Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int Heart J ; 65(2): 173-179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556328

RESUMEN

Keshan disease (KD) is a type of endemic cardiomyopathy with an unknown cause. It is primarily found in areas in China with low selenium levels, from northeast to southwest. The nutritional biogeochemical etiology hypothesis suggests that selenium deficiency is a major factor in KD development. Selenium is important in removing free radicals and protecting cells and tissues from peroxide-induced damage. Thus, low environmental selenium may affect the selenium level within the human body, and selenium level differences are commonly observed between healthy people in KD and nonKD areas. From the 1970s to the 1990s, China successfully reduced KD incidence in endemic KD areas through a selenium supplementation program. After years of implementing prevention and control measures, the selenium level of the population in the KD areas has gradually increased, and the prevalence of KD in China has remained low and stable in recent years. Currently, the pathogenesis of KD remains vague, and the effect of selenium supplementation on the prognosis of KD still needs further study. This paper comprehensively reviews selenium deficiency and its connection to KD. Thus, this study aims to offer novel ideas and directions to effectively prevent and treat KD in light of the current situation.


Asunto(s)
Cardiomiopatías , Infecciones por Enterovirus , Desnutrición , Selenio , Humanos , Selenio/análisis , Cardiomiopatías/epidemiología , Cardiomiopatías/etiología , Cardiomiopatías/prevención & control , Infecciones por Enterovirus/complicaciones , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/prevención & control , China/epidemiología
2.
Circ Res ; 134(5): 505-525, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38422177

RESUMEN

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Asunto(s)
Cardiomiopatías , Resistencia a la Insulina , Animales , Ratones , Ratas , Adenosina Trifosfatasas , Arginina , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Antígenos CD36/genética , Fibrosis , Inflamación , Leucina , Lípidos , Lisina , Diana Mecanicista del Complejo 1 de la Rapamicina , Miocitos Cardíacos , Mononucleótido de Nicotinamida , Receptor Toll-Like 4/genética
3.
Cochrane Database Syst Rev ; 11: CD011626, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37975597

RESUMEN

BACKGROUND: Beta-thalassaemia is an inherited blood disorder that reduces the production of haemoglobin. The most severe form requires recurrent blood transfusions, which can lead to iron overload. Cardiovascular dysfunction caused by iron overload is the leading cause of morbidity and mortality in people with transfusion-dependent beta-thalassaemia. Iron chelation therapy has reduced the severity of systemic iron overload, but removal of iron from the myocardium requires a very proactive preventive strategy. There is evidence that calcium channel blockers may reduce myocardial iron deposition. This is an update of a Cochrane Review first published in 2018. OBJECTIVES: To assess the effects of calcium channel blockers plus standard iron chelation therapy, compared with standard iron chelation therapy (alone or with a placebo), on cardiomyopathy due to iron overload in people with transfusion-dependent beta thalassaemia. SEARCH METHODS: We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books, to 13 January 2022. We also searched ongoing trials databases and the reference lists of relevant articles and reviews. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of calcium channel blockers combined with standard chelation therapy versus standard chelation therapy alone or combined with placebo in people with transfusion-dependent beta thalassaemia. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. We used GRADE to assess certainty of evidence. MAIN RESULTS: We included six RCTs (five parallel-group trials and one cross-over trial) with 253 participants; there were 126 participants in the amlodipine arms and 127 in the control arms. The certainty of the evidence was low for most outcomes at 12 months; the evidence for liver iron concentration was of moderate certainty, and the evidence for adverse events was of very low certainty. Amlodipine plus standard iron chelation compared with standard iron chelation (alone or with placebo) may have little or no effect on cardiac T2* values at 12 months (mean difference (MD) 1.30 ms, 95% confidence interval (CI) -0.53 to 3.14; 4 trials, 191 participants; low-certainty evidence) and left ventricular ejection fraction (LVEF) at 12 months (MD 0.81%, 95% CI -0.92% to 2.54%; 3 trials, 136 participants; low-certainty evidence). Amlodipine plus standard iron chelation compared with standard iron chelation (alone or with placebo) may reduce myocardial iron concentration (MIC) after 12 months (MD -0.27 mg/g, 95% CI -0.46 to -0.08; 3 trials, 138 participants; low-certainty evidence). The results of our analysis suggest that amlodipine has little or no effect on heart T2*, MIC, or LVEF after six months, but the evidence is very uncertain. Amlodipine plus standard iron chelation compared with standard iron chelation (alone or with placebo) may increase liver T2* values after 12 months (MD 1.48 ms, 95% CI 0.27 to 2.69; 3 trials, 127 participants; low-certainty evidence), but may have little or no effect on serum ferritin at 12 months (MD 0.07 µg/mL, 95% CI -0.20 to 0.35; 4 trials, 187 participants; low-certainty evidence), and probably has little or no effect on liver iron concentration (LIC) after 12 months (MD -0.86 mg/g, 95% CI -4.39 to 2.66; 2 trials, 123 participants; moderate-certainty evidence). The results of our analysis suggest that amlodipine has little or no effect on serum ferritin, liver T2* values, or LIC after six months, but the evidence is very uncertain. The included trials did not report any serious adverse events at six or 12 months of intervention. The studies did report mild adverse effects such as oedema, dizziness, mild cutaneous allergy, joint swelling, and mild gastrointestinal symptoms. Amlodipine may be associated with a higher risk of oedema (risk ratio (RR) 5.54, 95% CI 1.24 to 24.76; 4 trials, 167 participants; very low-certainty evidence). We found no difference between the groups in the occurrence of other adverse events, but the evidence was very uncertain. No trials reported mortality, cardiac function assessments other than echocardiographic estimation of LVEF, electrocardiographic abnormalities, quality of life, compliance with treatment, or cost of interventions. AUTHORS' CONCLUSIONS: The available evidence suggests that calcium channel blockers may reduce MIC and may increase liver T2* values in people with transfusion-dependent beta thalassaemia. Longer-term multicentre RCTs are needed to assess the efficacy and safety of calcium channel blockers for myocardial iron overload, especially in younger children. Future trials should also investigate the role of baseline MIC in the response to calcium channel blockers, and include a cost-effectiveness analysis.


Asunto(s)
Cardiomiopatías , Sobrecarga de Hierro , Talasemia beta , Niño , Humanos , Talasemia beta/complicaciones , Talasemia beta/tratamiento farmacológico , Bloqueadores de los Canales de Calcio/efectos adversos , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/prevención & control , Sobrecarga de Hierro/complicaciones , Hierro/uso terapéutico , Cardiomiopatías/etiología , Cardiomiopatías/prevención & control , Amlodipino/efectos adversos , Quelantes del Hierro/efectos adversos , Ferritinas , Edema
4.
Cardiovasc Toxicol ; 23(9-10): 295-304, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37676618

RESUMEN

Thiazolidinediones are useful antidiabetic medications. However, their use is associated with adverse side effects like edema, heart failure and bone fractures. In this study, we investigated the anti-ferroptosis effects of suberosin (SBR; a prenylated coumarin) in diabetic Sprague Dawley rats. Further, we assessed the effects of co-administration of SBR (30 and 90 mg/kg/day) with thiazolidinedione (TZ at 15 mg/kg) to mitigate TZ-induced cardiomyopathy in diabetic rats. Our results showed that cardiac output, stroke volume, left ventricle systolic and diastolic pressures were aggravated in diabetic rats treated with TZ alone after 4 weeks. TZ treatments induced ferroptosis as well as marked histoarchitecture disarrangements in rat cardiomyocytes. The study found that optimizing volume overload alleviated cardiac hypertrophy and mitigated left ventricular dysfunction in diabetic rats co-treated with SBR. SBR co-administration with TZ reduced MDA levels in heart tissue and serum iron concentration (biomarkers of ferroptosis), downregulated mRNA expressions of LOX, ACSL4, LPCAT3, and promoted GPX4 activity as well as upregulated mRNA levels of AKT/PI3K/GSK3ß as compared to the group administered with TZ at 15 mg/kg. SBR co-administration also helped to retain the normal histoarchitecture of cardiomyocytes in diabetic rats. Hence, our results suggested that SBR is an effective supplement and could be prescribed to diabetic patients along with TZ but this requires further clinical trials.


Asunto(s)
Cardiomiopatías , Diabetes Mellitus Experimental , Tiazolidinedionas , Humanos , Ratas , Animales , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas Sprague-Dawley , Cardiomiopatías/inducido químicamente , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/prevención & control , Cumarinas , Transducción de Señal , 1-Acilglicerofosfocolina O-Aciltransferasa
5.
Food Funct ; 14(3): 1584-1594, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36661107

RESUMEN

The offspring of gestational diabetes mellitus (GDM) mothers are considered to be at the risk of cardiovascular diseases due to intrauterine hyperglycemia exposure. Our previous study showed that zinc, selenium, and chromium dramatically alleviated glucose intolerance in GDM rats and their offspring (P < 0.05). However, the effects of these elements on the damage of the cardiac myocytes of GDM offspring and the underlying mechanisms have not been demonstrated. Here, we investigated the beneficial effects of zinc (10 mg per kg bw), selenium (20 µg per kg bw), and chromium (20 µg per kg bw) supplementation on myocardial fibrosis in the offspring of GDM rats induced by a high-fat and sucrose (HFS) diet. The results showed that maternal GDM induced glucose intolerance, oxidative stress, cardiac inflammation and myocardial fibrosis in offspring rats during different ages (3 days, 3 weeks, and adulthood), which were ameliorated by zinc, selenium and chromium supplementation (P < 0.05). The activity of cardiac damage markers such as creatine kinase-myocardial band isoenzyme (CK-MB), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) decreased by 40-60% in element-supplemented offspring compared to that in non-supplemented offspring of GDM dams (P < 0.05). Moreover, maternal GDM-induced expression of fibrosis-related proteins and the transforming growth factor-beta 1 (TGF-ß1)/small mothers against decapentaplegic homolog 3 (Smad3) signaling pathway in the heart tissue of offspring was down-regulated by zinc, selenium, and chromium supplementation (P < 0.05). In conclusion, zinc, selenium, and chromium may play a protective role in maternal GDM-induced myocardial fibrosis in offspring from birth to adulthood by inactivating the TGF-ß1/Smad3 pathway.


Asunto(s)
Cardiomiopatías , Diabetes Gestacional , Intolerancia a la Glucosa , Selenio , Embarazo , Humanos , Femenino , Ratas , Animales , Diabetes Gestacional/tratamiento farmacológico , Diabetes Gestacional/metabolismo , Factor de Crecimiento Transformador beta1 , Zinc , Fibrosis , Cardiomiopatías/etiología , Cardiomiopatías/prevención & control
6.
Pharm Biol ; 60(1): 722-728, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35361037

RESUMEN

CONTEXT: QiShenYiQi pill (QSYQ) is a traditional Chinese medicine with a myocardial protective effect. OBJECTIVE: To explore the effect of QSYQ on myocardial collagen metabolism in rats with autoimmune cardiomyopathy and explore the underlying mechanism from the aspect of apoptosis. MATERIALS AND METHODS: We established an autoimmune cardiomyopathy model using Lewis rats. The rats were then randomly divided into six groups (n = 8): control, model, 3-methyladenine (15 mg/kg, intraperitoneal injection), QSYQ low-dose (135 mg/kg, gavage), QSYQ medium dose (270 mg/kg, gavage), and QSYQ high-dose (540 mg/kg, gavage) for four weeks. Van Gieson staining was applied for myocardial pathological characteristics, TUNEL fluorescence for myocardial cell apoptosis, enzyme-linked immunosorbent assay (ELISA) for serum PICP, PIIINP, and CTX-I levels, and western blot analysis for type I/III myocardial collagen, Bcl-2, Bax, and caspase-3 proteins. RESULTS: Results showed that QSYQ (135, 270, or 540 mg/kg) significantly reduced the expression of myocardial type I/III collagen, and concentrations of serum PICP, PIIINP, and CTX-I in rats. Moreover, QSYQ could alleviate myocardial fibrosis more effectively at a higher dose. QSYQ could also inhibit myocardial apoptosis via downregulating Bcl-2 expression, and upregulating Bax and caspase-3 expression levels. DISCUSSION AND CONCLUSIONS: The QSYQ can improve myocardial collagen metabolism by inhibiting apoptosis, which provides a potential therapeutic approach for autoimmune cardiomyopathy.


Asunto(s)
Cardiomiopatías , Animales , Apoptosis , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/prevención & control , Colágeno , Medicamentos Herbarios Chinos , Ratas , Ratas Endogámicas Lew
7.
Biomarkers ; 27(5): 488-495, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35400254

RESUMEN

BACKGROUND: The cardio-protective effects of Terminalia catappa and Terminalia chebula are well-recognized in Ayurveda for its antimicrobial, antidiabetic and antioxidant potentials. The present study evaluates the effects of T. catappa leaves (Tct.LE) and T. chebula fruits (Tce.FE) against doxorubicin (DOX)-induced rats through analysis of the cardiac biomarkers, tricarboxylic acid (TCA) cycle enzymes and respiratory chain enzymes for their cardio-protective properties. MATERIALS AND METHODS: This study includes 42 adult male Albino Wistar rats randomized into seven groups for 21-days. Groups were categorized as control; DOX (1.5 mg/kg) induced negative control; basal diet with 300 mg/kg of Tct.LE, with 300 mg/kg Tce.FE; DOX with 300 mg/kg of Tct.LE, Tce.FE, and propranolol (25 mg/kg). RESULTS AND DISCUSSION: The doses of 300 mg/kg of both plants have a significant effect on the TCA cycle, respiratory and lysosomal enzymes activity. The troponin levels are significantly reduced in plant treated group than the DOX-treated rats when compared with the control and propranolol treated group. Likewise, the increased level of creatine kinase-muscle/MB, creatine kinase and lipid profile in the DOX-treated animals were significantly reduced upon being treated with extracts. CONCLUSION: The cardio-protective activity of Tct.LE leaves and Tce.FE indicate its potential use in the management of cardiovascular diseases.


Asunto(s)
Cardiomiopatías , Terminalia , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/prevención & control , Creatina Quinasa , Doxorrubicina/efectos adversos , Frutas , Masculino , Extractos Vegetales/química , Extractos Vegetales/farmacología , Propranolol , Ratas , Ratas Wistar , Terminalia/química
8.
Cardiovasc Ther ; 2022: 9926635, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35169398

RESUMEN

BACKGROUND: Doxorubicin (DOX) is one of the most potent and widely prescribed antitumor agents; however, its clinical use is limited by cardiac side effects. In this study, we aimed to clarify the protective effects of Qiliqiangxin (QL), a traditional Chinese medicine formulation, on DOX-induced cardiotoxicity and to explore the underlying mechanisms in a rat model. METHODS: Male Sprague-Dawley rats were randomly assigned to three groups with different interventions (control, DOX, and DOX plus QL) for 31 days. Cardiac function was monitored. The levels of oxidative stress in plasm were detected, the activities of autophagy and apoptosis in rat hearts were determined, and then, the related PI3K/AKT/mTOR signal pathway regulating apoptosis and autophagy was investigated. RESULTS: QL improved cardiac dysfunction and decreased the increased level of cardiac enzymes in plasm caused by DOX. Moreover, DOX exposure resulted in oxidative stress enhancement, which was suppressed by QL treatment. Then, we discovered that DOX intervention caused the apoptosis of cardiomyocytes by activating the mitochondrial-dependent apoptotic pathway which was strongly inhibited by QL treatment. Furthermore, there was a significant increase in autophagic activities in the DOX-stimulated myocardium. Administration of QL substantially inhibited the enhanced autophagic activities, which might be attributed to the activation of PI3K/AKT/mTOR cascade, followed by suppression of ULK1 activity. CONCLUSIONS: QL exhibited protective roles against DOX-induced cardiotoxicity possibly via mediating the PI3K/AKT/mTOR pathway, leading to inhibition of autophagy and subsequent apoptosis activities.


Asunto(s)
Cardiomiopatías , Fosfatidilinositol 3-Quinasas , Animales , Apoptosis , Autofagia , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Cardiotoxicidad , Doxorrubicina/toxicidad , Medicamentos Herbarios Chinos , Masculino , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley
9.
Ecotoxicol Environ Saf ; 233: 113327, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35203005

RESUMEN

BACKGROUND: Verbascoside (VB), as an active component of multiple medicinal plants, has been proved to exert anti-oxidative, anti-aging and neuroprotective effects. This study was designed to investigate whether VB could play a cardioprotective role in septic heart injury. METHODS: Mice were injected with lipopolysaccharide (LPS; 10 mg/kg) to induce sepsis. The treatment group received an intraperitoneally injection of VB (20 mg/kg) before LPS challenge. Transthoracic echocardiography, ELISA, immunofluorescence, and qPCR were performed to assess the effect of VB on heart function, oxidative stress, inflammation and apoptosis. Transmission electronic microscopy and immunoblotting were used to evaluate the mitochondrial morphology and biogenesis of the septic heart. In vitro experiments were also performed to repeat above-mentioned assays. RESULTS: Compared with LPS group, the VB treatment group showed improved cardiac function in sepsis. VB alleviated oxidative stress and inflammatory cell infiltration, as well as cardiomyocyte apoptosis. Specifically, VB could restore sepsis-induced mitochondrial alterations via regulating mitochondrial biogenesis. These results were also confirmed in in vitro experiments. CONCLUSION: Verbascoside could protected from sepsis-induced cardiomyopathy by inhibiting oxidative stress, inflammation, and apoptosis, as well as promoting mitochondrial biogenesis.


Asunto(s)
Cardiomiopatías , Lipopolisacáridos , Animales , Apoptosis , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Glucósidos , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Ratones , Dinámicas Mitocondriales , Estrés Oxidativo , Fenoles
10.
Biomed Pharmacother ; 146: 112607, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35062072

RESUMEN

Uncaria rhynchophylla (UR), a traditional Chinese medicine, has been proven effective in treating hypertensive patients in China. However, the mechanisms of action of UR in reducing hypertension and myocardial fibrosis are still unclear. The purpose of this study was to explore the role of UR in an angiotensin Ⅱ (Ang Ⅱ) induced mouse model. The mice were randomly divided into 5 groups and infused with Ang Ⅱ (500 ng/kg/min) or saline, then administered UR (0.78, 1.56 or 3.12 g/kg/d) or saline for 4 weeks. UR treatment significantly attenuated the elevation of blood pressure caused by Ang Ⅱ. It enhanced myocardial function and attenuated the increase in the heart weight index and the pathological changes in the Ang Ⅱ-induced hypertensive mice. Furthermore, UR treatment inhibited cardiac fibrosis and significantly down-regulated collagen I, collagen Ⅲ, and α-SMA protein expression in cardiac tissues. UR also attenuated the expression of RhoA, ROCK1, CTGF, and TGF-ß1. In cultured cardiac fibroblasts stimulated with Ang Ⅱ, UR significantly down-regulated the expression of Collagen I, Collagen III, RhoA, ROCK1, and α-SMA. In summary, UR can significantly attenuate Ang Ⅱ-induced hypertension and cardiac fibrosis, partly via suppression of the RhoA/ROCK1 signaling pathway.


Asunto(s)
Angiotensina II/farmacología , Cardiomiopatías/prevención & control , Miocardio/patología , Uncaria/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA
11.
Clin Exp Pharmacol Physiol ; 49(2): 291-301, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34597426

RESUMEN

This study evaluated the mechanistic sequel of aldehyde dehyrogenase (ALDH2) and Klotho protein in cyclophosphamide (CP)-induced cardiotoxicity in rats and the protective effect of astaxanthin (AST) against that sequel. A total of 40 male Wistar albino rats were divided into four groups of 10 animals each: Group 1 was injected intraperitoneally (i.p.) with normal saline for 10 successive days. Group 2 was injected with normal saline for 5 days before and after a single dose of CP (200 mg/kg, i.p.). Group 3 received AST (50 mg/kg/day, i.p.) for 10 days. Group 4 received CP as group 2 and AST as group 3. After the last dose of the treatment protocol, serum was separated to measure cardiotoxicity indices and the left ventricle was then dissected for mRNA and protein expression studies and histopathological examinations. Treatment with CP significantly increased serum lactate dehydrogenase (LDH), creatine kinase isoenzyme MB (CK-MB), and troponin, while significantly decreased soluble α Klotho protein and caused histopathological lesions in cardiac tissues. In cardiac tissues, CP significantly decreased gene expression of ALDH2, Klotho protein, mTOR, IGF, AKT, AMPK, BCL2, but significantly increased expression of BAX and caspase-8. Interestingly, administration of AST in combination with CP completely reversed all the biochemical, histopathological and gene expression changes induced by CP to the control values. The current study suggests that inhibition of ALDH2, Klotho protein, mTOR, and AMPK signals in cardiac tissues may contribute to CP-induced acute cardiomyopathy. AST supplementation attenuates CP-induced cardiotoxicity by modulating ALDH2 and Klotho protein expression in heart tissues, along with its downstream apoptosis effector markers.


Asunto(s)
Aldehído Deshidrogenasa , Cardiomiopatías , Aldehído Deshidrogenasa/farmacología , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Ciclofosfamida/toxicidad , Masculino , Estrés Oxidativo , Ratas , Ratas Wistar , Xantófilas
12.
J Ethnopharmacol ; 281: 114568, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34461188

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Talinum paniculatum (Jacq.) Gaertn. (Talinaceae) is a medicinal species that is widely distributed throughout Brazil. Popularly known as "major-gomes," the species is used in folk medicine for the treatment of cardiovascular disorders. AIM OF THE STUDY: To evaluate the effect of an ethanolic extract of T. paniculatum (EETP) in rats with renovascular hypertension and heart failure and determine its chemical composition. MATERIALS AND METHODS: First, EETP was obtained, and its chemical profile was analyzed by LC-DAD-MS. The acute toxicity was evaluated in female Wistar rats. The model of renovascular hypertension was established in male Wistar rats by combining the Goldblatt 2K1C method and intraperitoneal doxorubicin administration for 6 weeks. The animals were then treated daily with EETP (30, 100, and 300 mg/kg) or metoprolol (25 mg/kg) by gavage for 28 days. The negative control group was treated with vehicle (filtered water). The sham group consisted of animals that were not subjected to 2K1C or cardiotoxicity and were treated with vehicle. Renal function was evaluated on days 1, 14, and 28. At the end of treatment, the electrocardiographic profile, blood pressure, and mesenteric vascular reactivity were investigated. Serum urea, creatinine, angiotensin converting enzyme, nitrotyrosine, malondialdehyde, nitrite, aldosterone, and sodium and potassium levels were measured. The heart, aorta artery, liver, and right kidney were collected, weighed, and processed for histopathological analysis. Cardiac chambers also underwent morphometric analysis. RESULTS: No signs of toxicity were observed in female Wistar rats. Thirty-two compounds were annotated from EETP, including flavonoids, chlorogenic acids, and saponins. EETP treatment resulted in a significant cardiorenal-protective response, normalizing electrocardiographic and hemodynamic alterations, and preventing ventricle remodeling. These effects were associated with serum antioxidant activity and angiotensin-converting enzyme (ACE) inhibition. CONCLUSION: The present study demonstrated that EETP may exert cardioprotective effects through serum antioxidant activity and ACE inhibition, preventing alterations of hemodynamic and endothelial function, and reducing damage to cardiac structure. Thus, EETP, especially at the 100 and 300 mg/kg doses, may be useful for preventing doxorubicin-induced cardiotoxicity in hypertensive patients.


Asunto(s)
Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Doxorrubicina/toxicidad , Fitoterapia , Extractos Vegetales/farmacología , Plantas Medicinales/química , Animales , Antibióticos Antineoplásicos/toxicidad , Brasil , Relación Dosis-Respuesta a Droga , Femenino , Hipertensión , Masculino , Medicina Tradicional , Fitoquímicos/química , Extractos Vegetales/química , Ratas , Ratas Wistar
13.
Biomed Pharmacother ; 139: 111630, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33945912

RESUMEN

BACKGROUND: Cardiac fibrosis occurs in ischemic and non-ischemic heart failure, hereditary cardiomyopathy, diabetes and aging. Energy metabolism, which serves a crucial function in the course and treatment of cardiovascular diseases, might have therapeutic benefits for myocardial fibrosis. Ginsenoside Rb3 (G-Rb3) is one of the main components of Ginseng and exhibits poor oral bioavailability but still exerts regulate energy metabolism effects in some diseases. Therefore, the study investigated the effect of chitosan (CS) @ sodium tripolyphosphate (TPP) nanoparticles conjugation with ginsenoside Rb3 (NpRb3) on myocardial fibrosis and studied its possible mechanisms. The results showed that NpRb3 directly participates in the remodeling of myocardial energy metabolism and the regulation of perixisome proliferation-activated receptor alpha (PPARα), thereby improving the degree of myocardial fibrosis. The study also verifies the protective effect of NpRb3 on energy metabolism and mitochondrial function by targeting the PPARα pathway. Therefore, the prepared nanodrug carrier may be a potential solution for the delivery of G-Rb3, which is a promising platform for oral treatment of myocardial fibrosis.


Asunto(s)
Cardiomiopatías/prevención & control , Ginsenósidos/uso terapéutico , Miocardio/patología , Nanopartículas , PPAR alfa/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Disponibilidad Biológica , Quitosano , Portadores de Fármacos , Composición de Medicamentos , Metabolismo Energético/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Ginsenósidos/administración & dosificación , Ginsenósidos/química , Masculino , Simulación del Acoplamiento Molecular , Miocardio/metabolismo , Panax/química , Polifosfatos/química , Ratas , Ratas Sprague-Dawley
14.
Heart Rhythm ; 18(9): 1596-1604, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33992732

RESUMEN

BACKGROUND: The electrophysiological (EP) effects and safety of renal artery denervation (RDN) in chronic kidney disease (CKD) are unclear. OBJECTIVE: The purpose of this study was to investigate the arrhythmogenicity of RDN in a rabbit model of CKD. METHODS: Eighteen New Zealand white rabbits were randomized to control (n = 6), CKD (n = 6), and CKD-RDN (n = 6) groups. A 5/6 nephrectomy was selected for the CKD model. RDN was applied in the CKD-RDN group. All rabbits underwent cardiac EP studies for evaluation. Immunohistochemistry, myocardial fibrosis, and renal catecholamine levels were evaluated. RESULTS: The CKD group (34.8% ± 9.2%) had a significantly higher ventricular arrhythmia (VA) inducibility than the control (8.6% ± 3.8%; P <.01) and CKD-RDN (19.5% ± 6.3%; P = .01) groups. In the CKD-RDN group, ventricular fibrosis was significantly decreased compared to the CKD group (7.4% ± 2.0 % vs 10.4% ± 3.7%; P = .02). Sympathetic innervation in the CKD group was significantly increased compared to the control and CKD-RDN groups [left ventricle: 4.1 ± 1.8 vs 0.8 ± 0.5 (102 µm2/mm2), P <.01; 4.1 ± 1.8 vs 0.9± 0.6 (102 µm2/mm2), P <.01; right ventricle: 3.6 ± 1.0 vs 1.0 ± 0.4 (102 µm2/mm2), P <.01; 3.6 ± 1.0 vs 1.0 ± 0.5 (102 µm2/mm2), P <.01]. CONCLUSION: Neuromodulation by RDN demonstrated protective effects with less structural and electrical remodeling, leading to attenuated VAs. In a rabbit model of CKD, RDN plays a therapeutic role by lowering the risk of VA caused by autonomic dysfunction.


Asunto(s)
Desnervación Autonómica/métodos , Cardiomiopatías , Ventrículos Cardíacos , Riñón/irrigación sanguínea , Arteria Renal/inervación , Insuficiencia Renal Crónica , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/prevención & control , Remodelación Atrial , Cardiomiopatías/etiología , Cardiomiopatías/prevención & control , Técnicas Electrofisiológicas Cardíacas/métodos , Fibrosis , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Modelos Animales , Conejos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/cirugía , Resultado del Tratamiento , Remodelación Ventricular/fisiología
15.
Biomed Pharmacother ; 139: 111562, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33839492

RESUMEN

Periplocymarin is an effective component of Periplocae Cortex, which was wildly used as an ingredient in Traditional Chinese Medicine. Our group previously reported that periplocymarin exerted cardiotonic role via promoting calcium influx. However, its exact role in the pathogenesis of myocardial fibrosis has not been elucidated yet. The present study was aimed at determining the potential effect and underlying mechanism of periplocymarin in isoproterenol (ISO)-induced myocardial fibrosis. C57BL/6 mice were subcutaneously injected with ISO (5 mg/kg/day) or saline for 1 week. The early-to-atrial wave ratio (E/A ratio) measured by echocardiography revealed that ISO-induced heart stiffness was remarkably reversed by administration of periplocymarin (5 mg/kg/day). Masson trichrome staining exhibited that treatment of periplocymarin reduced the excessive deposition of extracellular matrix (ECM). Further investigations employing real-time PCR and western blot demonstrated that periplocymarin suppressed the expression of fibrosis related genes (Col1a1, Col3a1, Acta2 and Tgfb1) and proteins (Collagen I, Collagen III, α-SMA and TGF-ß1) induced by ISO. Metabolomics analysis demonstrated that periplocymarin ameliorated the disorders triggered by ISO and many of the differential metabolic substances were involved in amino acid, glucose and lipid metabolism. Further analysis using network pharmacology revealed that three key genes, namely NOS2, NOS3 and Ptgs2, may be the potential targets of periplocymarin and responsible for the disorders. Validation using heart tissues showed that the mRNA expression of NOS3 was decreased while Ptgs2 was increased upon ISO treatment, which were reversed by periplocymarin. Moreover, the expression of COX-2 (Ptgs2 encoded protein) was consistent with the aspect of Ptgs2 mRNA, while eNOS (NOS3 encoded protein) expression was unchanged. In vitro studies exhibited that periplocymarin exerts anti-fibrotic function via regulating at least eNOS and COX-2 in cardiomyocyte. Taken together, periplocymarin protects against myocardial fibrosis induced by ß-adrenergic activation, the potential mechanism was that periplocymarin targeted on, at least eNOS and COX-2, to improve the metabolic processes of cardiomyocyte and thus attenuated the myocardial fibrosis. Our study highlighted that periplocymarin is a potential therapeutic agent for the prevention of myocardial fibrosis.


Asunto(s)
Agonistas Adrenérgicos beta , Glicósidos Cardíacos/uso terapéutico , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Isoproterenol , Animales , Cardiomiopatías/diagnóstico por imagen , Ciclooxigenasa 2/genética , Ecocardiografía , Matriz Extracelular/patología , Fibrosis/genética , Redes y Vías Metabólicas/efectos de los fármacos , Metabolómica , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/genética , Regulación hacia Arriba/efectos de los fármacos
16.
Cardiovasc Toxicol ; 21(7): 533-542, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33740233

RESUMEN

Doxorubicin (DOX) is a potent anti-cancer antibiotic that was widely used for treatment of various cancers. It produces free radicals which result in extreme dose-limiting cardiotoxicity. This study investigated the cardioprotective potential of chia seed oil, an active polyphenolic nutraceutical against doxorubicin-induced cardiotoxicity in Wistar rats. Twenty-four female Wistar rats were divided into four groups (n = 6) which consist of normal control, DOX control, test-A and test-B group. Animals were prophylactically treated with two different doses of test drug, i.e. chia seed oil 2.5 ml/kg/day and 5 ml/kg/day in test-A and test-B groups orally for 7 days. Doxorubicin (25 mg/kg; single dose) was administered intraperitoneally to DOX control, Test-A and Test-B animals on the seventh day to induce cardiotoxicity. ECG analysis was done before and after treatment. Besides ECG, CK, CK-MB, LDH, AST, MDA and GSH were analyzed. DOX had significantly altered ECG, CK, CK-MB, LDH, AST, MDA and GSH. Pre-treatment with chia seed oil significantly alleviated DOX-induced ECG changes and also guarded against DOX-induced rise of serum CK, CK-MB and AST levels. Chia seed oil alleviated histopathological alteration in DOX-treated rats. It also significantly inhibited DOX-induced GSH depletion and elevation of MDA. The present study revealed that chia seed oil exerts cardioprotection against doxorubicin-induced cardiotoxicity in female Wistar rats. Our study opens the perspective to clinical studies to precisely consider chia seed oil as a potential chemoprotectant nutraceutical in the combination chemotherapy with doxorubicin to limit its cardiotoxicity.


Asunto(s)
Antioxidantes/farmacología , Cardiomiopatías/prevención & control , Electrocardiografía , Miocitos Cardíacos/efectos de los fármacos , Extractos Vegetales/farmacología , Aceites de Plantas/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/diagnóstico , Cardiomiopatías/metabolismo , Cardiotoxicidad , Modelos Animales de Enfermedad , Doxorrubicina , Femenino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Salvia hispanica
17.
Sci Rep ; 11(1): 7136, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785854

RESUMEN

Due to the increase in the number of obese individuals, the incidence of obesity-related complications such as cardiovascular disease and type 2 diabetes is higher. The aim of the present study was to explore the effects of silybin on protein expression in obese mice. Firstly, serum was collected, and it was used to detect serum lipids and other serological indicators. Secondly, total protein from epididymal adipose tissue was extracted for differential expression analysis by quantitative tandem mass tag (TMT) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by bioinformatics and protein-protein interaction (PPI) network analyses of these proteins. Lastly, real-time polymerase chain reaction (RT-PCR) and parallel reaction monitoring (PRM) were used to further validate the expression of identified differentially expressed proteins (DEPs) at the mRNA and protein level, respectively. The results revealed that silybin could improve abnormal lipid metabolism caused by the high fat diet in obese mice. A total of 341, 538 and 243 DEPs were found in the high fat/control (WF/WC), silybin/high fat (WS/WF) and WS/WC groups, respectively. These DEPs mainly participated in lipid metabolism and energy metabolism. Notably, tropomyosin 1 (TPM1), myosin light chain 2 (MYL2), myosin heavy chain 11 (MYH11) and other DEPs were involved in hypertrophic cardiomyopathy, dilated cardiomyopathy and other pathways. Silybin could protect cardiac function by inducing the protein expression of TPM1, MYL2 and MYH11 in the adipose tissue of obese mice.


Asunto(s)
Cardiomiopatías/prevención & control , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/tratamiento farmacológico , Sustancias Protectoras/uso terapéutico , Silibina/uso terapéutico , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Cardiomiopatías/etiología , Evaluación Preclínica de Medicamentos , Masculino , Ratones Endogámicos C57BL , Obesidad/complicaciones , Sustancias Protectoras/farmacología , Proteoma/efectos de los fármacos , Silibina/farmacología
18.
Pharm Biol ; 59(1): 121-128, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33539718

RESUMEN

CONTEXT: Berberine (Ber) can increase the survival rate of septic mice and inhibit inflammation, but whether it has a protective effect on septic cardiomyopathy (SCM) is unclear. OBJECTIVE: To investigate whether Ber ameliorates SCM in a rat model and its potential mechanism. MATERIALS AND METHODS: Male SD rats were randomly divided into three groups: control (Con, n = 6) (DD H2O, 2 mL/100 g, ig, qd × 3 d, then saline, 10 mg/kg, ip); sepsis [LPS (lipopolysaccharide), n = 18] (LPS 10 mg/kg instead of saline, ip); and berberine intervention (Ber, n = 18) (Ber, 50 mg/kg instead of DD H2O, ig, qd × 3 d, LPS instead of saline, ip). Hemodynamics, HE staining, ELISA and western blot were performed at 6, 24, and 48 h after intraperitoneal injection of LPS to evaluate the effect of berberine in septic rats. RESULT: Berberine could recover myocardial injury by partially increased ± dp/dt max (1151, 445 mmHg/s) and LVEDP levels (1.49 mmHg) with LPS-induced rats, as well as an ameliorated increase of cTnT (217.53 pg/mL) in the Ber group compared with that in the LPS group (at 24 h). In addition, HE staining results showed that berberine attenuated the myocardial cell swelling induced by LPS. In contrast to the LPS group, the up-regulation of TLR4, p65 TNF-α, and IL-1ß were attenuated in the Ber group. DISCUSSION AND CONCLUSIONS: Berberine showed a protective effect on septic cardiomyopathy rats possibly through inhibiting the activation of TLR4/NF-κB signalling pathway. Whether it improves SCM through other mechanisms is our ongoing research.


Asunto(s)
Berberina/farmacología , Cardiomiopatías/prevención & control , Sepsis/tratamiento farmacológico , Animales , Cardiomiopatías/etiología , Modelos Animales de Enfermedad , Lipopolisacáridos , Masculino , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Sepsis/complicaciones , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba/efectos de los fármacos
19.
Ther Apher Dial ; 25(5): 595-606, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33470531

RESUMEN

We investigated the effectiveness of monitoring serum carnitine levels in hemodialysis patients receiving L-carnitine supplementation. One-hundred forty-five hemodialysis patients were divided into three groups. Group 1 consisted of patients (n = 30) who had been receiving supplementation before this study and then discontinued at the beginning. The remaining patients were divided into Group 2 (n = 13) and Group 3 (n = 102) based on their baseline free carnitine (FC) level, <20 or ≥ 20 µmol/L. Group 2 was started on supplementation, and Groups 1 and 3 were observed without any intervention for the first 6 months. FC was measured every 6 months in all three groups up to 18 months. All patients in whom FC was less than 20 µmol/L at 6 and 12 months were prescribed supplementation. After the first 6 months, the mean ± SD of FC changed from 262.5 ± 87.5 µmol/L at baseline to 70.8 ± 33.6 µmol/L (P < 0.001) in Group 1, from 17.4 ± 1.9 to 193.9 ± 43.3 µmol/L (P < 0.001) in Group 2, and from 49.2 ± 24.6 to 44.2 ± 19.8 µmol/L (P < 0.05) in Group 3. The acyl/free carnitine changed from 0.62 to 0.59 in Group 1 (P = 0.287), from 0.76 to 0.66 in Group 2 (P = 0.054) and from 0.57 to 0.60 in Group 3 (P < 0.05). Of the 145 patients, 126 continued follow-up for the full 18 months. FC remained in the normal range (36-74 µmol/L) within the 95% CI. FC was considered a strong predictor of carnitine deficiency after 6 months (AUC: 0.9146, cut-off value: 33.8 µmol/L). FC monitoring is essential for appropriate carnitine supplementation in hemodialysis patients.


Asunto(s)
Cardiomiopatías/prevención & control , Carnitina/administración & dosificación , Carnitina/sangre , Carnitina/deficiencia , Hiperamonemia/prevención & control , Fallo Renal Crónico/sangre , Fallo Renal Crónico/terapia , Enfermedades Musculares/prevención & control , Diálisis Renal/métodos , Anciano , Cardiomiopatías/etiología , Suplementos Dietéticos , Femenino , Humanos , Hiperamonemia/etiología , Masculino , Enfermedades Musculares/etiología , Diálisis Renal/efectos adversos
20.
Shock ; 55(1): 33-40, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32604224

RESUMEN

ABSTRACT: Sepsis-induced myocardial dysfunction (SIMD) contributes significantly to cardiovascular dysfunction during septic shock. We aimed to evaluate the potential role of Xinmailong injection (XMLI), a polypeptide medicine extracted from Periplaneta americana, in reversing the progression of myocardial damage to SIMD in sepsis patients. This was a multicenter, randomized, double-blind, parallel-group trial. We recruited all patients consecutively admitted to intensive care units (ICUs) who were aged 18 to 85 years old and met the sepsis 3.0 criteria. The primary outcome measure was the incidence of sepsis-induced myocardial dysfunction while in the ICU. Of the 192 patients, 96 were assigned to the treatment group, and 96 to the control group. Subsequently, 41 patients [41/96 (42.7%)] in the XMLI group and 61 patients in the placebo group [61/96 (63.5%)] were confirmed to have diastolic dysfunction on the fifth day (D5). The incidence of diastolic SIMD was significantly different between the two groups (P = 0.004). There were 36 deaths in the two groups during the 28-day follow-up, with a general mortality rate of 18.8% (36/192). The 28-day mortality rates were not significantly different between the groups (P = 0.45). However, the brain natriuretic peptide (BNP) plasma concentration trends on D0, D2, and D5 significantly differed between the two groups (P = 0.049). In septic patients, XMLI decreased the occurrence rate of diastolic SIMD more effectively than the placebo. The improvement in serum BNP concentration was also greater in the XMLI group. XMLI may, therefore, effectively and safely improve cardiac function in patients with sepsis.


Asunto(s)
Cardiomiopatías/epidemiología , Medicamentos Herbarios Chinos/uso terapéutico , Sepsis/complicaciones , Sepsis/terapia , Anciano , Anciano de 80 o más Años , Animales , Cardiomiopatías/prevención & control , Cuidados Críticos , Método Doble Ciego , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Periplaneta , Estudios Prospectivos , Sepsis/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA