Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 710: 149910, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38593619

RESUMEN

Ginsenoside Rb1 (Rb1), an active component isolated from traditional Chinese medicine Ginseng, is beneficial to many cardiovascular diseases. However, whether it can protect against doxorubicin induced cardiotoxicity (DIC) is not clear yet. In this study, we aimed to investigate the role of Rb1 in DIC. Mice were injected with a single dose of doxorubicin (20 mg/kg) to induce acute cardiotoxicity. Rb1 was given daily gavage to mice for 7 days. Changes in cardiac function, myocardium histopathology, oxidative stress, cardiomyocyte mitochondrion morphology were studied to evaluate Rb1's function on DIC. Meanwhile, RNA-seq analysis was performed to explore the potential underline molecular mechanism involved in Rb1's function on DIC. We found that Rb1 treatment can improve survival rate and body weight in Dox treated mice group. Rb1 can attenuate Dox induced cardiac dysfunction and myocardium hypertrophy and interstitial fibrosis. The oxidative stress increase and cardiomyocyte mitochondrion injury were improved by Rb1 treatment. Mechanism study found that Rb1's beneficial role in DIC is through suppressing of autophagy and ferroptosis. This study shown that Ginsenoside Rb1 can protect against DIC by regulating autophagy and ferroptosis.


Asunto(s)
Cardiotoxicidad , Ferroptosis , Ginsenósidos , Animales , Ratones , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Cardiotoxicidad/prevención & control , Doxorrubicina/efectos adversos , Doxorrubicina/toxicidad , Ginsenósidos/farmacología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo
2.
Am J Chin Med ; 52(2): 453-469, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38490806

RESUMEN

Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug used to treat a wide spectrum of tumors. However, its clinical application is limited due to cardiotoxic side effects. Astragaloside IV (AS IV), one of the major compounds present in aqueous extracts of Astragalus membranaceus, possesses potent cardiovascular protective properties, but the underlying molecular mechanisms are unclear. Thus, the aim of this study was to investigate the effect of AS IV on DOX-induced cardiotoxicity (DIC). Our findings revealed that DOX induced pyroptosis through the caspase-1/gasdermin D (GSDMD) and caspase-3/gasdermin E (GSDME) pathways. AS IV treatment significantly improved the cardiac function and alleviated myocardial injury in DOX-exposed mice by regulating intestinal flora and inhibiting pyroptosis; markedly suppressed the levels of cleaved caspase-1, N-GSDMD, cleaved caspase-3, and N-GSDME; and reversed DOX-induced downregulation of silent information regulator 1 (SIRT1) and activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in mice. The SIRT1 inhibitor EX527 significantly blocked the protective effects of AS IV. Collectively, our results suggest that AS IV protects against DIC by inhibiting pyroptosis through the SIRT1/NLRP3 pathway.


Asunto(s)
Miocitos Cardíacos , Proteína con Dominio Pirina 3 de la Familia NLR , Saponinas , Triterpenos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/fisiología , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Caspasa 3/metabolismo , Sirtuina 1/metabolismo , Gasderminas , Doxorrubicina/efectos adversos , Caspasa 1/metabolismo
3.
Drug Dev Res ; 85(2): e22171, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38459752

RESUMEN

5-Fluorouracil (5-FU), which is one of the most widely used chemotherapy drugs, has various side effects on the heart. Thymoquinone (TMQ), the main bioactive component of Nigella sativa, has antioxidant and protective effects against toxicity. In this study, we investigated the protective effect of thymoquinone against cardiotoxicity caused by 5-FU in vitro and in vivo models. H9C2 cells were exposed to 5-FU and TMQ, and cell viability was evaluated in their presence. Also, 25 male Wistar rats were divided into five control groups, 5-FU, 2.5, and 5 mg TMQ in nanoemulsion form (NTMQ) + 5-FU and 5 mg NTMQ. Cardiotoxicity was assessed through electrocardiography, cardiac enzymes, oxidative stress markers, and histopathology. 5-FU induced cytotoxicity in H9c2 cells, which improved dose-dependently with NTMQ cotreatment. 5-FU caused body weight loss, ECG changes (increased ST segment, prolonged QRS, and QTc), increased cardiac enzymes (aspartate aminotransferase [AST], creatine kinase-myocardial band [CK-MB], and lactate dehydrogenase [LDH]), oxidative stress (increased malondialdehyde, myeloperoxidase, nitric acid; decreased glutathione peroxidase enzyme activity), and histological damage such as necrosis, hyperemia, and tissue hyalinization in rats. NTMQ ameliorated these 5-FU-induced effects. Higher NTMQ dose showed greater protective effects. Thus, the results of our study indicate that NTMQ protects against 5-FU cardiotoxicity likely through antioxidant mechanisms. TMQ warrants further research as an adjuvant to alleviate 5-FU chemotherapy side effects.


Asunto(s)
Antioxidantes , Benzoquinonas , Cardiotoxicidad , Ratas , Masculino , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ratas Wistar , Fluorouracilo/toxicidad , Estrés Oxidativo
4.
Phytomedicine ; 127: 155473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38422972

RESUMEN

BACKGROUND: Doxorubicin (DOX) is widely used for the treatment of a variety of cancers. However, its clinical application is limited by dose-dependent cardiotoxicity. Recent findings demonstrated that autophagy inhibition and apoptosis of cardiomyocytes induced by oxidative stress dominate the pathophysiology of DOX-induced cardiotoxicity (DIC), however, there are no potential molecules targeting on these. PURPOSE: This study aimed to explore whether aucubin (AU) acting on inimitable crosstalk between NRF2 and HIPK2 mediated the autophagy, oxidative stress, and apoptosis in DIC, and provide a new and alternative strategy for the treatment of DIC. METHODS AND RESULTS: We first demonstrated the protection of AU on cardiac structure and function in DIC mice manifested by increased EF and FS values, decreased serum CK-MB and LDH contents and well-aligned cardiac tissue in HE staining. Furthermore, AU alleviated DOX-induced myocardial oxidative stress, mitochondrial damage, apoptosis, and autophagy flux dysregulation in mice, as measured by decreased ROS, 8-OHdG, and TUNEL-positive cells in myocardial tissue, increased SOD and decreased MDA in serum, aligned mitochondria with reduced vacuoles, and increased autophagosomes. In vitro, AU alleviated DOX-induced oxidative stress, autophagy inhibition, and apoptosis by promoting NRF2 and HIPK2 expression. We also identified crosstalk between NRF2 and HIPK2 in DIC as documented by overexpression of NRF2 or HIPK2 reversed cellular oxidative stress, autophagy blocking, and apoptosis aggravated by HIPK2 or NRF2 siRNA, respectively. Simultaneously, AU promoted the expression and nuclear localization of NRF2 protein, which was reversed by HIPK2 siRNA, and AU raised the expression of HIPK2 protein as well, which was reversed by NRF2 siRNA. Crucially, AU did not affect the antitumor activity of DOX against MCF-7 and HepG2 cells, which made up for the shortcomings of previous anti-DIC drugs. CONCLUSION: These collective results innovatively documented that AU regulated the unique crosstalk between NRF2 and HIPK2 to coordinate oxidative stress, autophagy, and apoptosis against DIC without compromising the anti-tumor effect of DOX in vitro.


Asunto(s)
Cardiotoxicidad , Glucósidos Iridoides , Factor 2 Relacionado con NF-E2 , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Doxorrubicina/farmacología , Miocitos Cardíacos , Apoptosis , Estrés Oxidativo , ARN Interferente Pequeño/farmacología , Autofagia
5.
J Ethnopharmacol ; 319(Pt 3): 117349, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38380572

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acanthopanax senticosus (Rupr. & Maxim.) Harms (AS), also known as Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. or Siberian ginseng, has a rich history of use as an adaptogen, a substance believed to increase the body's resistance to stress, fatigue, and infectious diseases. As a traditional Chinese medicine, AS is popular for its cardioprotective effects which can protect the cardiovascular system from hazardous conditions. Doxorubicin (DOX), on the other hand, is a first-line chemotherapeutic agent against a variety of cancers, including breast cancer, lung cancer, gastric cancer, and leukemia, etc. Despite its effectiveness, the clinical use of DOX is limited by its side effects, the most serious of which is cardiotoxicity. Considering AS could be applied as an adjuvant to anticancer agents, the combination of AS and DOX might exert synergistic effects on certain malignancies with mitigated cardiotoxicity. Given this, it is necessary and meaningful to confirm whether AS would neutralize the DOX-induced cardiotoxicity and its underlying molecular mechanisms. AIM OF THE STUDY: This paper aims to validate the cardioprotective effects of AS against DOX-induced myocardial injury (MI) while deciphering the molecular mechanisms underlying such effects. MATERIALS AND METHODS: Firstly, the cardioprotective effects of AS against DOX-induced MI were confirmed both in vitro and in vivo. Secondly, serum pharmacochemistry and network pharmacology were orchestrated to explore the in vivo active compounds of AS and predict their ways of functioning in the treatment of DOX-induced MI. Finally, the predicted mechanisms were validated by Western blot analysis during in vivo experiments. RESULTS: The results demonstrated that AS possessed excellent antioxidative ability, and could alleviate the apoptosis of H9C2 cells and the damage to mitochondria induced by DOX. In vivo experiments indicated that AS could restore the conduction abnormalities and ameliorate histopathological changes according to the electrocardiogram and cardiac morphology. Meanwhile, it markedly downregulated the inflammatory factors (TNF-α, IL-6, and IL-1ß), decreased plasma ALT, AST, LDH, CK, CK-MB, and MDA levels, as well as increased SOD and GSH levels compared to the model group, which collectively substantiate the effectiveness of AS. Afterward, 14 compounds were identified from different batches of AS-dosed serum and selected for mechanism prediction through HPLC-HRMS analysis and network pharmacology. Consequently, the MAPKs and caspase cascade were confirmed as primary targets among which the interplay between the JNK/Caspase 3 feedback loop and the phosphorylation of ERK1/2 were highlighted. CONCLUSIONS: In conclusion, the integrated approach employed in this paper illuminated the molecular mechanism of AS against DOX-induced MI, whilst providing a valuable strategy to elucidate the therapeutic effects of complicated TCM systems more reliably and efficiently.


Asunto(s)
Antineoplásicos , Eleutherococcus , Neoplasias , Humanos , Eleutherococcus/química , Cardiotoxicidad/tratamiento farmacológico , Farmacología en Red , Doxorrubicina/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Estrés Oxidativo , Apoptosis
6.
Medicine (Baltimore) ; 103(7): e36593, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363942

RESUMEN

Doxorubicin (DOX) is one of the most effective chemotherapeutic agents. However, the nonselective effect leads to serious cardiotoxicity risk in clinical use. Curcumin is a well-known dietary polyphenol that showed a protective effect against the cardiotoxic effect of DOX. This study aimed to assess the role of curcumin in protection against DOX-induced cardiotoxicity. Potential compound and disease targets were obtained from relevant databases, and common targets were screened. Protein-protein interaction (PPI) was used to predict the core targets. Gene ontology (GO) bioprocess analysis and Kyoto encyclopedia of genes and genome enrichment analysis enriched the possible biological processes (BP), cellular components, molecular function, and signaling pathways involved. Finally, the binding of curcumin to target proteins was evaluated through molecular docking. The docking score verified the reliability of the prediction results. In total, 205 curcumin and 700 disease targets were identified. A topological analysis of the PPI network revealed 10 core targets including TP53, tumor necrosis factor-alpha (TNF), AKT1, vascular endothelial growth factor A (VEGFA), prostaglandin-endoperoxide synthase 2 (PTGS2), signal transducer and activator of the transcription 3 (STAT3), HIF1A, MYC, epidermal growth factor receptor (EGFR), and CASP3 (Caspase-3). Furthermore, the enrichment analyses indicated that the effects of curcumin were mediated by genes related to oxidation, inflammation, toxification, cell proliferation, migration, apoptosis, wounding, metabolism, proteolysis, and the signaling pathway of calcium (Ca2+). Molecular docking showed that curcumin could bind with the target proteins with strong molecular force, exhibiting good docking activity. Curcumin has a multi-cardioprotective effect by modulating the core targets' expression in DOX-induced cardiotoxicity. This study elucidated the key target proteins and provided a theoretical basis for further exploring curcumin in the prevention and treatment of DOX-induced cardiotoxicity.


Asunto(s)
Curcumina , Medicamentos Herbarios Chinos , Humanos , Simulación del Acoplamiento Molecular , Curcumina/farmacología , Curcumina/uso terapéutico , Factor A de Crecimiento Endotelial Vascular , Farmacología en Red , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Reproducibilidad de los Resultados
7.
J Biochem Mol Toxicol ; 38(1): e23540, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37728183

RESUMEN

Dose-dependent heart failure is a major complication of the clinical use of doxorubicin (Dox), one of the most potent chemotherapeutic agents. Effective adjuvant therapy is required to prevent Dox-induced cardiotoxicity. Currently, plant-derived exosome-like nanovesicle (PELNV) has revealed their salubrious antioxidant and immunological regulating actions in various disease models. In this study, we isolated, purified and characterized Beta vulgaris-derived exosome-like nanovesicle (BELNV). Dox or normal saline was given to HL-1 cells (3 µM) and 8-week C57BL/6N mice (5 mg/kg bodyweight per week for 4 weeks) to establish the in vitro and in vivo model of Dox-induced cardiotoxicity. Administration of BELNV significantly alleviated chronic Dox-induced cardiotoxicity in terms of echocardiographic and histological results. A reduced malondialdehyde (MDA), increased ratio of glutathione (GSH) to oxidized glutathione (GSSG) and levels of system xc- and glutathione peroxidase 4 were observed, indicating that DOX-stimulated ferroptosis was reversed by BELNV. Besides, the safety of BELNV was also validated since no liver, spleen, and kidney toxicity induced by BELNV was observed. These findings provide evidence that BELNV may act as a novel therapeutic biomaterial for patients undergoing adverse effects of Dox, at least partly mediated by inhibiting Dox-induced ferroptosis.


Asunto(s)
Beta vulgaris , Exosomas , Ferroptosis , Humanos , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Miocardio/metabolismo , Beta vulgaris/metabolismo , Exosomas/metabolismo , Ratones Endogámicos C57BL , Doxorrubicina/efectos adversos , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Disulfuro de Glutatión/farmacología , Disulfuro de Glutatión/uso terapéutico , Estrés Oxidativo , Miocitos Cardíacos/metabolismo
8.
Eur Radiol ; 34(1): 226-235, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37552260

RESUMEN

OBJECTIVES: To evaluate the early prevalence of anthracycline-induced cardiotoxicity (AIC) and anthracycline-induced liver injury (AILI) using T2 and T2* mapping and to explore their correlations. MATERIALS AND METHODS: The study included 17 cardiotoxic rabbits that received weekly injections of doxorubicin and magnetic resonance imaging (MRI) every 2 weeks for 10 weeks. Cardiac function and T2 and T2* values were measured on each period. Histopathological examinations for two to five rabbits were performed after each MRI scan. The earliest sensitive time and the threshold of MRI parameters for detecting AIC and AILI based on these MRI parameters were obtained. Moreover, the relationship between myocardial and liver damage was assessed. RESULTS: Early AIC could be detected by T2 mapping as early as the second week and focused on the 7th, 11th, and 12th segments of left ventricle. The cutoff value of 46.64 for the 7th segment had the best diagnostic value, with an area under the curve (of 0.767, sensitivity of 100%, and specificity of 52%. T2* mapping could detect the change in iron content for early AIC at the middle interventricular septum and AILI as early as the sixth week (p = 0.014, p = 0.027). The T2* values of the middle interventricular septum showed a significant positive association with the T2* values of the liver (r = 0.39, p = 0.002). CONCLUSION: T2 and T2* mapping showed value one-stop assessment of AIC and AILI and could obtain the earliest MRI diagnosis point and optimal parameter thresholds for these conditions. CLINICAL RELEVANCE STATEMENT: Anthracycline-induced cardiotoxicity could be detected by T2 mapping as earlier as the second week, mainly focusing on the 7th, 11th, and 12th segments of left ventricle. Combined with T2* mapping, hepatoxicity and supplementary cardiotoxicity were assessed by one-stop scan. KEY POINTS: • MRI screening time of cardiotoxicity was as early as the second week with focusing on T2 values of the 7th, 11th, and 12th segments of left ventricle. • T2* mapping could be used as a complement to T2 mapping to evaluate cardiotoxicity and as an effective index to detect iron change in the early stages of chemotherapy. • The T2* values of the middle interventricular septum showed a significant positive association with the T2* values of the liver, indicating that iron content in the liver and heart increased with an increase in the chemotherapeutic drugs.


Asunto(s)
Antraciclinas , Antibióticos Antineoplásicos , Cardiotoxicidad , Doxorrubicina , Animales , Conejos , Antraciclinas/efectos adversos , Antibióticos Antineoplásicos/efectos adversos , Cardiotoxicidad/diagnóstico por imagen , Cardiotoxicidad/tratamiento farmacológico , Hierro , Hígado/diagnóstico por imagen , Doxorrubicina/uso terapéutico
9.
Molecules ; 28(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138580

RESUMEN

Doxorubicin (DOX), an anthracycline-based chemotherapeutic agent, is widely used to treat various types of cancer; however, prolonged treatment induces cardiomyotoxicity. Although studies have been performed to overcome DOX-induced cardiotoxicity (DICT), no effective method is currently available. This study investigated the effects and potential mechanisms of Poncirus trifoliata aqueous extract (PTA) in DICT. Changes in cell survival were assessed in H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells. The C57BL/6 mice were treated with DOX to induce DICT in vivo, and alterations in electrophysiological characteristics, serum biomarkers, and histological features were examined. The PTA treatment inhibited DOX-induced decrease in H9c2 cell viability but did not affect the MDA-MB-231 cell viability. Additionally, the PTA restored the abnormal heart rate, R-R interval, QT interval, and ST segment and inhibited the decrease in serum cardiac and hepatic toxicity indicators in the DICT model. Moreover, the PTA administration protected against myocardial fibrosis and apoptosis in the heart tissue of mice with DICT. PTA treatment restored DOX-induced decrease in the expression of NAD(P)H dehydrogenase quinone acceptor oxidoreductase 1 in a PTA concentration-dependent manner. In conclusion, the PTA inhibitory effect on DICT is attributable to its antioxidant properties, suggesting the potential of PTA as a phytotherapeutic agent for DICT.


Asunto(s)
Miocitos Cardíacos , Poncirus , Ratas , Ratones , Humanos , Animales , NAD/metabolismo , Poncirus/metabolismo , Regulación hacia Arriba , Estrés Oxidativo , Ratones Endogámicos C57BL , Doxorrubicina/toxicidad , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Oxidorreductasas/metabolismo , Quinonas/farmacología
10.
Phytomedicine ; 121: 155105, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801893

RESUMEN

BACKGROUND: Doxorubicin (Dox), which is an anticancer drug, has significant cardiac toxicity and side effects. Pyroptosis occurs during Dox-induced cardiotoxicity (DIC), and drug inhibition of this process is one therapeutic approach for treating DIC. Previous studies have indicated that emodin can reduce pyroptosis. However, the role of emodin in DIC and its molecular targets remain unknown. HYPOTHESIS/PURPOSE: We aimed to clarify the protective role of emodin in mitigating DIC, as well as the mechanisms underlying this effect. METHODS: The model of DIC was established via the intraperitoneal administration of Dox at a dosage of 5 mg/kg per week for a span of 4 weeks. Emodin at two different doses (10 and 20 mg/kg) or a vehicle was intragastrically administered to the mice once per day throughout the Dox treatment period. Cardiac function, myocardial injury markers, pathological morphology of the heart, level of pyroptosis and mitochondrial function were assessed. Protein microarray, biolayer interferometry and pull-down assays were used to confirm the target of emodin. Moreover, GSDMD-overexpressing plasmids were transfected into GSDMD-/- mice and HL-1 cells to further verify whether emodin suppressed GSDMD activation. RESULTS: Emodin therapy markedly enhanced cardiac function and reduced cardiomyocyte pyroptosis in mice induced by Dox. Mechanistically, emodin binds to GSDMD and inhibits the activation of GSDMD by targeting the Trp415 and Leu290 residues. Moreover, emodin was able to mitigate Dox-induced cardiac dysfunction and myocardial injury in GSDMD-/- mice overexpressing GSDMD, as shown by increased EF and FS, decreased serum levels of CK-MB, LDH and IL-1ß and mitigated cell death and cell morphological disorder. Additionally, emodin treatment significantly reduced GSDMD-N expression and plasma membrane disruption in HL-1 cells overexpressing GSDMD induced by Dox. In addition, emodin reduced mitochondrial damage by alleviating Dox-induced GSDMD perforation in the mitochondrial membrane. CONCLUSION: Emodin has the potential to attenuate DIC by directly binding to GSDMD to inhibit pyroptosis. Emodin may become a promising drug for prevention and treatment of DIC.


Asunto(s)
Emodina , Miocitos Cardíacos , Ratones , Animales , Piroptosis , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Emodina/farmacología , Doxorrubicina/farmacología
11.
Environ Toxicol ; 38(12): 3026-3042, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37661764

RESUMEN

Ohwia caudata (Thunb.) H. Ohashi (Leguminosae) also called as "Evergreen shrub" and Artemisia argyi H.Lév. and Vaniot (Compositae) also named as "Chinese mugwort" those two-leaf extracts frequently used as herbal medicine, especially in south east Asia and eastern Asia. Anthracyclines such as doxorubicin (DOX) are commonly used as effective chemotherapeutic drugs in anticancer therapy around the world. However, chemotherapy-induced cardiotoxicity, dilated cardiomyopathy, and congestive heart failure are seen in patients who receive DOX therapy, with the mechanisms underlying DOX-induced cardiac toxicity remaining unclear. Mitochondrial dysfunction, oxidative stress, inflammatory response, and cardiomyocytes have been shown to play crucial roles in DOX-induced cardiotoxicity. Isoliquiritigenin (ISL, 10 mg/kg) is a bioactive flavonoid compound with protective effects against inflammation, neurodegeneration, cancer, and diabetes. Here, in this study, our aim is to find out the Artemisia argyi (AA) and Ohwia caudata (OC) leaf extract combination with Isoliquiritigenin in potentiating and complementing effect against chemo drug side effect to ameliorate cardiac damage and improve the cardiac function. In this study, we showed that a combination of low (AA 300 mg/kg; OC 100 mg/kg) and high-dose(AA 600 mg/kg; OC 300 mg/kg) AA and OC water extract with ISL activated the cell survival-related AKT/PI3K signaling pathway in DOX-treated cardiac tissue leading to the upregulation of the antioxidant markers SOD, HO-1, and Keap-1 and regulated mitochondrial dysfunction through the Nrf2 signaling pathway. Moreover, the water extract of AA and OC with ISL inhibited the inflammatory response genes IL-6 and IL-1ß, possibly through the NFκB/AKT/PI3K/p38α/NRLP3 signaling pathways. The water extract of AA and OC with ISL could be a potential herbal drug treatment for cardiac hypertrophy, inflammatory disease, and apoptosis, which can lead to sudden heart failure.


Asunto(s)
Artemisia , Cardiotoxicidad , Extractos Vegetales , Animales , Ratas , Apoptosis , Artemisia/química , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Doxorrubicina/toxicidad , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Miocitos Cardíacos , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hemo-Oxigenasa 1/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo
12.
Phytother Res ; 37(12): 5854-5870, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37655750

RESUMEN

Doxorubicin (DOX) has aroused contradiction between its potent anti-tumor capacity and severe cardiotoxicity. Galangin (Gal) possesses antioxidant, anti-inflammatory, and antiapoptotic activities. We aimed to explore the role and underlying mechanisms of Gal on DOX-induced cardiotoxicity. Mice were intraperitoneally injected with DOX (3 mg/kg, every 2 days for 2 weeks) to generate cardiotoxicity model and Gal (15 mg/kg, 2 weeks) was co-administered via gavage daily. Nuclear factor erythroid 2-related factor 2 (Nrf2) specific inhibitor, ML385, was employed to explore the underlying mechanisms. Compared to DOX-insulted mice, Gal effectively improved cardiac dysfunction and ameliorated myocardial damage. DOX-induced increase of reactive oxygen species, malondialdehyde, and NADPH oxidase activity and downregulation of superoxide dismutase (SOD) activity were blunted by Gal. Gal also markedly blocked increase of IL-1ß, IL-6, and TNF-α in DOX-insulted heart. Mechanistically, Gal reversed DOX-induced downregulation of Nrf2, HO-1, and promoted nuclear translocation of Nrf2. ML385 markedly blunted the cardioprotective effects of Gal, as well as inhibitive effects on oxidative stress and inflammation. Gal ameliorates DOX-induced cardiotoxicity by suppressing oxidative stress and inflammation via activating Nrf2/HO-1 signaling pathway. Gal may serve as a promising cardioprotective agent for DOX-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Hemo-Oxigenasa 1 , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Apoptosis , Estrés Oxidativo , Doxorrubicina/efectos adversos , Transducción de Señal , Inflamación/metabolismo , Miocitos Cardíacos
13.
Int J Mol Sci ; 24(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37628916

RESUMEN

The clinical use of anthracycline Doxorubicin as an antineoplastic drug in cancer therapy is limited by cardiotoxic effects that can lead to congestive heart failure. Recent studies have shown several promising activities of different species of the genus Ferula belonging to the Apiaceae Family. Ferula communis is the main source of Ferutinin-a bioactive compound isolated from many species of Ferula-studied both in vitro and in vivo because of their different effects, such as estrogenic, antioxidant, anti-inflammatory, and also antiproliferative and cytotoxic activity, performed in a dose-dependent and cell-dependent way. However, the potential protective role of Ferutinin in myocardium impairment, caused by chemotherapeutic drugs, still represents an unexplored field. The aim of this study was to test the effects of Ferutinin rich-Ferula communis L. root extract (FcFE) at different concentrations on H9C2 cells. Moreover, we evaluated its antioxidant properties in cardiomyocytes in order to explore new potential therapeutic activities never examined before in other experimental works. FcFE, at a concentration of 0.25 µM, in the H9C2 line, significantly reduced the ROS production induced by H2O2 (50 µM and 250 µM) and traced the cell mortality of the H9C2 co-treated with Ferutinin 0.25 µM and Doxorubicin (0.5 µM and 1 µM) to control levels. These results showed that FcFE could protect against Doxorubicin-induced cardiotoxicity. Further molecular characterization of this natural compound may open the way for testing FcFE at low concentrations in vivo and in clinical studies as an adjuvant in cancer therapy in association with anthracyclines to prevent side effects on heart cells.


Asunto(s)
Ferula , Neoplasias , Antioxidantes/farmacología , Peróxido de Hidrógeno , Doxorrubicina/efectos adversos , Puntos de Control del Ciclo Celular , Antraciclinas , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Extractos Vegetales/farmacología
14.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3472-3484, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37474984

RESUMEN

Ginsenoside Rg_3, an active component of traditional Chinese medicine(TCM), was used as the substitute for cholesterol as the membrane material to prepare the ginsenoside Rg_3-based liposomes loaded with dihydroartemisinin and paclitaxel. The effect of the prepared drug-loading liposomes on triple-negative breast cancer in vitro was evaluated. Liposomes were prepared with the thin film hydration method, and the preparation process was optimized by single factor experiments. The physicochemical properties(e.g., particle size, Zeta potential, and stability) of the liposomes were characterized. The release behaviors of drugs in different media(pH 5.0 and pH 7.4) were evaluated. The antitumor activities of the liposomes were determined by CCK-8 on MDA-MB-231 and 4T1 cells. The cell scratch test was carried out to evaluate the effect of the liposomes on the migration of MDA-MB-231 and 4T1 cells. Further, the targeting ability of liposomes and the mechanism of lysosome escape were investigated. Finally, H9c2 cells were used to evaluate the potential cardiotoxicity of the preparation. The liposomes prepared were spheroid, with uniform particle size distribution, the ave-rage particle size of(107.81±0.01) nm, and the Zeta potential of(2.78±0.66) mV. The encapsulation efficiency of dihydroartemisinin and paclitaxel was 57.76%±1.38% and 99.66%±0.07%, respectively, and the total drug loading was 4.46%±0.71%. The accumulated release of dihydroartemisinin and paclitaxel from the liposomes at pH 5.0 was better than that at pH 7.4, and the liposomes could be stored at low temperature for seven days with good stability. Twenty-four hours after administration, the inhibition rates of the ginsenoside Rg_3-based liposomes loaded with dihydroartemisinin(70 µmol·L~(-1)) and paclitaxel on MDA-MB-231 and 4T1 cells were higher than those of the positive control(adriamycin) and free drugs(P<0.01). Compared with free drugs, liposomes inhibited the migration of MDA-MB-231 and 4T1 cells(P<0.05). Liposomes demonstrated active targeting and lysosome escape. In particular, liposomes showed lower toxicity to H9c2 cells than free drugs(P<0.05), which indicated that the preparation had the potential to reduce cardiotoxicity. The findings prove that ginsenoside Rg_3 characterized by the combination of drug and excipient is an ideal substitute for lipids in liposomes and promoted the development of innovative TCM drugs for treating cancer.


Asunto(s)
Ginsenósidos , Neoplasias de la Mama Triple Negativas , Humanos , Paclitaxel/farmacología , Liposomas/química , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Cardiotoxicidad/tratamiento farmacológico , Línea Celular Tumoral
15.
Molecules ; 28(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298779

RESUMEN

Doxorubicin (DOX) has been extensively utilized in cancer treatment. However, DOX administration has adverse effects, such as cardiac injury. This study intends to analyze the expression of TGF, cytochrome c, and apoptosis on the cardiac histology of rats induced with doxorubicin, since the prevalence of cardiotoxicity remains an unpreventable problem due to a lack of understanding of the mechanism underlying the cardiotoxicity result. Vernonia amygdalina ethanol extract (VAEE) was produced by soaking dried Vernonia amygdalina leaves in ethanol. Rats were randomly divided into seven groups: K- (only given doxorubicin 15 mg/kgbw), KN (water saline), P100, P200, P400, P4600, and P800 (DOX 15 mg/kgbw + 100, 200, 400, 600, and 800 mg/kgbw extract); at the end of the study, rats were scarified, and blood was taken directly from the heart; the heart was then removed. TGF, cytochrome c, and apoptosis were stained using immunohistochemistry, whereas SOD, MDA, and GR concentration were evaluated using an ELISA kit. In conclusion, ethanol extract might protect the cardiotoxicity produced by doxorubicin by significantly reducing the expression of TGF, cytochrome c, and apoptosis in P600 and P800 compared to untreated control K- (p < 0.001). These findings suggest that Vernonia amygdalina may protect cardiac rats by reducing the apoptosis, TGF, and cytochrome c expression while not producing the doxorubicinol as doxorubicin metabolite. In the future, Vernonia amygdalina could be used as herbal preventive therapy for patient administered doxorubicin to reduce the incidence of cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Vernonia , Ratas , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Citocromos c/metabolismo , Etanol/efectos adversos , Factor de Crecimiento Transformador beta/metabolismo , Doxorrubicina/efectos adversos , Apoptosis , Extractos Vegetales/farmacología , Estrés Oxidativo
16.
Animal Model Exp Med ; 6(3): 221-229, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272426

RESUMEN

BACKGROUND: Zataria multiflora and carvacrol showed various pharmacological properties including anti-inflammatory and anti-oxidant effects. However, up to now no studies have explored its potential benefits in ameliorating sepsis-induced aortic and cardiac injury. Thus, this study aimed to investigate the effects of Z. multiflora and carvacrol on nitric oxide (NO) and oxidative stress indicators in lipopolysaccharide (LPS)-induced aortic and cardiac injury. METHODS: Adult male Wistar rats were assigned to: Control, lipopolysaccharide (LPS) (1 mg/kg, intraperitoneal (i.p.)), and Z. multiflora hydro-ethanolic extract (ZME, 50-200 mg/kg, oral)- and carvacrol (25-100 mg/kg, oral)-treated groups. LPS was injected daily for 14 days. Treatment with ZME and carvacrol started 3 days before LPS administration and treatment continued during LPS administration. At the end of the study, the levels of malondialdehyde (MDA), NO, thiols, and antioxidant enzymes were evaluated. RESULTS: Our findings showed a significant reduction in the levels of superoxide dismutase (SOD), catalase (CAT), and thiols in the LPS group, which were restored by ZME and carvacrol. Furthermore, ZME and carvacrol decreased MDA and NO in cardiac and aortic tissues of LPS-injected rats. CONCLUSIONS: The results suggest protective effects of ZME and carvacrol on LPS-induced cardiovascular injury via improved redox hemostasis and attenuated NO production. However, additional studies are needed to elucidate the effects of ZME and its constituents on inflammatory responses mediated by LPS.


Asunto(s)
Óxido Nítrico , Sepsis , Ratas , Masculino , Animales , Óxido Nítrico/farmacología , Lipopolisacáridos/toxicidad , Cardiotoxicidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas Wistar , Estrés Oxidativo/fisiología , Antioxidantes/farmacología , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Compuestos de Sulfhidrilo/farmacología
17.
Phytomedicine ; 117: 154922, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37321078

RESUMEN

BACKGROUND: Doxorubicin (DOX) is a potent anticancer chemotherapeutic agent whose clinical application is substantially constrained by its cardiotoxicity. The pathophysiology of DOX-induced cardiotoxicity manifests as cardiomyocyte pyroptosis and inflammation. Amentoflavone (AMF) is a naturally occurring biflavone possessing anti-pyroptotic and anti-inflammatory properties. However, the mechanism through which AMF alleviates DOX-induced cardiotoxicity remains undetermined. PURPOSE: This study aimed at investigating the role of AMF in alleviating DOX-induced cardiotoxicity. STUDY DESIGN AND METHODS: To assess the in vivo effect of AMF, DOX was intraperitoneally administered into a mouse model to induce cardiotoxicity. To elucidate the underlying mechanisms, the activities of STING/NLRP3 were quantified using the NLRP3 agonist nigericin and the STING agonist amidobenzimidazole (ABZI). Primary cardiomyocytes isolated from neonatal Sprague-Dawley rats were treated with saline (vehicle) or DOX with or without AMF and/or ABZI. The echocardiogram, haemodynamics, cardiac injury markers, heart/body weight ratio, and pathological alterations were monitored; the STING/NLRP3 pathway-associated proteins were detected by western blot and cardiomyocyte pyroptosis was analysed by immunofluorescence staining of cleaved N-terminal GSDMD and scanning electron microscopy. Furthermore, we evaluated the potential of AMF in compromising the anticancer effects of DOX in human breast cancer cell lines. RESULTS: AMF substantially alleviated cardiac dysfunction and reduced heart/body weight ratio and myocardial damage in mice models of DOX-induced cardiotoxicity. AMF effectively suppressed DOX-mediated upregulation of IL-1ß, IL-18, TNF-α, and pyroptosis-related proteins, including NLRP3, cleaved caspase-1, and cleaved N-terminal GSDMD. The levels of apoptosis-related proteins, namely Bax, cleaved caspase-3, and BCL-2 were not affected. In addition, AMF inhibited STING phosphorylation in DOX-affected hearts. Intriguingly, the administration of nigericin or ABZI dampened the cardioprotective effects of AMF. The in vitro anti-pyroptotic effect of AMF was demonstrated in attenuating the DOX-induced reduction in cardiomyocyte cell viability, upregulation of cleaved N-terminal GSDMD, and pyroptotic morphology alteration at the microstructural level. AMF exhibited a synergistic effect with DOX to reduce the viability of human breast cancer cells. CONCLUSION: AMF alleviates DOX-induced cardiotoxicity by suppressing cardiomyocyte pyroptosis and inflammation via inhibition of the STING/NLRP3 signalling pathway, thereby validating its efficacy as a cardioprotective agent.


Asunto(s)
Neoplasias de la Mama , Miocitos Cardíacos , Ratas , Ratones , Animales , Humanos , Femenino , Piroptosis , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nigericina/efectos adversos , Nigericina/metabolismo , Ratas Sprague-Dawley , Doxorrubicina/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Inflamación/metabolismo , Neoplasias de la Mama/patología , Peso Corporal
18.
Altern Ther Health Med ; 29(5): 358-363, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37171952

RESUMEN

Objective: The objective of this study was to describe the clinical characteristics of elderly patients diagnosed with diffuse large B-cell lymphoma (DLBCL) and to identify the risk factors associated with anthracycline-related cardiotoxicity in this patient population. Methods: A retrospective analysis was conducted on a cohort of 170 elderly patients (≥65 years old) with DLBCL who were treated at our hospital between January 2015 and December 2020. Clinical characteristics and laboratory parameters were collected and analyzed. All patients were followed up until June 2021 to record survival, short-term efficacy, recurrence, and anthracycline-related cardiotoxicity in those who received chemotherapy. Results: Among the 170 elderly patients with DLBCL, the median progression-free survival (PFS) and median overall survival (OS) were 47 and 91 months, respectively. The 3-year PFS and OS rates were 54.1% and 70.1%, while the 5-year PFS and OS rates were 47.7% and 64.1%, respectively. The objective remission rate (ORR) was 78.83%, with a complete remission rate of 44.12% and a partial remission rate of 34.71%. Out of 143 patients who received anthracycline treatment, 46 patients experienced cardiotoxicity. Multivariate logistic regression analysis indicated that non-liposomal anthracycline use, no use of dextrexacin, and diabetes mellitus with complications were significant risk factors affecting cardiotoxicity (P < .05). Conclusions: The study showed that elderly patients with DLBCL had a high incidence of cardiotoxicity when treated with anthracycline. The results emphasize the importance of considering clinical characteristics and auxiliary examinations to prevent cardiotoxicity associated with anthracycline use.


Asunto(s)
Antraciclinas , Linfoma de Células B Grandes Difuso , Humanos , Anciano , Antraciclinas/efectos adversos , Estudios Retrospectivos , Cardiotoxicidad/etiología , Cardiotoxicidad/tratamiento farmacológico , Antibióticos Antineoplásicos/uso terapéutico , Factores de Riesgo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología
19.
Phytother Res ; 37(9): 3964-3981, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37186468

RESUMEN

Doxorubicin (DOX), an effective chemotherapeutic drug, has been used to treat various cancers; however, its cardiotoxic side effects restrict its therapeutic efficacy. Fisetin, a flavonoid phytoestrogen derived from a range of fruits and vegetables, has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity; however, the underlying mechanisms remain unclear. This study investigated fisetin's cardioprotective role and mechanism against DOX-induced cardiotoxicity in H9c2 cardiomyoblasts and ovariectomized (OVX) rat models. MTT assay revealed that fisetin treatment noticeably rescued DOX-induced cell death in a dose-dependent manner. Moreover, western blotting and TUNEL-DAPI staining showed that fisetin significantly attenuated DOX-induced cardiotoxicity in vitro and in vivo by inhibiting the insulin-like growth factor II receptor (IGF-IIR) apoptotic pathway through estrogen receptor (ER)-α/-ß activation. The echocardiography, biochemical assay, and H&E staining results demonstrated that fisetin reduced DOX-induced cardiotoxicity by alleviating cardiac dysfunction, myocardial injury, oxidative stress, and histopathological damage. These findings imply that fisetin has a significant therapeutic potential against DOX-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Factor II del Crecimiento Similar a la Insulina , Ratas , Animales , Cardiotoxicidad/tratamiento farmacológico , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/farmacología , Factor II del Crecimiento Similar a la Insulina/uso terapéutico , Receptores de Estrógenos/metabolismo , Doxorrubicina/efectos adversos , Estrés Oxidativo , Miocitos Cardíacos , Apoptosis
20.
Integr Cancer Ther ; 22: 15347354231164753, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37057304

RESUMEN

INTRODUCTION: Traditional Chinese medicine (TCM) injections, as a relatively safe and low-cost treatment, have been widely used in the prevention and treatment of anthracyclines-induced cardiotoxicity in China. However, the quality of the relevant systematic reviews and meta-analyses published in recent years is uneven, so that the effectiveness and safety of TCM injections in preventing and treating anthracyclines-induced cardiotoxicity remain to be discussed. A systematic overview is therefore needed to provide a more advanced evidentiary reference for clinical practice. METHODS: Eight Chinese and English databases were searched by computer to screen the meta-analyses/systematic reviews on the efficacy of traditional Chinese medicine injections for the prevention and treatment of anthracyclines-induced cardiotoxicity from the database establishment to October 2022. The methodological quality and evidence quality of outcome indicators included in the study were evaluated by AMSTAR 2 tool, PRISMA statement and GRADE classification. RESULTS: A total of 7 articles were included in the study. The quality evaluation of AMSTAR 2 showed that 7 studies were extremely low-level; PRISMA stated that the evaluation results showed that the reports of 7 studies were of intermediate quality; The GRADE rating indicated that most of the evidence was of low quality. CONCLUSION: The methodological quality and evidence quality of meta-analysis/system evaluation concerning the prevention and treatment of anthracyclines-induced cardiotoxicity by Chinese medicine are currently low, and the effectiveness of Chinese medicine in the treatment of anthracyclines-induced cardiotoxicity needs more high-quality evidence-based evidence.


Asunto(s)
Antraciclinas , Cardiotoxicidad , Medicamentos Herbarios Chinos , Humanos , Antraciclinas/efectos adversos , Antibióticos Antineoplásicos , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA