Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35772309

RESUMEN

In addition to the long-established role in erythropoiesis, erythropoietin (Epo) has protective functions in a variety of tissues, including the heart. This is the most affected organ in chronic Chagas disease, caused by the protozoan Trypanosoma cruzi. Despite seven million people being infected with T. cruzi worldwide, there is no effective treatment preventing the disease progression to the chronic phase when the pathological involvement of the heart is often observed. Chronic chagasic cardiomyopathy has a wide variety of manifestations, like left ventricular systolic dysfunction, dilated cardiomyopathy, and heart failure. Since Epo may help maintain cardiac function by reducing myocardial necrosis, inflammation, and fibrosis, this study aimed to evaluate whether the Epo has positive effects on experimental Chagas disease. For that, we assessed the earlier (acute phase) and also the later (chronic phase) use of Epo in infected C57BL/6 mice. Blood cell count, biochemical parameters, parasitic load, and echocardiography data were evaluated. In addition, histopathological analysis was carried out. Our data showed that Epo had no trypanocide effect nor did it modify the production of anti-T. cruzi antibodies. Epo-treated groups exhibited parasitic burden much lower in the heart compared to blood. No pattern of hematological changes was observed combining infection with treatment with Epo. Chronic Epo administration reduced CK-MB serum activity from d0 to d180, irrespectively of T. cruzi infection. Likewise, echocardiography and histological results indicate that Epo treatment is more effective in the chronic phase of experimental Chagas disease. Since treatment is one of the greatest challenges of Chagas disease, alternative therapies should be investigated, including Epo combined with benznidazole.


Asunto(s)
Fármacos Cardiovasculares , Cardiomiopatía Chagásica , Eritropoyetina , Animales , Fármacos Cardiovasculares/uso terapéutico , Cardiomiopatía Chagásica/tratamiento farmacológico , Cardiomiopatía Chagásica/parasitología , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Modelos Animales de Enfermedad , Eritropoyetina/uso terapéutico , Humanos , Ratones , Ratones Endogámicos C57BL , Carga de Parásitos , Trypanosoma cruzi
2.
Cutan Ocul Toxicol ; 41(1): 18-24, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35100933

RESUMEN

PURPOSE: In the treatment of cutaneous leishmaniasis (CL), developing drug resistance, existing toxic effects of drugs and failure respond to treatment cause the need to try different treatment methods. We investigated the effect of gold-conjugated macrophage-specific antibody on amastigotes under infra-red light for the treatment of CL. METHODS: Female BALB/c (4-8 weeks old, 20 ± 5 g weight) mice were used in the study. The L. major strain was inoculated on the soles of mice in amastigote form and subpassed. Nanogold (Au), Au + macrophage-specific antibody (MSA) modification and near infra-red (NIR) (5 seconds) were applied to mice groups that developed cutaneous leishmaniasis on their soles. On the 5th and 10th days of the treatment, the lesions were examined clinically and pathologically. RESULTS: When the erythema values were examined, the highest decrease was calculated in the Au + MSA + NIR group in the measurements made on the 10th day (p < 0.014). The best improvement in 10th day measurements is in the NIR and Au + MSA + NIR groups when area values were examined (p = 0.011, p = 0.001). There was a statistically significant difference between the groups in terms of parasite load (PL) (p < 0.005) in pathological evaluation. According to PL grouping, the best result is NIR (p = 0.002). When both main titles (clinical and pathological) are examined, the Au + MSA + NIR group is thought to have an optimal therapeutical feature. CONCLUSIONS: Au + MSA + NIR combination could be a new treatment approach for CL treatment.


Asunto(s)
Leishmania major , Leishmaniasis Cutánea , Animales , Femenino , Leishmaniasis Cutánea/tratamiento farmacológico , Macrófagos , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos
3.
J Photochem Photobiol B ; 221: 112236, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34090038

RESUMEN

Cutaneous leishmaniasis (CL) is a neglected disease that represents a serious global public health concern. We performed a systematic review with meta-analysis targeting the use of light-based therapies on CL in preclinical studies since they are essential to identify the benefits, challenges, and limitations of proposing new technologies to fight CL. We searched Pubmed and Web of Science to include original preclinical researches in English that used light-based technologies to fight CL. Inclusion criteria encompassed any animal model for CL induction, an untreated infected group as the comparator, reliable and consistent methodology to develop and treat CL, focus on an antimicrobial therapeutic approach, and data for lesion size and/or parasite load in the infection site. We identified eight eligible articles, and all of them used photodynamic therapy (PDT). For the meta-analysis, three studies were included regarding the parasite load in the infection site and four comprised the lesion size. No overall statistically significant differences were observed between untreated control and PDT groups for parasite load. Differently, PDT significantly reduced the lesion size regardless of the protocol used to treat CL (in mm, SMD: -1.90; 95% CI: -3.74 to -0.07, p = 0.04). This finding is particularly encouraging since CL promotes disfiguring lesions that profoundly affect the quality of life of patients. We conclude that PDT is a new promising technology able to be topically used against CL if applied in more than one session, making it a promising ally for the management of CL.


Asunto(s)
Leishmaniasis Cutánea/tratamiento farmacológico , Luz , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Bases de Datos Factuales , Modelos Animales de Enfermedad , Carga de Parásitos , Fotoquimioterapia
4.
J Med Microbiol ; 70(6)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34115583

RESUMEN

Introduction. Leishmaniasis is a neglected tropical and subtropical disease caused by over 20 protozoan species.Hypothesis. Treatment of this complex disease with traditional synthetic drugs is a major challenge worldwide. Natural constituents are unique candidates for future therapeutic development.Aim. This study aimed to assess the in vivo anti-leishmanial effect of the Gossypium hirsutum extract, and its fractions compared to the standard drug (Glucantime, MA) in a murine model and explore the mechanism of action.Methodology. Footpads of BALB/c mice were infected with stationary phase promastigotes and treated topically and intraperitoneally with G. hirsutum extract, its fractions, or Glucantime, 4 weeks post-infection. The extract and fractions were prepared using the Soxhlet apparatus with chloroform followed by the column procedure.Results. The crude extract significantly decreased the footpad parasite load and lesion size compared to the untreated control group (P<0.05), as revealed by dilution assay, quantitative real-time PCR, and histopathological analyses. The primary mode of action involved an immunomodulatory role towards the Th1 response in the up-regulation of IFN-γ and IL-12 and the suppression of IL-10 gene expression profiling against cutaneous leishmaniasis caused by Leishmania major.Conclusion. This finding suggests that the extract possesses multiple combinatory effects of diverse bioactive phytochemical compositions that exert its mechanisms of action through agonistic-synergistic interactions. The topical extract formulation could be a suitable and unique candidate for future investigation and pharmacological development. Further studies are crucial to evaluate the therapeutic potentials of the extract alone and in combination with conventional drugs using clinical settings.


Asunto(s)
Antiprotozoarios/uso terapéutico , Gossypium , Leishmania major/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Fitoterapia , Extractos Vegetales/uso terapéutico , Administración Tópica , Animales , Antiprotozoarios/farmacología , Femenino , Inyecciones Intraperitoneales , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-10/genética , Subunidad p40 de la Interleucina-12/genética , Subunidad p40 de la Interleucina-12/metabolismo , Leishmania major/fisiología , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patología , Leishmaniasis Cutánea/fisiopatología , Ganglios Linfáticos/patología , Antimoniato de Meglumina/administración & dosificación , Antimoniato de Meglumina/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Bazo/parasitología , Bazo/patología , Células TH1/inmunología , Transcriptoma
5.
Med Microbiol Immunol ; 210(2-3): 133-147, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33870453

RESUMEN

Treatment against visceral leishmaniasis (VL) is mainly hampered by drug toxicity, long treatment regimens and/or high costs. Thus, the identification of novel and low-cost antileishmanial agents is urgent. Acarbose (ACA) is a specific inhibitor of glucosidase-like proteins, which has been used for treating diabetes. In the present study, we show that this molecule also presents in vitro and in vivo specific antileishmanial activity against Leishmania infantum. Results showed an in vitro direct action against L. infantum promastigotes and amastigotes, and low toxicity to mammalian cells. In addition, in vivo experiments performed using free ACA or incorporated in a Pluronic® F127-based polymeric micelle system called ACA/Mic proved effective for the treatment of L. infantum-infected BALB/c mice. Treated animals presented significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes when compared to the controls, as well as the development of antileishmanial Th1-type humoral and cellular responses based on high levels of IFN-γ, IL-12, TNF-α, GM-CSF, nitrite and IgG2a isotype antibodies. In addition, ACA or ACA-treated animals suffered from low organ toxicity. Treatment with ACA/Mic outperformed treatments using either Miltefosine or free ACA based on parasitological and immunological evaluations performed one and 15 days post-therapy. In conclusion, data suggest that the ACA/Mic is a potential therapeutic agent against L. infantum and merits further consideration for VL treatment.


Asunto(s)
Acarbosa/farmacología , Acarbosa/uso terapéutico , Inmunidad , Leishmania infantum/efectos de los fármacos , Leishmania infantum/inmunología , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/inmunología , Animales , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Reposicionamiento de Medicamentos , Femenino , Leishmaniasis Visceral/parasitología , Ratones , Ratones Endogámicos BALB C , Micelas , Carga de Parásitos , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Resultado del Tratamiento
6.
Molecules ; 26(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919120

RESUMEN

Rare carnivorous plants representing the genus Sarracenia are perceived as very interesting to scientists involved in various fields of botany, ethnobotany, entomology, phytochemistry and others. Such high interest is caused mainly by the unique capacity of Sarracenia spp. to attract insects. Therefore, an attempt to develop a protocol for micropropagation of the Sarracenia alata (Alph.Wood) Alph.Wood, commonly named yellow trumpets, and to identify the specific chemical composition of volatile compounds of this plant in vitro and ex vivo was undertaken. Thus, the chemical volatile compounds excreted by the studied plant to attract insects were recognized with the application of the headspace solid-phase microextraction (HS-SPME) coupled with the GC-MS technique. As the major volatile compounds (Z)-3-hexen-1-ol (16.48% ± 0.31), (E)-3-hexen-1-ol acetate (19.99% ± 0.01) and ß-caryophyllene (11.30% ± 0.27) were identified. Further, both the chemical assumed to be responsible for attracting insects, i.e., pyridine (3.10% ± 0.07), and whole plants were used in in vivo bioassays with two insect species, namely Drosophila hydei and Acyrthosiphon pisum. The obtained results bring a new perspective on the possibilities of cultivating rare carnivorous plants in vitro since they are regarded as a valuable source of bioactive volatile compounds, as including ones with repellent or attractant activity.


Asunto(s)
Interacciones Huésped-Parásitos , Insectos , Sarraceniaceae/química , Sarraceniaceae/parasitología , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Madera/química , Animales , Bioensayo , Carga de Parásitos , Desarrollo de la Planta , Brotes de la Planta/química , Brotes de la Planta/parasitología
7.
Sci Rep ; 11(1): 6941, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767260

RESUMEN

The use of medicinal plants in the treatment of malaria is gaining global attention due to their efficacy and cost effectiveness. This study evaluated the bioactivity-guided antiplasmodial efficacy and immunomodulatory effects of solvent fractions of Diospyros mespiliformis in mice infected with a susceptible strain of Plasmodium berghei (NK 65). The crude methanol extract of the stem of D. mespiliformis (DM) was partitioned between n-hexane, dichloromethane, ethyl acetate and methanol. Male Swiss mice (20 ± 2 g) infected with P. berghei were grouped and treated with vehicle (10 mL/kg, control), Artemether lumefantrine (10 mg/kg), 100, 200 and 400 mg/kg of n-hexane, dichloromethane, ethyl acetate and methanol fractions of D. mespiliformis for seven days. Blood was obtained for heme and hemozoin contents while serum was obtained for inflammatory cytokines and immunoglobulins G and M assessments. Liver mitochondria were isolated for mitochondrial permeability transition (mPT), mitochondrial F1F0 ATPase (mATPase) and lipid peroxidation (mLPO) assays. The GC-MS was used to identify the compounds present in the most potent fraction. The dichloromethane fraction had the highest parasite clearance and improved hematological indices relative to the drug control. The heme values increased, while the hemozoin content significantly (P < 0.05) decreased compared with the drug control. The highest dose of HF and MF opened the mPT pore while the reversal effects of DF on mPT, mATPase and mLPO were dose-dependent. The levels of IgG, IgM and TNFα in the DF group were significantly higher than the drug control, while the IL-1ß and IL-6 values did not vary linearly with the dose. Lupeol and Stigmastan-3,5-diene were the most abundant phytochemicals in the DF. The outcome of this study showed that the DF has immunomodulatory effects in infected mice, reduced proliferation of the malaria parasite and thus protect liver cells.


Asunto(s)
Diospyros , Malaria/tratamiento farmacológico , Mitocondrias Hepáticas/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Animales , Evaluación Preclínica de Medicamentos , Masculino , Ratones , Carga de Parásitos , Fitoterapia , Extractos Vegetales/farmacología , Plantas Medicinales , Plasmodium berghei
8.
PLoS Negl Trop Dis ; 15(3): e0009013, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33651812

RESUMEN

BACKGROUND: There is a continued need to develop effective and safe treatments for visceral leishmaniasis (VL). Preclinical studies on pharmacokinetics and pharmacodynamics of anti-infective agents, such as anti-bacterials and anti-fungals, have provided valuable information in the development and dosing of these agents. The aim of this study was to characterise the pharmacokinetic and pharmacodynamic properties of the anti-leishmanial drugs AmBisome and miltefosine in a preclinical disease model of VL. METHODOLOGY / PRINCIPAL FINDINGS: BALB/c mice were infected with L. donovani (MHOM/ET/67/HU3) amastigotes. Groups of mice were treated with miltefosine (orally, multi-dose regimen) or AmBisome (intravenously, single dose regimen) or left untreated as control groups. At set time points groups of mice were killed and plasma, livers and spleens harvested. For pharmacodynamics the hepatic parasite burden was determined microscopically from tissue impression smears. For pharmacokinetics drug concentrations were measured in plasma and whole tissue homogenates by LC-MS. Unbound drug concentrations were determined by rapid equilibrium dialysis. Doses exerting maximum anti-leishmanial effects were 40 mg/kg for AmBisome and 150 mg/kg (cumulatively) for miltefosine. AmBisome displayed a wider therapeutic range than miltefosine. Dose fractionation at a total dose of 2.5 mg/kg pointed towards concentration-dependent anti-leishmanial activity of AmBisome, favouring the administration of large doses infrequently. Protein binding was >99% for miltefosine and amphotericin B in plasma and tissue homogenates. CONCLUSION / SIGNIFICANCE: Using a PK/PD approach we propose optimal dosing strategies for AmBisome. Additionally, we describe pharmacokinetic and pharmacodynamic properties of miltefosine and compare our findings in a preclinical disease model to available knowledge from studies in humans. This approach also presents a strategy for improved use of animal models in the drug development process for VL.


Asunto(s)
Anfotericina B/farmacocinética , Antiprotozoarios/farmacocinética , Leishmaniasis Visceral/tratamiento farmacológico , Fosforilcolina/análogos & derivados , Anfotericina B/uso terapéutico , Animales , Antiprotozoarios/uso terapéutico , Quimioterapia Combinada , Proteínas de Homeodominio/genética , Humanos , Hígado/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Carga de Parásitos , Fosforilcolina/farmacocinética , Fosforilcolina/uso terapéutico , Unión Proteica/fisiología
9.
BMC Complement Med Ther ; 21(1): 77, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632196

RESUMEN

BACKGROUND: Trypanosoma cruzi is the etiological agent of Chagas disease (CD) or American trypanosomiasis, an important public health problem in Latin America. Benznidazole (BZ), a drug available for its treatment, has limited efficacy and significant side effects. Essential oils (EOs) have demonstrated trypanocidal activity and may constitute a therapeutic alternative. Our aim was to evaluate the efficacy of the EOs of clove (CEO - Syzygium aromaticum) and ginger (GEO - Zingiber officinale), administered alone and in combination with BZ, in Swiss mice infected with T. cruzi. METHODS: The animals were inoculated with 10,000 blood trypomastigotes of the Y strain of T. cruzi II by gavage and divided into four groups (n = 12 to 15): 1) untreated control (NT); 2) treated with BZ; 3) treated with CEO or GEO; and 4) treated with BZ + CEO or GEO. The treatments consisted of oral administration of 100 mg/kg/day, from the 5th day after parasite inoculation, for 20 consecutive days. All groups were submitted to fresh blood examination (FBE), blood culture (BC), conventional PCR (cPCR) and real-time PCR (qPCR), before and after immunosuppression with cyclophosphamide. RESULTS: Clove and ginger EOs, administered alone and in combination with BZ, promoted suppression of parasitemia (p < 0.0001), except for the animals treated with CEO alone, which presented a parasitemia curve similar to NT animals. However, there was a decrease in the BC positivity rate (p < 0.05) and parasite load (< 0.0001) in this group. Treatment with GEO alone, on the other hand, besides promoting a decrease in the BC positivity rate (p < 0.05) and parasite load (p < 0.01), this EO also resulted in a decrease in mortality rate (p < 0.05) of treated mice. CONCLUSIONS: Decreased parasite load, as detected by qPCR, was observed in all treatment groups (BZ, CEO, GEO and BZ + EOs), demonstrating benefits even in the absence of parasitological cure, thus opening perspectives for further studies.


Asunto(s)
Antiprotozoarios/administración & dosificación , Nitroimidazoles/administración & dosificación , Aceites Volátiles/administración & dosificación , Aceites de Plantas/administración & dosificación , Syzygium/química , Trypanosoma cruzi/efectos de los fármacos , Zingiber officinale/química , Animales , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Quimioterapia Combinada , Humanos , Masculino , Ratones , Carga de Parásitos , Trypanosoma cruzi/genética , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/fisiología
10.
J Ethnopharmacol ; 267: 113449, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33129949

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria is a global public health burden due to large number of annual infections and casualties caused by its hematological complications. The bark of Annickia polycarpa is an effective anti-malaria agent in African traditional medicine. However, there is no standardization parameters for A. polycarpa. The anti-malaria properties of its leaf are also not known. AIM OF THE STUDY: To standardize the ethanol leaf extract of A. polycarpa (APLE) and investigate its anti-malaria properties and the effect of its treatment on hematological indices in Plasmodium berghei infected mice in the Rane's test. MATERIALS AND METHODS: Malaria was induced by inoculating female ICR mice with 1.0 × 107P. berghei-infected RBCs in 0.2 mL (i.p.) of blood. Treatment was commenced 3 days later with APLE 50, 200, 400 mg/kg p.o., Quinine 30 mg/kg i.m. (Standard drug) or sterile water (Negative control) once daily per group for 4 successive days. Anti-malarial activity and gross malaria indices such as hyperparasitemia, mean change in body weight and mean survival time (MST) were determined for each group. Changes in white blood cells (WBCs), red blood cells (RBCs), platelets (PLT) counts, hemoglobin (HGB) concentration, hematocrit (HCT) and mean corpuscular volume (MCV) were also measured in the healthy mice before infection as baseline and on day 3 and 8 after inoculation using complete blood count. Standardization was achieved by UHPLC-MS chemical fingerprint analysis and quantitative phytochemical tests. RESULTS: APLE, standardized to its total alkaloids, phenolics and saponin contents, produced significant (P < 0.05) dose-dependent clearance of mean hyperparasitemia of 22.78 ± 0.93% with the minimum parasitemia level of 2.01 ± 0.25% achieved at 400 mg/kg p.o. on day 8. Quinine 30 mg/kg i.m. achieved a minimum parasitemia level of 6.15 ± 0.92%. Moreover, APLE (50-400 mg/kg p.o.) evoked very significant anti-malaria activity of 89.22-95.50%. Anti-malaria activity of Quinine 30 mg/kg i.m. was 86.22%. APLE also inverse dose-dependently promotes weight gain with the effect being significant (P < 0.05) at 50 mg/kg p.o. Moreover, APLE dose-dependently increased the MST of malaria infested mice with 100% survival at 400 mg/kg p.o. Quinine 30 mg/kg i.m. also produce 100% survival rate but did not promote (P > 0.05) weight gain. Hematological studies revealed the development of leukocytopenia, erythrocytosis, microcytic anemia and thrombocytopenia in the malaria infected mice which were reverted with the treatment of APLE 50-400 mg/kg p.o. or Quinine 30 mg/kg i.m. but persisted in the negative control. The UHPLC-MS fingerprint analysis of APLE led to identification of one oxoaporphine and two aporphine alkaloids (1-3). Alkaloids 1 and 3 are being reported in this plant for the first time. CONCLUSION: These results indicate that APLE possessed significant anti-malaria, immunomodulatory, erythropoietic and hematinic actions against malaria infection. APLE also has the ability to revoke deleterious physiological alteration produced by malaria and hence, promote clinical cure. These properties of APLE are due to its constituents especially, aporphine and oxoaporphine alkaloids.


Asunto(s)
Annonaceae , Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Extractos Vegetales/farmacología , Hojas de la Planta , Plasmodium berghei/efectos de los fármacos , Anemia/sangre , Anemia/tratamiento farmacológico , Anemia/parasitología , Animales , Annonaceae/química , Antimaláricos/aislamiento & purificación , Aporfinas/farmacología , Modelos Animales de Enfermedad , Etanol/química , Femenino , Leucopenia/sangre , Leucopenia/tratamiento farmacológico , Leucopenia/parasitología , Malaria/sangre , Malaria/parasitología , Ratones Endogámicos ICR , Carga de Parásitos , Parasitemia/sangre , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Plasmodium berghei/crecimiento & desarrollo , Policitemia/sangre , Policitemia/tratamiento farmacológico , Policitemia/parasitología , Solventes/química , Trombocitopenia/sangre , Trombocitopenia/tratamiento farmacológico , Trombocitopenia/parasitología
11.
Biomed Pharmacother ; 134: 111109, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33341050

RESUMEN

Cutaneous leishmaniasis (CL) is a neglected tropical skin disease caused by the protozoan genus Leishmania. The treatment is restricted to a handful number of drugs that exhibit toxic effects, limited efficacy, and drug resistance. Additionally, developing an effective topical treatment is still an enormous unmet medical challenge. Natural oils, e.g. the oleoresin from P. emarginatus fruits (SO), contain various bioactive molecules, especially terpenoid compounds such as diterpenes and sesquiterpenes. However, its use in topical formulations can be impaired due to the natural barrier of the skin for low water solubility compounds. Nanoemulsions (NE) are drug delivery systems able to increase penetration of lipophilic compounds throughout the skin, improving their topical effect. In this context, we propose the use of SO-containing NE (SO-NE) for CL treatment. The SO-NE was produced by a low energy method and presented suitable physicochemical characteristic: average diameter and polydispersity index lower than 180 nm and 0.2, respectively. Leishmania (Leishmania) amazonensis-infected BALB/c mice were given topical doses of SO or SO-NE. The topical use of a combination of SO-NE and intraperitoneal meglumine antimoniate reduced lesion size by 41 % and tissue regeneration was proven by histopathological analyses. In addition, a reduction in the parasitic load and decreased in the level of IFN-γ in the lesion may be associated, as well as a lower level of the cytokine IL-10 may be associated with a less intense inflammatory process. The present study suggests that SO-NE in combination meglumine antimoniate represents a promising alternative for the topical treatment of CL caused by L. (L.) amazonensis.


Asunto(s)
Fabaceae , Leishmania mexicana/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Tripanocidas/farmacología , Administración Tópica , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Composición de Medicamentos , Quimioterapia Combinada , Emulsiones , Fabaceae/química , Femenino , Interacciones Huésped-Parásitos , Leishmania mexicana/crecimiento & desarrollo , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patología , Antimoniato de Meglumina/farmacología , Mesocricetus , Ratones Endogámicos BALB C , Nanopartículas , Carga de Parásitos , Extractos Vegetales/aislamiento & purificación , Piel/parasitología , Piel/patología , Tripanocidas/aislamiento & purificación
12.
Front Immunol ; 11: 1725, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193290

RESUMEN

Background and Objectives: The live non-pathogenic Leishmania tarantolae has recently provided a promising approach as an effective vaccine candidate against experimental leishmaniasis (ILL). Here, we evaluated the immunoprotective potential of the live Iranian Lizard Leishmania mixed with CpG adjuvant against L. major infection in BALB/c mice. Methods: Four groups of female BALB/c mice were included in the study. The first and second groups received PBS and CpG, respectively. The immunized groups received 2 × 105 ILL promastigotes and the CpG-mixed ILL (ILL+CpG). Injections were performed subcutaneously in the right footpad. Three weeks later, all mice were challenged with 2 × 105 metacyclic promastigotes of Leishmania majorEGFP ; inoculation was done in the left footpad. The measurement of footpad swelling and in vivo fluorescent imaging were used to evaluate disease progress during infection course. Eight weeks after challenge, all mice were sacrificed and the cytokines levels (IFN-γ, IL-4, and IL-10) and sera antibodies concentrations (IgG2a and IgG1) using ELISA assay, nitric oxide production using Griess assay, and arginase activity in cultured splenocytes, were measured. In addition, direct fluorescent microscopy analysis and qPCR assay were used to quantify the splenic parasite burden. Result: The results showed that mice immunized with ILL+CpG were protected against the development of the dermal lesion. Moreover, they showed a significant reduction in the parasite load, in comparison to the control groups. The observed protection was associated with higher production of IFN-γ, as well as a reduction in IL-4 level. Additionally, the results demonstrated that arginase activity was decreased in ILL+CpG group compared to other groups. Conclusion: Immunization using ILL+CpG induces a protective immunity; indicating that ILL with an appropriate adjuvant would be a suitable choice for vaccination against leishmaniasis.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Leishmania major/inmunología , Vacunas contra la Leishmaniasis/farmacología , Leishmaniasis Cutánea/prevención & control , Lagartos/parasitología , Oligodesoxirribonucleótidos/farmacología , Piel/efectos de los fármacos , Vacunas Vivas no Atenuadas/farmacología , Animales , Anticuerpos Antiprotozoarios/sangre , Arginasa/metabolismo , Células Cultivadas , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Inmunización , Inmunogenicidad Vacunal , Leishmaniasis Cutánea/sangre , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/parasitología , Ratones Endogámicos BALB C , Carga de Parásitos , Piel/inmunología , Piel/parasitología , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/metabolismo , Bazo/parasitología , Vacunas Vivas no Atenuadas/inmunología
13.
Parasitol Res ; 119(12): 4243-4253, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33048207

RESUMEN

The current treatment of leishmaniasis presents some problems, such as cell toxicity, parenteral route, and time of treatment. Ozone emerges as an option to accelerate the standard treatment due to the immunomodulatory, antioxidant, and wound healing activity reported in the literature. This work aimed to evaluate the efficacy of aqueous ozone as an adjuvant to the standard treatment of cutaneous lesions caused by Leishmania amazonensis in an experimental model. For in vivo experiments, mice were randomly distributed in 6 groups, which were infected with L. amazonensis and treated in five different schedules using the standard treatment with Glucantime® with or without aqueous ozone. After the last day of treatment, the animals were euthanized and were analyzed: the thickness of lesions; collagen deposition, the parasitic burden of the lesions; blood leukocyte number; NO; and cytokine dosages and arginase activity from peritoneal macrophages. All treated groups showed a decrease in the lesion, but with a significative deposition of collagen in lesions with local ozone treatment. The parasite burden showed that ozone enhanced the leishmanicidal activity of the reference drug. The reduction of NO production and blood leukocyte count and increases in the arginase activity showed an immunomodulatory activity of ozone in the treated animals. Thus, ozone therapy has been shown to work as an adjuvant in the treatment of Leishmania lesions, enhancing leishmanicidal and wound healing activity of standard treatment.


Asunto(s)
Leishmaniasis/tratamiento farmacológico , Oxidantes Fotoquímicos/administración & dosificación , Ozono/administración & dosificación , Animales , Femenino , Inmunomodulación , Leishmania mexicana/efectos de los fármacos , Leishmaniasis/inmunología , Leishmaniasis/parasitología , Leishmaniasis/patología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Antimoniato de Meglumina/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Resultado del Tratamiento , Cicatrización de Heridas/efectos de los fármacos
14.
Homeopathy ; 109(4): 213-223, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32823292

RESUMEN

BACKGROUND: Leishmaniasis is one of several neglected tropical diseases that warrant serious attention. A disease of socio-economically poor people, it demands safer and cheaper drugs that help to overcome the limitations faced by the existing anti-leishmanials. Complementary or traditional medicines might be a good option, with an added advantage that resistance may not develop against these drugs. Thus, the present investigation was performed to evaluate the anti-leishmanial efficacy of an ultra-diluted homeopathic medicine (Iodium 30c) in experimental visceral leishmaniasis (VL). METHODS: Compliant with strict ethical standards in animal experimentation, the study was performed in-vivo in inbred BALB/c mice which were injected intravenously with 1 × 107 promastigotes of Leishmania donovani before (therapeutic) or after (prophylactic) treatment with Iodium 30c for 30 days. In other groups of mice (n = 6 per group), amphotericin B served as positive control, infected animals as the disease control, while the naïve controls included normal animals; animals receiving only Iodium 30c or Alcohol 30c served as sham controls. The anti-leishmanial efficacy was assessed by determining the hepatic parasite load and analysing percentages of CD4+ and CD8+ T cells. Biochemical analysis and histological studies were performed to check any toxicities. RESULTS: Iodium-treated animals showed a significantly reduced parasite load (to 1503 ± 39 Leishman Donovan Units, LDU) as compared with the infected controls (4489 ± 256 LDU) (p < 0.05): thus, the mean therapeutic efficacy of Iodium 30c was 66.5%. In addition, the population of CD4+ and CD8+ T cells was significantly increased (p < 0.05) after treatment. No toxicity was observed, as evidenced from biochemical and histopathological studies of the liver and kidneys. Efficacy of Iodium 30c prophylaxis was 58.3%, while the therapeutic efficacy of amphotericin B was 85.9%. CONCLUSION: This original study has shown that Iodium 30c had significant impact in controlling parasite replication in experimental VL, though the effect was less than that using standard pharmaceutical treatment.


Asunto(s)
Homeopatía/métodos , Yodatos/farmacología , Leishmaniasis Visceral/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , India , Leishmania donovani/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos
15.
J Ethnopharmacol ; 259: 112981, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32442591

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Leishmaniasis is a neglected disease that affects millions of people around the world. Parasite resistance and the toxicity to the current treatments lead to the search for new effective molecules. Plants are widely used in traditional and indigenous medicine to treat different diseases. The oleoresin of the genus Protium, which is rich in volatile compounds active against different microorganisms, is among these plants. AIM: The aim of this study was to evaluate the leishmanicidal potential of Protium altsonii (PaEO) and P. hebetatum (PhEO) (Burseraceae) oleoresins, as well as of three representative monoterpenes in their constitution: α-pinene, p-cymene and 1,8-cineole. MATERIALS AND METHODS: Protium altsonii (PaEO) and P. hebetatum (PhEO) oleoresins and three of their constituents were tested in vitro on promastigotes and amastigotes-infected macrophages in different concentrations. Their toxicity for macrophages was analyzed by XTT assay and phagocytic ability. It was evaluated the ability of the compounds to induce NO production on treated-macrophages using Griess reaction and the effect of them in lipid profile on treated-parasite through Thin Layer Chromatography. RESULTS: Our data showed that both essential oils have toxic effect on promastigotes and amastigotes of L. amazonensis in vitro in a dose-dependent manner. PaEO IC50 were 14.8 µg/mL and 7.8 µg/mL and PhEO IC50s were 0.46 µg/mL and 30.5 µg/m for promastigotes and amastigotes, respectively. Toxicity to macrophages was not observed at 50 µg/mL with both EOs. The compounds 1,8- cineole, α-pinene, and p-cymene inhibited amastigotes survival in a dose-dependent manner with IC50s of 48.4 µg/mL, 37 µg/mL, 46 µg/mL, respectively. Macrophage viability was around 90% even at 200 µg/mL and the phagocytic capacity was not altered in the treated-macrophages to up 50 µg/mL. The compounds were not able to modulate the nitric oxide production either at rest or LPS-activated macrophages. In addition, treated promastigote revealed an important change in their lipid profile after 48 h at 50 µg/mL in the presence of the compounds. CONCLUSIONS: The results indicate that oleoresins of Protium genus are potent against Leishmania and α-pinene, p-cymene and 1,8-cineole have anti-Leishmania properties that could be explored in synergistic assays in order to develop new drug candidates.


Asunto(s)
Antiprotozoarios/farmacología , Burseraceae , Leishmania mexicana/efectos de los fármacos , Macrófagos/parasitología , Monoterpenos/farmacología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Animales , Antiprotozoarios/aislamiento & purificación , Burseraceae/química , Burseraceae/clasificación , Células Cultivadas , Relación Dosis-Respuesta a Droga , Leishmania mexicana/crecimiento & desarrollo , Ratones Endogámicos BALB C , Monoterpenos/aislamiento & purificación , Aceites Volátiles/aislamiento & purificación , Carga de Parásitos , Pruebas de Sensibilidad Parasitaria , Aceites de Plantas/aislamiento & purificación
16.
PLoS Negl Trop Dis ; 14(3): e0008125, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32214337

RESUMEN

BACKGROUND: The disturbance of host metabolic pathways by Leishmania parasites has crucial consequences for the activation status of immune cells and the outcome of infection. Glutamine has been described as an immunomodulatory amino acid, yet its role during Leishmania infection is still unknown. METHODS: We performed transcriptomics in uninfected and L. donovani-infected macrophages 6 hours post-infection. Glutamine quantification by HPLC was assessed in the supernatant of macrophages throughout the infection course. For experimental L. donovani infections, mice were infected with 1.0 x 108 stationary L. donovani promastigotes. Glutaminase (GLS) chemical inhibition was performed using BPTES and glutamine was administered throughout infection. For combined therapy experiment, a daily administration of miltefosine and glutamine was performed by oral gavage. Parasite burden was determined using a Taqman-based assay. Immune cell phenotyping and cytotoxicity were performed in splenic cells using flow cytometry. FINDINGS: We show that glutamine is essential for the control of L. donovani infection. Transcriptomic analysis of L. donovani-infected macrophages demonstrated an upregulation of genes involved in glutamine metabolism. Pharmacological inhibition of glutaminolysis significantly increased the susceptibility to infection, accompanied by an increased recruitment of anti-inflammatory myeloid cells and impaired T cell responses. Remarkably, the supplementation of glutamine to mice infected with L. donovani during miltefosine treatment potentiates parasite clearance through the development of a more effective anti-Leishmania adaptive immune response. CONCLUSIONS: Our data indicates that dietary glutamine supplementation may act as a promising adjuvant for the treatment of visceral leishmaniasis.


Asunto(s)
Antiprotozoarios/administración & dosificación , Suplementos Dietéticos , Glutamina/administración & dosificación , Factores Inmunológicos/administración & dosificación , Leishmaniasis Visceral/terapia , Fosforilcolina/análogos & derivados , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Macrófagos/inmunología , Masculino , Ratones Endogámicos C57BL , Carga de Parásitos , Fosforilcolina/administración & dosificación , Subgrupos de Linfocitos T/inmunología , Resultado del Tratamiento
17.
J Ethnopharmacol ; 255: 112763, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32169423

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In spite of worldwide efforts, malaria remains one of the most devastating illnesses in the world. The huge number of lives it takes and the resistance of malaria parasites to current drugs necessitate the search for new effective antimalarial drugs. Medicinal plants have been the major source of such drugs and A. pirottae is one of these plants used traditionally for the treatment of malaria in Ethiopia. AIM: This study was aimed at evaluating the antimalarial activity of the aqueous extract of A. pirottae against chloroquine sensitive P. berghei in mice. MATERIALS AND METHODS: The extract was obtained by macerating the latex of A. pirottae with distilled water. To determine its antiplasmodial activity, a 4-day suppressive model was used by dividing 40 mice into five groups of 8 mice each and given 200, 400 & 600mg/kg of the extract, the standard drug (chloroquine 25mg/kg) and the vehicle (distilled water). Then parasite suppression by the extract, survival time and prevention of loss of body weight, rectal temperature and packed cell volume were assessed. All data were presented as the Mean ±â€¯SEM (Standard Error of the Mean) and analyzed using IBM SPSS version 20. RESULTS: The extract showed moderate antimalarial activity by significantly (p < 0.001) suppressing parasitemia at all dose levels with maximum parasitemia suppression of 47.0% and significantly (p < 0.01) increasing survival time. Furthermore, 400 mg/kg and 600 mg/kg doses showed significant (p < 0.01) prevention of loss in body weight, rectal temperature and packed cell volume. CONCLUSION: Based to the results of this study, A. pirottae is endowed with a moderate antimalarial activity that is in agreement with the traditional claim of A. pirottae, hence may be used as a basis for further studies to be conducted on antimalarial activity of the plant.


Asunto(s)
Aloe , Antimaláricos/farmacología , Eritrocitos/parasitología , Látex/farmacología , Malaria/tratamiento farmacológico , Extractos Vegetales/farmacología , Plasmodium berghei/efectos de los fármacos , Aloe/química , Aloe/toxicidad , Animales , Antimaláricos/aislamiento & purificación , Antimaláricos/toxicidad , Regulación de la Temperatura Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Látex/aislamiento & purificación , Látex/toxicidad , Malaria/sangre , Malaria/parasitología , Masculino , Ratones , Carga de Parásitos , Parasitemia/sangre , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Hojas de la Planta , Plasmodium berghei/patogenicidad , Pérdida de Peso/efectos de los fármacos
18.
Curr Eye Res ; 45(10): 1205-1210, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32065854

RESUMEN

Purpose: To evaluate the in vivo efficacy of rose bengal (RB)-mediated photodynamic antimicrobial therapy (PDAT) for treatment of Acanthamoeba castellanii keratitis (AK). Materials and Methods: An animal (rabbit) AK model was successfully achieved via intrastromal inoculation of a suspension of A. castellanii cells and trophozoites. Prior to RB-PDAT (pre-treatment, day-5), the severity of the induced corneal infection was graded numerically for epithelial defects, stromal edema, neovascularity, and stromal opacity/infiltration. The right eyes of rabbits (n = 18) were divided equally into three groups (n = 6/group): control (no treatment); 0.1% RB+518 nm irradiation (5.4 J/cm2); and 0.2% RB+518 nm irradiation (5.4 J/cm2). On post-treatment day-5, animals were euthanized, after which corneal buttons were excised and submitted for real-time polymerase chain reaction (RT-PCR) analysis. Results: Post-treatment clinical scores of the 0.1 and 0.2% RB groups indicated significant improvement compared to control group scores (pre-treatment clinical scores; 5.17 ± 0.98, 7.50 ± 0.62, and 6.17 ± 0.70 and post-treatment clinical scores; 4.50 ± 0.56, (p = .043), 3.50 ± 0.99 (p = .039), 6.83 ± 1.66 (p = .34), respectively). RT-PCR analysis revealed that the mean cycle threshold (Ct) values were significantly higher in treated-group corneas compared to control-group corneas, with no significant differences between treated-groups (Mean Ct values; 34.33, 34.5, and 29.67 for 0.1 and 0.2% RB, and control groups). There was a statistically significant negative correlation between post-treatment clinical scores and Ct values (r = -0.474, p-value 0.047). Conclusions: Our results demonstrate that RB-PDAT is effective in decreasing the parasitic load and clinical severity of AK.


Asunto(s)
Queratitis por Acanthamoeba/tratamiento farmacológico , Antiprotozoarios/uso terapéutico , Colorantes Fluorescentes/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Rosa Bengala/uso terapéutico , Queratitis por Acanthamoeba/diagnóstico , Acanthamoeba castellanii/efectos de los fármacos , Acanthamoeba castellanii/fisiología , Animales , Córnea/parasitología , ADN Protozoario/genética , ADN Protozoario/aislamiento & purificación , Modelos Animales de Enfermedad , Carga de Parásitos , Conejos , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
PLoS Negl Trop Dis ; 14(1): e0007843, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31929528

RESUMEN

BACKGROUND: Neglected parasitic diseases (NTDs) like cutaneous leishmaniasis (CL) have caused high mortality and morbidity rate in developing countries. This disease is considered as one of the six major tropical diseases, and has a great importance in HIV infected individuals as an opportunistic infection in those areas that both infections are endemic. This study evaluated the therapeutic effects of the Urtica dioica L (U. dioica) aqueous extract as an anti-leishmanial herbal drug in-vitro and in-vivo, and in addition to that, evaluated two vital immune system cytokines including gamma interferon (IFN-γ) and interleukin-4 (IL-4) plus nitric oxide (NO) and arginase activity against Leishmania major (L. major) infected mice. METHODOLOGY/PRINCIPAL FINDINGS: In-vitro anti-leishmanial activity of U. dioica aqueous extract was determined using MTT method and also Parasite Rescue Transformation Assay. Also, the footpad lesion size and parasite load in BALB/c mice infected with L. major were quantified for in-vivo assessment. Furthermore, for evaluating the immune responses, the levels of IFN-γ, IL-4, NO and arginase were measured in the BALB/c mice. These results indicated that U. dioica extract significantly reduced the L. major promastigotes viability. According to the in-vitro cytotoxicity assay of the extract on Leishmania parasites (CC50) and infected macrophages (EC50), the extract had no toxicity to the macrophages, however it efficiently killed the L. major amastigotes. In addition, the lesion size, parasite load, IL-4, and ARG were decreased in the treated infected mice, however IFN-γ and NO were significantly increased. CONCLUSIONS/SIGNIFICANCE: This study established satisfactory results in Leishmania parasite clearing both in-vivo and in-vitro. Therefore, U. dioica extract can be considered as an effective and harmless herbal compound for killing the parasite without toxicity to the host macrophages. Furthermore, it also can treat the CL by switching the mouse immune response towards a cell-mediated response (Th1); hence, it may be identified as a perfect therapeutic herbal drug for CL treatment.


Asunto(s)
Leishmania major/efectos de los fármacos , Extractos Vegetales/farmacología , Urtica dioica/química , Animales , Antiprotozoarios/farmacología , Arginasa/metabolismo , Línea Celular , Interferón gamma/metabolismo , Interleucina-4/metabolismo , Leishmaniasis Cutánea/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico/metabolismo , Carga de Parásitos , Extractos Vegetales/toxicidad , Urtica dioica/toxicidad
20.
Acta Parasitol ; 65(1): 27-35, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31571138

RESUMEN

PURPOSE: Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs), and their capacity to activate the immune response has been widely used in immunotherapies against different diseases, predominantly cancer. However, they have not been so widely used in immunotherapies against infectious diseases. Leishmania mexicana is the causative agent of cutaneous leishmaniasis in Mexico, which can result in localized cutaneous leishmaniasis (LCL) and diffuse cutaneous leishmaniasis (DCL). DCL is characterized by the incapability of the immune response to control the parasite, which thus disseminates to all teguments. Treatments against DCL have shown low efficacy, which is a reason why alternative therapies such as immunotherapies are promising. One adjuvant that has proven its effectiveness in immunotherapies against some cancers and infections is GK1, a component of the SPVac vaccine against porcine cysticercosis. GK1 has the capacity to elicit proinflammatory cytokines and chemokines from DCs and macrophages. METHODS: We pulsed bone marrow-derived dendritic cells (BMDCs) with GK1 and a lysate obtained from L. mexicana promastigotes and tested the efficacy of this combination against the infection of susceptible mice with L. mexicana. RESULTS: We found that BMDCs stimulated with GK1 and a lysate of L. mexicana promastigotes secreted IFN-γ and IL-12, and when they were adoptively transferred to BALB/c mice which were then infected with L. mexicana promastigotes, there was a reduction in the size of the lesion and in the parasite load. CONCLUSIONS: The adjuvant properties of GK1 along with parasite antigens may have a protective effect against the infection of BALB/c mice with L. mexicana.


Asunto(s)
Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Péptidos Cíclicos/inmunología , Péptidos Cíclicos/farmacología , Proteínas Protozoarias/inmunología , Adyuvantes Inmunológicos/farmacología , Traslado Adoptivo , Animales , Interferón gamma/inmunología , Interleucina-12/inmunología , Leishmania mexicana , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea Difusa/inmunología , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Proteínas Protozoarias/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA