Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 329: 118178, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604511

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is widely used clinically as one of the most famous traditional Chinese herbs. Its herb roasted with honey is called honey-processed licorice (HPL). Modern studies have shown that HPL has a stronger cardioprotective ability compared to raw licorice (RL), however the material basis and mechanism of action of the potential cardioprotection have not been fully elucidated. AIM OF THE STUDY: To screen and validate the material basis of cardioprotection exerted by HPL and to preliminarily predict the potential mechanism of action. MATERIALS AND METHODS: UPLC-QTOF-MS/MS was used to analyze HPL samples with different processing levels, and differential compounds were screened out through principal component analysis. Network pharmacology and molecular docking were applied to explore the association between differential compounds and doxorubicin cardiomyopathy and their mechanisms of action were predicted. An in vitro model was established to verify the cardioprotective effects of differential compounds. RESULTS: Six differential compounds were screened as key components of HPL for potential cardioprotection. Based on network pharmacology, 113 potential important targets for the treatment of Dox-induced cardiotoxicity were screened. KEGG enrichment analysis predicted that the PI3K-Akt pathway was closely related to the mechanism of action of active ingredients. Molecular docking results showed that the six differential compounds all had good binding activity with Nrf2 protein. In addition, in vitro experiments had shown that five of the active ingredients (liquiritin, isoliquiritin, liquiritigenin, isoliquiritigenin, and licochalcone A) can significantly increase Dox-induced H9c2 cell viability, SOD activity, and mitochondrial membrane potential, significantly reduces MDA levels and inhibits ROS generation. CONCLUSION: Liquiritin, isoliquiritin, liquiritigenin, isoliquiritigenin and licochalcone A are key components of HPL with potential cardioprotective capabilities. Five active ingredients can alleviate Dox-induced cardiotoxicity by inhibiting oxidative stress and mitochondrial damage.


Asunto(s)
Doxorrubicina , Miel , Simulación del Acoplamiento Molecular , Miocitos Cardíacos , Farmacología en Red , Doxorrubicina/toxicidad , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Chalconas/farmacología , Chalconas/aislamiento & purificación , Glycyrrhiza uralensis/química , Cardiotónicos/farmacología , Cardiotónicos/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Flavanonas/farmacología , Flavanonas/aislamiento & purificación , Factor 2 Relacionado con NF-E2/metabolismo , Línea Celular , Cardiotoxicidad/prevención & control , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Transducción de Señal/efectos de los fármacos , Glucósidos
2.
Biochem Biophys Res Commun ; 710: 149910, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38593619

RESUMEN

Ginsenoside Rb1 (Rb1), an active component isolated from traditional Chinese medicine Ginseng, is beneficial to many cardiovascular diseases. However, whether it can protect against doxorubicin induced cardiotoxicity (DIC) is not clear yet. In this study, we aimed to investigate the role of Rb1 in DIC. Mice were injected with a single dose of doxorubicin (20 mg/kg) to induce acute cardiotoxicity. Rb1 was given daily gavage to mice for 7 days. Changes in cardiac function, myocardium histopathology, oxidative stress, cardiomyocyte mitochondrion morphology were studied to evaluate Rb1's function on DIC. Meanwhile, RNA-seq analysis was performed to explore the potential underline molecular mechanism involved in Rb1's function on DIC. We found that Rb1 treatment can improve survival rate and body weight in Dox treated mice group. Rb1 can attenuate Dox induced cardiac dysfunction and myocardium hypertrophy and interstitial fibrosis. The oxidative stress increase and cardiomyocyte mitochondrion injury were improved by Rb1 treatment. Mechanism study found that Rb1's beneficial role in DIC is through suppressing of autophagy and ferroptosis. This study shown that Ginsenoside Rb1 can protect against DIC by regulating autophagy and ferroptosis.


Asunto(s)
Cardiotoxicidad , Ferroptosis , Ginsenósidos , Animales , Ratones , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Cardiotoxicidad/prevención & control , Doxorrubicina/efectos adversos , Doxorrubicina/toxicidad , Ginsenósidos/farmacología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo
3.
Toxicon ; 242: 107693, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38519012

RESUMEN

Aconitine is the main active component of Aconitum plants. Although aconitine has effects that include strengthening the heart, analgesia, anti-tumor, and immune-regulating effects, aconitine has both efficacy and toxicity, especially cardiotoxicity. Severe effects can include arrhythmia and cardiac arrest, which limits the clinical application of aconitine-containing traditional Chinese medicine. Ginsenoside Rb1(Rb1) is mainly found in plants, such as ginseng and Panax notoginseng, and has cardiovascular-protective and anti-arrhythmia effects. This study aimed to investigate the detoxifying effects of Rb1 on aconitine cardiotoxicity and the electrophysiological effect of Rb1 on aconitine-induced arrhythmia in rats. Pathological analysis, myocardial enzymatic indexes, and Western blotting were used to investigate the ameliorating effect of Rb1 on aconitine cardiotoxicity. Optical mapping was used to evaluate the effect of Rb1 on action potential and calcium signaling after aconitine-induced arrhythmia. Rb1 inhibited pathological damage caused by aconitine, decreased myocardial enzyme levels, and restored the balance of apoptotic protein expression by reducing the expression of Bax and cleaved caspase 3 and increasing the expression of Bcl-2, thereby reducing myocardial damage caused by aconitine. Rb1 also reduced the increase in heart rate caused by aconitine, accelerated action potential conduction and calcium signaling, and reduced the dispersion of action potential and calcium signal conduction. Rb1 reduced the cardiotoxicity of aconitine by attenuating aconitine-induced myocardial injury and inhibiting the aconitine-induced retardation of ventricular action potential and calcium signaling in rats.


Asunto(s)
Aconitina , Señalización del Calcio , Cardiotoxicidad , Ginsenósidos , Animales , Ginsenósidos/farmacología , Aconitina/análogos & derivados , Cardiotoxicidad/prevención & control , Ratas , Señalización del Calcio/efectos de los fármacos , Masculino , Potenciales de Acción/efectos de los fármacos , Ratas Sprague-Dawley , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/prevención & control , Miocardio/metabolismo , Miocardio/patología
4.
Drug Dev Res ; 85(2): e22171, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38459752

RESUMEN

5-Fluorouracil (5-FU), which is one of the most widely used chemotherapy drugs, has various side effects on the heart. Thymoquinone (TMQ), the main bioactive component of Nigella sativa, has antioxidant and protective effects against toxicity. In this study, we investigated the protective effect of thymoquinone against cardiotoxicity caused by 5-FU in vitro and in vivo models. H9C2 cells were exposed to 5-FU and TMQ, and cell viability was evaluated in their presence. Also, 25 male Wistar rats were divided into five control groups, 5-FU, 2.5, and 5 mg TMQ in nanoemulsion form (NTMQ) + 5-FU and 5 mg NTMQ. Cardiotoxicity was assessed through electrocardiography, cardiac enzymes, oxidative stress markers, and histopathology. 5-FU induced cytotoxicity in H9c2 cells, which improved dose-dependently with NTMQ cotreatment. 5-FU caused body weight loss, ECG changes (increased ST segment, prolonged QRS, and QTc), increased cardiac enzymes (aspartate aminotransferase [AST], creatine kinase-myocardial band [CK-MB], and lactate dehydrogenase [LDH]), oxidative stress (increased malondialdehyde, myeloperoxidase, nitric acid; decreased glutathione peroxidase enzyme activity), and histological damage such as necrosis, hyperemia, and tissue hyalinization in rats. NTMQ ameliorated these 5-FU-induced effects. Higher NTMQ dose showed greater protective effects. Thus, the results of our study indicate that NTMQ protects against 5-FU cardiotoxicity likely through antioxidant mechanisms. TMQ warrants further research as an adjuvant to alleviate 5-FU chemotherapy side effects.


Asunto(s)
Antioxidantes , Benzoquinonas , Cardiotoxicidad , Ratas , Masculino , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ratas Wistar , Fluorouracilo/toxicidad , Estrés Oxidativo
5.
Medicine (Baltimore) ; 103(7): e36593, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363942

RESUMEN

Doxorubicin (DOX) is one of the most effective chemotherapeutic agents. However, the nonselective effect leads to serious cardiotoxicity risk in clinical use. Curcumin is a well-known dietary polyphenol that showed a protective effect against the cardiotoxic effect of DOX. This study aimed to assess the role of curcumin in protection against DOX-induced cardiotoxicity. Potential compound and disease targets were obtained from relevant databases, and common targets were screened. Protein-protein interaction (PPI) was used to predict the core targets. Gene ontology (GO) bioprocess analysis and Kyoto encyclopedia of genes and genome enrichment analysis enriched the possible biological processes (BP), cellular components, molecular function, and signaling pathways involved. Finally, the binding of curcumin to target proteins was evaluated through molecular docking. The docking score verified the reliability of the prediction results. In total, 205 curcumin and 700 disease targets were identified. A topological analysis of the PPI network revealed 10 core targets including TP53, tumor necrosis factor-alpha (TNF), AKT1, vascular endothelial growth factor A (VEGFA), prostaglandin-endoperoxide synthase 2 (PTGS2), signal transducer and activator of the transcription 3 (STAT3), HIF1A, MYC, epidermal growth factor receptor (EGFR), and CASP3 (Caspase-3). Furthermore, the enrichment analyses indicated that the effects of curcumin were mediated by genes related to oxidation, inflammation, toxification, cell proliferation, migration, apoptosis, wounding, metabolism, proteolysis, and the signaling pathway of calcium (Ca2+). Molecular docking showed that curcumin could bind with the target proteins with strong molecular force, exhibiting good docking activity. Curcumin has a multi-cardioprotective effect by modulating the core targets' expression in DOX-induced cardiotoxicity. This study elucidated the key target proteins and provided a theoretical basis for further exploring curcumin in the prevention and treatment of DOX-induced cardiotoxicity.


Asunto(s)
Curcumina , Medicamentos Herbarios Chinos , Humanos , Simulación del Acoplamiento Molecular , Curcumina/farmacología , Curcumina/uso terapéutico , Factor A de Crecimiento Endotelial Vascular , Farmacología en Red , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Reproducibilidad de los Resultados
6.
J Pharm Pharmacol ; 76(4): 391-404, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38289094

RESUMEN

OBJECTIVES: Doxorubicin (DOX) is a chemotherapy drug for treating malignant tumours. However, its cardiotoxicity has limited its clinical application. The Radix Aconiti Lateralis Preparata, also known as Fuzi, has been used for treating heart failure. Nevertheless, there is still a deficiency of claeity as to whether the Fuzi polysaccharide (FPS) may prevent the side effects of DOX. METHODS: Mice were intraperitoneally administered DOX (15 mg/kg) to establish a mouse model of DOX-induced chronic cardiotoxicity (DICC). The mice were then administered different doses of FPS or enalapril intragastrically. KEY FINDINGS: In the DOX group, the activity of CK-MB and LDH and the content of NT-proBNP in serum of mice were increased. Myocardial infiltration of inflammatory cells and cytoplasmic vacuolation occurred. Levels of NLRP3, ASC, Caspase-1, IL-1ß, IL-18, IL-6, and Bax increased, whereas levels of Bcl-2, STAT3, and p-STAT3 decreased. After administering FPS (100 mg/kg and 200 mg/kg), there were reductions in CK-MB activity and NT-proBNP levels. Cytoplasmic vacuolation, interstitial infiltration of blood, and infiltration of inflammatory cells were alleviated. The changes in protein expression mentioned above were reversed. CONCLUSIONS: FPS can protect heart function and structure in DICC mice by inhibiting NLRP3 inflammasome-mediated pyroptosis and IL-6/STAT3 pathway-induced apoptosis.


Asunto(s)
Aconitum , Cardiotoxicidad , Diterpenos , Medicamentos Herbarios Chinos , Ratones , Animales , Cardiotoxicidad/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR , Aconitum/química , Interleucina-6 , Doxorrubicina/toxicidad
7.
J Biochem Mol Toxicol ; 38(1): e23540, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37728183

RESUMEN

Dose-dependent heart failure is a major complication of the clinical use of doxorubicin (Dox), one of the most potent chemotherapeutic agents. Effective adjuvant therapy is required to prevent Dox-induced cardiotoxicity. Currently, plant-derived exosome-like nanovesicle (PELNV) has revealed their salubrious antioxidant and immunological regulating actions in various disease models. In this study, we isolated, purified and characterized Beta vulgaris-derived exosome-like nanovesicle (BELNV). Dox or normal saline was given to HL-1 cells (3 µM) and 8-week C57BL/6N mice (5 mg/kg bodyweight per week for 4 weeks) to establish the in vitro and in vivo model of Dox-induced cardiotoxicity. Administration of BELNV significantly alleviated chronic Dox-induced cardiotoxicity in terms of echocardiographic and histological results. A reduced malondialdehyde (MDA), increased ratio of glutathione (GSH) to oxidized glutathione (GSSG) and levels of system xc- and glutathione peroxidase 4 were observed, indicating that DOX-stimulated ferroptosis was reversed by BELNV. Besides, the safety of BELNV was also validated since no liver, spleen, and kidney toxicity induced by BELNV was observed. These findings provide evidence that BELNV may act as a novel therapeutic biomaterial for patients undergoing adverse effects of Dox, at least partly mediated by inhibiting Dox-induced ferroptosis.


Asunto(s)
Beta vulgaris , Exosomas , Ferroptosis , Humanos , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Miocardio/metabolismo , Beta vulgaris/metabolismo , Exosomas/metabolismo , Ratones Endogámicos C57BL , Doxorrubicina/efectos adversos , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Disulfuro de Glutatión/farmacología , Disulfuro de Glutatión/uso terapéutico , Estrés Oxidativo , Miocitos Cardíacos/metabolismo
8.
Gene ; 897: 148090, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38110043

RESUMEN

Carfilzomib (CFZ), a proteasome inhibitor commonly used in the treatment of multiple myeloma (MM), exhibits limited clinical application due to its cardiotoxicity. In our study, electroacupuncture (EA) at Neiguan acupoint (PC6) effectively reversed CFZ-induced reduction in ejection fraction (EF) and fractional shortening (FS), demonstrating great potential effect for heart protection. Through comparative analysis of the transcriptome profile from heart samples of mice treated with DMSO control, CFZ injection, and EA stimulation, we identified a total of 770 differentially expressed genes (DEGs) in CFZ (vs. Control) group and 329 DEGs in EA (vs. CFZ) group. Specifically, CFZ (vs. Control) group exhibited 65 up-regulated DEGs and 705 down-regulated DEGs, while EA (vs. CFZ) group displayed 251 up-regulated DEGs and 78 down-regulated DEGs. Metascape analysis revealed that among these treatment groups, there were 137 co-expressed DEGs remarkably enriched in skeletal system development, cellular response to growth factor stimulus, negative regulation of Wnt signaling pathway, and muscle contraction. The expression patterns of miR-8114, Myl4, Col1a1, Tmem163, Myl7, Sln, and Fxyd3, which belong to the top 30 DEGs, were verified by quantitative real-time PCR (RT-qPCR). In summary, this study firstly discloses novel insights into the regulatory mechanisms underlying PC6-based EA therapy against CFZ-induced cardiotoxicity, potentially serving as a theoretical foundation for further clinical applications.


Asunto(s)
Cardiotoxicidad , Electroacupuntura , Oligopéptidos , Extractos Vegetales , Ratones , Animales , Cardiotoxicidad/terapia , Cardiotoxicidad/prevención & control , Corazón
9.
Molecules ; 28(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138580

RESUMEN

Doxorubicin (DOX), an anthracycline-based chemotherapeutic agent, is widely used to treat various types of cancer; however, prolonged treatment induces cardiomyotoxicity. Although studies have been performed to overcome DOX-induced cardiotoxicity (DICT), no effective method is currently available. This study investigated the effects and potential mechanisms of Poncirus trifoliata aqueous extract (PTA) in DICT. Changes in cell survival were assessed in H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells. The C57BL/6 mice were treated with DOX to induce DICT in vivo, and alterations in electrophysiological characteristics, serum biomarkers, and histological features were examined. The PTA treatment inhibited DOX-induced decrease in H9c2 cell viability but did not affect the MDA-MB-231 cell viability. Additionally, the PTA restored the abnormal heart rate, R-R interval, QT interval, and ST segment and inhibited the decrease in serum cardiac and hepatic toxicity indicators in the DICT model. Moreover, the PTA administration protected against myocardial fibrosis and apoptosis in the heart tissue of mice with DICT. PTA treatment restored DOX-induced decrease in the expression of NAD(P)H dehydrogenase quinone acceptor oxidoreductase 1 in a PTA concentration-dependent manner. In conclusion, the PTA inhibitory effect on DICT is attributable to its antioxidant properties, suggesting the potential of PTA as a phytotherapeutic agent for DICT.


Asunto(s)
Miocitos Cardíacos , Poncirus , Ratas , Ratones , Humanos , Animales , NAD/metabolismo , Poncirus/metabolismo , Regulación hacia Arriba , Estrés Oxidativo , Ratones Endogámicos C57BL , Doxorrubicina/toxicidad , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Oxidorreductasas/metabolismo , Quinonas/farmacología
10.
Aging (Albany NY) ; 15(19): 10133-10145, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770231

RESUMEN

Doxorubicin (DOX) is a potent chemotherapeutic drug used for treating various cancers. However, its clinical use is limited due to its severe cardiotoxicity, which often results in high mortality rates. Sheng-Mai-Yin (SMY), a Traditional Chinese medicine (TCM) prescription, has been reported to exert a cardioprotective effect in various cardiovascular diseases, including DOX-induced cardiotoxicity (DIC). This study aimed to provide novel insights into the underlying cardioprotective mechanism of SMY. SMY, composed of Codonopsis pilosula (Franch.), Ophiopogon japonicus (Thunb.), and Schisandra chinensis (Turcz.) at a ratio of 3:2:1, was intragastrically administered to male C57BL/6 mice for five days prior to the intraperitoneal injection of mitoTEMPO. One day later, DOX was intraperitoneally injected. Hematoxylin-eosin staining and Sirius red staining were carried out to estimate the pharmacological effect of SMY on cardiotoxicity. Mitochondrial function and ferroptosis biomarkers were also examined. AAV was utilized to overexpress Hmox1 to confirm whether Hmox1-mediated ferroptosis is associated with the cardioprotective effect of SMY on DOX-induced cardiotoxicity. The findings revealed that SMY therapy reduced the number of damaged cardiomyocytes. SMY therapy also reversed the inductions of cardiac MDA, serum MDA, LDH, and CK-MB contents, which dramatically decreased nonheme iron levels. In the meantime, SMY corrected the changes to ferroptosis indices brought on by DOX stimulation. Additionally, Hmox1 overexpression prevented SMY's ability to reverse cardiotoxicity. Our results showed that SMY effectively restrained lipid oxidation, reduced iron overload, and inhibited DOX-induced ferroptosis and cardiotoxicity, possibly via the mediation of Hmox1.


Asunto(s)
Cardiotoxicidad , Ferroptosis , Masculino , Ratones , Animales , Cardiotoxicidad/prevención & control , Ratones Endogámicos C57BL , Doxorrubicina/toxicidad , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Proteínas de la Membrana/metabolismo , Hemo-Oxigenasa 1/metabolismo
11.
J Biochem Mol Toxicol ; 37(10): e23403, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37701944

RESUMEN

Doxorubicin (DOX) has been used to treat various types of cancer, but its application is limited due to its heart toxicity as well as other drawbacks. Chronic inhibition of Na+ /H+ exchanger (NHE1) reduces heart failure and reduces the production of reactive oxygen species (ROS); vitamin B6 (VitB6 ) has been demonstrated to have a crucial role in antioxidant mechanism. So, this study was designed to explore the effect of VitB6 supplement on the DOX-induced cardiotoxicity and to imply whether NHE1 is involved. Ultrasonic cardiogram analysis revealed that VitB6 supplement could alleviate DOX-induced cardiotoxicity; hematoxylin and eosin (HE) and Masson's staining further confirmed this effect. Furthermore, VitB6 supplement exhibited significant antioxidative stress and antiapoptosis effect, which was evidenced by decreased serum malondialdehyde (MDA) content and increased serum superoxide dismutase (SOD) content, and decreased Bcl-2-associated X protein/B-cell lymphoma-2 ratio, respectively. Collectively, VitB6 supplement may exert antioxidative and antiapoptosis effects to improve cardiac function by decreasing NHE1 expression and improve DOX-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Vitamina B 6 , Humanos , Cardiotoxicidad/prevención & control , Cardiotoxicidad/metabolismo , Vitamina B 6/farmacología , Doxorrubicina/toxicidad , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , Vitaminas/farmacología , Apoptosis
12.
J Nanobiotechnology ; 21(1): 338, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735669

RESUMEN

Photothermal therapy (PTT) is a highly clinical application promising cancer treatment strategy with safe, convenient surgical procedures and excellent therapeutic efficacy on superficial tumors. However, a single PTT is difficult to eliminate tumor cells completely, and tumor recurrence and metastasis are prone to occur in the later stage. Chemo-photothermal synergistic therapy can conquer the shortcomings by further killing residual tumor cells after PTT through systemic chemotherapy. Nevertheless, chemotherapy drugs' extreme toxicity is also a problematic issue to be solved, such as anthracycline-induced cardiotoxicity. Herein, we selected polydopamine nanoparticles (PDA) as the carrier of the chemotherapeutic drug doxorubicin (DOX) to construct a versatile PDA(DOX) nanoplatform for chemo-photothermal synergistic therapy against breast cancer and simultaneously attenuated DOX-induced cardiotoxicity (DIC). The excellent photothermal properties of PDA were used to achieve the thermal ablation of tumors. DOX carried out chemotherapy to kill residual and occult distant tumors. Furthermore, the PDA(DOX) nanoparticles significantly alleviate DIC, which benefits from PDA's excellent antioxidant enzyme activity. The experimental data of the chemotherapy groups showed that the results of the PDA(DOX) group were much better than the DOX group. This study not only effectively inhibits cancer but tactfully attenuates DIC, bringing a new perspective into synergistic therapy against breast cancer.


Asunto(s)
Hipertermia Inducida , Neoplasias , Humanos , Terapia Fototérmica , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Doxorrubicina/farmacología , Antraciclinas , Antioxidantes
13.
Int J Mol Sci ; 24(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37628916

RESUMEN

The clinical use of anthracycline Doxorubicin as an antineoplastic drug in cancer therapy is limited by cardiotoxic effects that can lead to congestive heart failure. Recent studies have shown several promising activities of different species of the genus Ferula belonging to the Apiaceae Family. Ferula communis is the main source of Ferutinin-a bioactive compound isolated from many species of Ferula-studied both in vitro and in vivo because of their different effects, such as estrogenic, antioxidant, anti-inflammatory, and also antiproliferative and cytotoxic activity, performed in a dose-dependent and cell-dependent way. However, the potential protective role of Ferutinin in myocardium impairment, caused by chemotherapeutic drugs, still represents an unexplored field. The aim of this study was to test the effects of Ferutinin rich-Ferula communis L. root extract (FcFE) at different concentrations on H9C2 cells. Moreover, we evaluated its antioxidant properties in cardiomyocytes in order to explore new potential therapeutic activities never examined before in other experimental works. FcFE, at a concentration of 0.25 µM, in the H9C2 line, significantly reduced the ROS production induced by H2O2 (50 µM and 250 µM) and traced the cell mortality of the H9C2 co-treated with Ferutinin 0.25 µM and Doxorubicin (0.5 µM and 1 µM) to control levels. These results showed that FcFE could protect against Doxorubicin-induced cardiotoxicity. Further molecular characterization of this natural compound may open the way for testing FcFE at low concentrations in vivo and in clinical studies as an adjuvant in cancer therapy in association with anthracyclines to prevent side effects on heart cells.


Asunto(s)
Ferula , Neoplasias , Antioxidantes/farmacología , Peróxido de Hidrógeno , Doxorrubicina/efectos adversos , Puntos de Control del Ciclo Celular , Antraciclinas , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Extractos Vegetales/farmacología
14.
Arch Toxicol ; 97(10): 2763-2770, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37401952

RESUMEN

Chloroquine (CQ) and hydroxychloroquine (HCQ) are classical antimalarial drugs, and recently have been used for other applications including coronavirus disease 2019 (COVID-19). Although they are considered safe, cardiomyopathy may associate CQ and HCQ applications particularly at overdoses. The goal of the present study was to evaluate the potential protective effect of the nootropic agent vinpocetine against CQ and HCQ adverse effects with a specific focus on the heart. For this purpose, a mouse model of CQ (0.5 up to 2.5 g/kg)/HCQ (1 up to 2 g/kg) toxicity was used, and the effect of vinpocetine was evaluated by survival, biochemical, as well as histopathological analyses. Survival analysis revealed that CQ and HCQ caused dose-dependent lethality, which was prevented by co-treatment with vinpocetine (100 mg/kg, oral or intraperitoneal). To gain deeper understanding, a dose of 1 g/kg CQ-which did not cause death within the first 24 h after administration-was applied with and without vinpocetine administration (100 mg/kg, intraperitoneal). The CQ vehicle group showed marked cardiotoxicity as evidenced by significant alterations of blood biomarkers including troponione-1, creatine phosphokinase (CPK), creatine kinase-myocardial band (CK-MB), ferritin, and potassium levels. This was confirmed at the tissue level by massive alteration of the heart tissue morphology and coincided with massive oxidative stress. Interestingly, co-administration of vinpocetine strongly ameliorated CQ-induced alterations and restored the antioxidant-defense system of the heart. These data suggest that vinpocetine could be used as an adjuvant therapy together with CQ/HCQ applications.


Asunto(s)
COVID-19 , Cloroquina , Animales , Ratones , Cloroquina/toxicidad , Cardiotoxicidad/prevención & control , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Hidroxicloroquina/toxicidad , Hidroxicloroquina/uso terapéutico , Estrés Oxidativo
15.
J Med Life ; 16(4): 491-500, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37305823

RESUMEN

Cancer is a major public health problem, and chemotherapy plays a significant role in the management of neoplastic diseases. However, chemotherapy-induced cardiotoxicity is a serious side effect secondary to cardiac damage caused by antineoplastic's direct and indirect toxicity. Currently, there are no reliable and approved methods for preventing or treating chemotherapy-induced cardiotoxicity. Understanding the mechanisms of chemotherapy-induced cardiotoxicity may be vital to improving survival. The independent risk factors for developing cardiotoxicity must be considered to prevent myocardial damage without decreasing the therapeutic efficacy of cancer treatment. This systematic review aimed to identify and analyze the evidence on chemotherapy-induced cardiotoxicity, associated risk factors, and methods to decrease or prevent it. We conducted a comprehensive search on PubMed, Google Scholar, and Directory of Open Access Journals (DOAJ) using the following keywords: "doxorubicin cardiotoxicity", "anthracycline cardiotoxicity", "chemotherapy", "digoxin decrease cardiotoxicity", "ATG7 activators", retrieving 59 articles fulfilling the inclusion criteria. Therapeutic schemes can be changed by choosing prolonged infusion application over boluses. In addition, some agents like Dexrazoxane can reduce chemotherapy-induced cardiotoxicity in high-risk groups. Recent research found that Digoxin, ATG7 activators, Resveratrol, and other medical substances or herbal compounds have a comparable effect on Dexrazoxane in anthracycline-induced cardiotoxicity.


Asunto(s)
Antineoplásicos , Dexrazoxano , Policétidos , Humanos , Resveratrol/farmacología , Resveratrol/uso terapéutico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Antraciclinas , Digoxina
16.
Molecules ; 28(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298779

RESUMEN

Doxorubicin (DOX) has been extensively utilized in cancer treatment. However, DOX administration has adverse effects, such as cardiac injury. This study intends to analyze the expression of TGF, cytochrome c, and apoptosis on the cardiac histology of rats induced with doxorubicin, since the prevalence of cardiotoxicity remains an unpreventable problem due to a lack of understanding of the mechanism underlying the cardiotoxicity result. Vernonia amygdalina ethanol extract (VAEE) was produced by soaking dried Vernonia amygdalina leaves in ethanol. Rats were randomly divided into seven groups: K- (only given doxorubicin 15 mg/kgbw), KN (water saline), P100, P200, P400, P4600, and P800 (DOX 15 mg/kgbw + 100, 200, 400, 600, and 800 mg/kgbw extract); at the end of the study, rats were scarified, and blood was taken directly from the heart; the heart was then removed. TGF, cytochrome c, and apoptosis were stained using immunohistochemistry, whereas SOD, MDA, and GR concentration were evaluated using an ELISA kit. In conclusion, ethanol extract might protect the cardiotoxicity produced by doxorubicin by significantly reducing the expression of TGF, cytochrome c, and apoptosis in P600 and P800 compared to untreated control K- (p < 0.001). These findings suggest that Vernonia amygdalina may protect cardiac rats by reducing the apoptosis, TGF, and cytochrome c expression while not producing the doxorubicinol as doxorubicin metabolite. In the future, Vernonia amygdalina could be used as herbal preventive therapy for patient administered doxorubicin to reduce the incidence of cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Vernonia , Ratas , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Citocromos c/metabolismo , Etanol/efectos adversos , Factor de Crecimiento Transformador beta/metabolismo , Doxorrubicina/efectos adversos , Apoptosis , Extractos Vegetales/farmacología , Estrés Oxidativo
17.
Integr Cancer Ther ; 22: 15347354231164621, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37029546

RESUMEN

Doxorubicin (Dox) is a first-line chemotherapeutic agent applied in cancer treatment. Its long-term anticancer efficacy is restricted mainly due to its subsequent cardiotoxicity for patients. Platycodon grandiflorum (PG), an important traditional Chinese herb, has been reported to eliminate phlegm, relieve cough, and reduce inflammatory diseases. Previous clinical studies found that PG has cardioprotective effects for early breast cancer patients who received Dox-based chemotherapy. However, the cellular and molecular mechanisms underlying PG-mediated cardiotoxic rescue remain elusive. This study aimed to explore the protective role and potential molecular mechanisms of PG on Dox-induced cardiac dysfunction in a mouse model of breast cancer. PG significantly alleviated myocardial damage and prevented cardiomyocyte apoptosis induced by Dox. The expression levels of cytochrome C and cleaved caspase-3 significantly decreased, and the levels of Bcl-XL and B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X protein increased following PG treatment. Furthermore, PG remarkably enhanced the antimetastatic efficacy (versus the Dox group) by regulating the balance of matrix metalloproteinases/tissue inhibitors of metalloproteinases.


Asunto(s)
Antineoplásicos , Cardiopatías , Neoplasias , Platycodon , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/prevención & control , Cardiotoxicidad/metabolismo , Doxorrubicina/efectos adversos , Antineoplásicos/farmacología , Cardiopatías/inducido químicamente , Apoptosis , Miocitos Cardíacos/metabolismo , Neoplasias/metabolismo
18.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108737

RESUMEN

This study aimed to evaluate if Simvastatin can reduce, and/or prevent, Doxorubicin (Doxo)-induced cardiotoxicity. H9c2 cells were treated with Simvastatin (10 µM) for 4 h and then Doxo (1 µM) was added, and the effects on oxidative stress, calcium homeostasis, and apoptosis were evaluated after 20 h. Furthermore, we evaluated the effects of Simvastatin and Doxo co-treatment on Connexin 43 (Cx43) expression and localization, since this transmembrane protein forming gap junctions is widely involved in cardioprotection. Cytofluorimetric analysis showed that Simvastatin co-treatment significantly reduced Doxo-induced cytosolic and mitochondrial ROS overproduction, apoptosis, and cytochrome c release. Spectrofluorimetric analysis performed by means of Fura2 showed that Simvastatin co-treatment reduced calcium levels stored in mitochondria and restored cytosolic calcium storage. Western blot, immunofluorescence, and cytofluorimetric analyses showed that Simvastatin co-treatment significantly reduced Doxo-induced mitochondrial Cx43 over-expression and significantly increased the membrane levels of Cx43 phosphorylated on Ser368. We hypothesized that the reduced expression of mitochondrial Cx43 could justify the reduced levels of calcium stored in mitochondria and the consequent induction of apoptosis observed in Simvastatin co-treated cells. Moreover, the increased membrane levels of Cx43 phosphorylated on Ser368, which is responsible for the closed conformational state of the gap junction, let us to hypothesize that Simvastatin leads to cell-to-cell communication interruption to block the propagation of Doxo-induced harmful stimuli. Based on these results, we can conclude that Simvastatin could be a good adjuvant in Doxo anticancer therapy. Indeed, we confirmed its antioxidant and antiapoptotic activity, and, above all, we highlighted that Simvastatin interferes with expression and cellular localization of Cx43 that is widely involved in cardioprotection.


Asunto(s)
Antioxidantes , Conexina 43 , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Conexina 43/metabolismo , Simvastatina/farmacología , Simvastatina/metabolismo , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Doxorrubicina/toxicidad , Doxorrubicina/metabolismo , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Apoptosis
19.
Integr Cancer Ther ; 22: 15347354231164753, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37057304

RESUMEN

INTRODUCTION: Traditional Chinese medicine (TCM) injections, as a relatively safe and low-cost treatment, have been widely used in the prevention and treatment of anthracyclines-induced cardiotoxicity in China. However, the quality of the relevant systematic reviews and meta-analyses published in recent years is uneven, so that the effectiveness and safety of TCM injections in preventing and treating anthracyclines-induced cardiotoxicity remain to be discussed. A systematic overview is therefore needed to provide a more advanced evidentiary reference for clinical practice. METHODS: Eight Chinese and English databases were searched by computer to screen the meta-analyses/systematic reviews on the efficacy of traditional Chinese medicine injections for the prevention and treatment of anthracyclines-induced cardiotoxicity from the database establishment to October 2022. The methodological quality and evidence quality of outcome indicators included in the study were evaluated by AMSTAR 2 tool, PRISMA statement and GRADE classification. RESULTS: A total of 7 articles were included in the study. The quality evaluation of AMSTAR 2 showed that 7 studies were extremely low-level; PRISMA stated that the evaluation results showed that the reports of 7 studies were of intermediate quality; The GRADE rating indicated that most of the evidence was of low quality. CONCLUSION: The methodological quality and evidence quality of meta-analysis/system evaluation concerning the prevention and treatment of anthracyclines-induced cardiotoxicity by Chinese medicine are currently low, and the effectiveness of Chinese medicine in the treatment of anthracyclines-induced cardiotoxicity needs more high-quality evidence-based evidence.


Asunto(s)
Antraciclinas , Cardiotoxicidad , Medicamentos Herbarios Chinos , Humanos , Antraciclinas/efectos adversos , Antibióticos Antineoplásicos , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China
20.
J Nutr Biochem ; 115: 109285, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36796548

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is easily found in the environment. Excessive daily exposure of it may lead to an increased risk of cardiovascular disease (CVD). Lycopene (LYC), as a natural carotenoid, has been shown to have the potential to prevent CVD. However, the mechanism of LYC on cardiotoxicity caused by DEHP exposure is unknown. The research was aimed to investigate the chemoprotection of LYC on the cardiotoxicity caused by DEHP exposure. Mice were treated with DEHP (500 mg/kg or 1,000 mg/kg) and/or LYC (5 mg/kg) for 28 d by intragastric administration, and the heart was subjected to histopathology and biochemistry analysis. The results indicated that DEHP caused cardiac histological alterations and enhanced the activity of cardiac injury indicators, and interfered with mitochondrial function and activating mitophagy. Notably, LYC supplementation could inhibit DEHP-induced oxidative stress. The mitochondrial dysfunction and emotional disorder caused by DEHP exposure were significantly improved through the protective effect of LYC. We concluded that LYC enhances mitochondrial function by regulating mitochondrial biogenesis and dynamics to antagonize DEHP-induced cardiac mitophagy and oxidative stress.


Asunto(s)
Dietilhexil Ftalato , Ratones , Animales , Licopeno/farmacología , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/metabolismo , Cardiotoxicidad/prevención & control , Cardiotoxicidad/metabolismo , Mitofagia , Estrés Oxidativo , Mitocondrias/metabolismo , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA