression. Rescue experiments indicated that miR-654-5p overexpression or YY1 inhibition recovered ccRCC cell functions that had been previously impaired by LINC02532 overexpression. CONCLUSIONS: Our results revealed a positive feedback loop of LINC02532/miR-654-5p/YY1 in regulating the radiosensitivity of ccRCC, suggesting that LINC02532 might be a potential target for ccRCC radiotherapy. This study could serve as a foundation for further research on the role of LINC02532 in ccRCC and other cancers.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Tolerancia a Radiación , Factor de Transcripción YY1/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/radioterapia , Línea Celular Tumoral , Humanos , Neoplasias Renales/genética , Neoplasias Renales/radioterapia , MicroARNs/genética , Proteínas de Neoplasias/genética , ARN Largo no Codificante/genética , ARN Neoplásico/genética , Factor de Transcripción YY1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA