Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(24): 2517-2533, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38513237

RESUMEN

ABSTRACT: Recent large-scale multiomics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on 2 separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured l-carnitine and acyl-carnitines in 13 091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation study. Genome-wide association studies against 879 000 polymorphisms identified critical genetic factors contributing to interdonor heterogeneity in end-of-storage carnitine levels, including common nonsynonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, and SLC16A9); carnitine synthesis (FLVCR1 and MTDH) and metabolism (CPT1A, CPT2, CRAT, and ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying 2 alleles of the rs12210538 SLC22A16 single-nucleotide polymorphism exhibited the lowest l-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice, and Percoll density gradients of human RBCs, showed age-dependent depletions of l-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process after chemically induced membrane lipid damage. Supplementation of stored murine RBCs with l-carnitine boosted posttransfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.


Asunto(s)
Carnitina , Eritrocitos , Hemólisis , Carnitina/metabolismo , Humanos , Animales , Ratones , Eritrocitos/metabolismo , Polimorfismo de Nucleótido Simple , Envejecimiento Eritrocítico , Estudio de Asociación del Genoma Completo , Masculino , Femenino , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética , Miembro 5 de la Familia 22 de Transportadores de Solutos/metabolismo , Conservación de la Sangre/métodos
2.
Animal ; 18(2): 101049, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215677

RESUMEN

Our understanding of metabolic alterations triggered by heat stress is incomplete, which limits the designing of nutritional strategies to mitigate negative productive and health effects. Thus, this study aimed to explore the metabolic responses of heat-stressed dairy cows to dietary supplementation with vitamin D3/Ca and vitamin E/Se. Twelve multiparous Holstein cows were enrolled in a split-plot Latin square design with two distinct vitamin E/Se supplementation levels, either at a low (ESe-, n = 6, 11.1 IU/kg vitamin E and 0.55 mg/kg Se) or a high dose (ESe+, n = 6 223 IU/kg vitamin E and 1.8 mg/kg Se) as the main plot. Treatment subplots, arranged in a replicated 3 × 3 Latin square design, comprised heat challenge (Temperature Humidity Index, THI: 72.0-82.0) supplemented with different levels of vitamin D3/Ca: either low (HS/DCa-, 1 012 IU/kg and 0.73%, respectively) or high (HS/DCa+, 3 764 IU/kg and 0.97%, respectively), and a pair-fed control group in thermoneutrality (THI = 61.0-64.0) receiving the low dose of vitamin D3/Ca (TN). The liquid chromatography-mass spectrometry-based metabolome profile was determined in blood plasma and milk sampled at the beginning (day 0) and end (day 14) of each experimental period. The results were analyzed for the effect of (1) TN vs. HS/ESe-/DCa-, and (2) the vitamin E/Se and vitamin D3/Ca supplementation. No group or group × day effects were detected in the plasma metabolome (false discovery rate, FDR > 0.05), except for triglyceride 52:2 being higher (FDR = 0.03) on day 0 than 14. Taurine, creatinine and butyryl-carnitine showed group × day interactions in the milk metabolome (FDR ≤ 0.05) as creatinine (+22%) and butyryl-carnitine (+190%) were increased (P < 0.01) on day 14, and taurine was decreased (-65%, P < 0.01) on day 14 in the heat stress (HS) cows, compared with day 0. Most compounds were unaffected by vitamin E/Se or vitamin D3/Ca supplementation level or their interaction (FDR > 0.05) in plasma and milk, except for milk alanine which was lower (-69%, FDR = 0.03) in the E/Se+ groups, compared with E/Se-. Our results indicated that HS triggered more prominent changes in the milk than in the plasma metabolome, with consistent results in milk suggesting increased muscle catabolism, as reflected by increased creatinine, alanine and citrulline levels. Supplementing with high levels of vitamin E/Se or vitamin D3/Ca or their combination did not appear to affect the metabolic remodeling triggered by HS.


Asunto(s)
Lactancia , Leche , Femenino , Bovinos , Animales , Leche/metabolismo , Creatinina/análisis , Creatinina/metabolismo , Creatinina/farmacología , Dieta/veterinaria , Calor , Suplementos Dietéticos/análisis , Respuesta al Choque Térmico , Vitamina E , Carnitina/metabolismo , Alanina/análisis , Alanina/metabolismo , Alanina/farmacología , Aminoácidos/metabolismo , Vitamina D/metabolismo
3.
Free Radic Biol Med ; 213: 174-189, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38246515

RESUMEN

Osteoporosis, which manifests as reduced bone mass and deteriorated bone quality, is common in the elderly population. It is characterized by persistent elevation of macrophage-associated inflammation and active osteoclast bone resorption. Currently, the roles of intracellular metabolism in regulating these processes remain unclear. In this study, we initially performed bioinformatics analysis and observed a significant increase in the proportion of M1 macrophages in bone marrow with aging. Further metabolomics analysis demonstrated a notable reduction in the expression of carnitine metabolites in aged macrophages, while carnitine was not detected in osteoclasts. During the differentiation process, osteoclasts took up carnitine synthesized by macrophages to regulate their own activity. Mechanistically, carnitine enhanced the function of Nrf2 by inhibiting the Keap1-Nrf2 interaction, reducing the proteasome-dependent ubiquitination and degradation of Nrf2. In silico molecular ligand docking analysis of the interaction between carnitine and Keap1 showed that carnitine binds to Keap1 to stabilize Nrf2 and enhance its function. In this study, we found that the decrease in carnitine levels in aging macrophages causes overactivation of osteoclasts, ultimately leading to osteoporosis. A decrease in serum carnitine levels in patients with osteoporosis was found to have good diagnostic and predictive value. Moreover, supplementation with carnitine was shown to be effective in the treatment of osteoporosis.


Asunto(s)
Resorción Ósea , Osteoporosis , Humanos , Anciano , Osteogénesis/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Carnitina/metabolismo , Transducción de Señal , Osteoclastos/metabolismo , Macrófagos/metabolismo , Resorción Ósea/complicaciones , Resorción Ósea/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Ligando RANK/farmacología
4.
Cell Mol Gastroenterol Hepatol ; 17(1): 131-148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37739064

RESUMEN

BACKGROUND & AIMS: Altered plasma acylcarnitine levels are well-known biomarkers for a variety of mitochondrial fatty acid oxidation disorders and can be used as an alternative energy source for the intestinal epithelium when short-chain fatty acids are low. These membrane-permeable fatty acid intermediates are excreted into the gut lumen via bile and are increased in the feces of patients with inflammatory bowel disease (IBD). METHODS: Herein, based on studies in human subjects, animal models, and bacterial cultures, we show a strong positive correlation between fecal carnitine and acylcarnitines and the abundance of Enterobacteriaceae in IBD where they can be consumed by bacteria both in vitro and in vivo. RESULTS: Carnitine metabolism promotes the growth of Escherichia coli via anaerobic respiration dependent on the cai operon, and acetylcarnitine dietary supplementation increases fecal carnitine levels with enhanced intestinal colonization of the enteric pathogen Citrobacter rodentium. CONCLUSIONS: In total, these results indicate that the increased luminal concentrations of carnitine and acylcarnitines in patients with IBD may promote the expansion of pathobionts belonging to the Enterobacteriaceae family, thereby contributing to disease pathogenesis.


Asunto(s)
Enterobacteriaceae , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Enterobacteriaceae/metabolismo , Disbiosis , Enfermedades Inflamatorias del Intestino/microbiología , Carnitina/metabolismo , Ácidos Grasos/metabolismo , Escherichia coli , Biomarcadores
5.
Mol Genet Metab ; 140(4): 107733, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979236

RESUMEN

BACKGROUND: Systemic primary carnitine deficiency (PCD) is characterized by cardiomyopathy and arrhythmia. Without carnitine supplementation, progression is usually towards fatal cardiac decompensation. While the cardiomyopathy is most likely secondary to energy deficiency, the mechanism of arrhythmia is unclear, and may be related to a short QT interval. OBJECTIVE: We aim to describe rhythmic manifestations at diagnosis and with carnitine supplementation. METHODS: French patients diagnosed for PCD were retrospectively included. Clinical and para clinical data at diagnosis and during follow-up were collected. Electrocardiograms with QT interval measurements were blinded reviewed by two paediatric cardiologists. RESULTS: Nineteen patients (median age at diagnosis 2.3 years (extremes 0.3-28.9)) followed in 8 French centres were included. At diagnosis, 21% of patients (4/19) had arrhythmia (2 ventricular fibrillations, 1 ventricular tachycardia and 1 sudden death), and 84% (16/19) had cardiomyopathy. Six electrocardiograms before treatment out of 11 available displayed a short QT (QTc < 340 ms). Median corrected QTc after carnitine supplementation was 404 ms (extremes 341-447) versus 350 ms (extremes 282-421) before treatment (p < 0.001). The whole QTc was prolonged, and no patient reached the criterion of short QT syndrome with carnitine supplementation. Three patients died, probably from rhythmic cause without carnitine supplementation (two extra-hospital sudden deaths and one non-recoverable rhythmic storm before carnitine supplementation), whereas no rhythmic complication occurred in patients with carnitine supplementation. CONCLUSION: PCD is associated with shortening of the QT interval inducing severe arrhythmia. A potential explanation would be a toxic effect of accumulated fatty acid and metabolites on ionic channels embedded in the cell membrane. Carnitine supplementation normalizes the QTc and prevents arrhythmia. Newborn screening of primary carnitine deficiency would prevent avoidable deaths.


Asunto(s)
Cardiomiopatías , Síndrome de QT Prolongado , Recién Nacido , Niño , Humanos , Preescolar , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Estudios Retrospectivos , Arritmias Cardíacas/complicaciones , Cardiomiopatías/complicaciones , Carnitina/metabolismo , Electrocardiografía/efectos adversos
6.
Obes Res Clin Pract ; 17(5): 378-382, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37634961

RESUMEN

OBJECTIVES: Obesity is a major global health issue, resulting in significant costs and increased mortality rates. Finding effective treatments for obesity is therefore essential. This study investigated the combined effects of L-Carnitine (LC) and Conjugated Linoleic Acid (CLA) on weight loss and adipose tissue microRNA levels. SUBJECTS /METHODS: Forty male Wistar rats weighing 150-200 g and about 8 weeks old were fed either a normal fat diet (NFD) or a high-fat diet (HFD) for 8 weeks. Afterwards, the HFD group was randomly divided into four subgroups: control, LC (200 mg kg-1), CLA (500 mg kg-1), and both (n = 8 in each group). The study lasted for an additional 4 weeks. The animals' weights were recorded regularly, and after 12 weeks, miRNAs were extracted from epididymal adipose tissue and analysed using real-time PCR. The miRNA expression levels of miR-27a and miR-143 were compared between groups using Kolmogorov-Smirnov and one-way ANOVA tests in SPSS software. RESULTS: At the end of the first 8 weeks, the HFD group weighed significantly more than the NFD group. LC significantly decreased weight gain (4.2%) compared to the control group, whereas CLA alone (3.5%) or in combination with LC (3.1%) did not significantly slow weight gain. Real-time PCR results showed that the HFD group had higher miR-143 levels and lower miR-27a levels compared to the NFD group. LC and CLA increased miR-27a expression after 4 weeks, but their combination decreased miR-27a expression. CLA alone reduced miR-143 expression, whereas LC had almost no effect. Their combination also reduced miR-143 expression. CONCLUSION: CLA and LC, which are considered weight loss supplements, can potentially regulate metabolism and cellular pathways. However, their combination did not show a synergistic effect on weight loss, possibly due to the reduction in miR-27a expression. Further studies are needed to evaluate the effects of combined fat burners on obesity treatment.


Asunto(s)
Ácidos Linoleicos Conjugados , MicroARNs , Humanos , Ratas , Masculino , Animales , MicroARNs/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Ácidos Linoleicos Conjugados/metabolismo , Carnitina/farmacología , Carnitina/metabolismo , Ratas Wistar , Obesidad/genética , Tejido Adiposo/metabolismo , Dieta Alta en Grasa , Aumento de Peso , Pérdida de Peso
7.
J Dairy Sci ; 106(12): 9822-9842, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641324

RESUMEN

The current study was conducted to examine the effect of l-carnitine (LC) supplementation on telomere length and mitochondrial DNA copy number (mtDNAcn) per cell in mid-lactation cows challenged by lipopolysaccharide (LPS) in blood and liver. The mRNA abundance of 31 genes related to inflammation, oxidative stress, and the corresponding stress response mechanisms, the mitochondrial quality control and the protein import system, as well as the phosphatidylinositol 3-kinase/protein kinase B pathway, were assessed using microfluidics integrated fluidic circuit chips (96.96 dynamic arrays). In addition to comparing the responses in cows with or without LC, our objectives were to characterize the oxidative and inflammatory status by assessing the circulating concentration of lactoferrin (Lf), haptoglobin (Hp), fibrinogen, derivates of reactive oxygen metabolites (dROM), and arylesterase activity (AEA), and to extend the measurement of Lf and Hp to milk. Pluriparous Holstein cows were assigned to either a control group (CON, n = 26) or an LC-supplemented group (CAR; 25 g LC/cow per day; d 42 ante partum to d 126 postpartum (PP), n = 27). On d 111 PP, each cow was injected intravenously with LPS (Escherichia coli O111:B4, 0.5 µg/kg). The mRNA abundance was examined in liver biopsies of d -11 and +1 relative to LPS administration. Plasma and milk samples were frequently collected before and after the challenge. After LPS administration, circulating plasma fibrinogen and serum dROM concentrations increased, whereas AEA decreased. Moreover, serum P4 initially increased by 3 h after LPS administration and declined thereafter irrespective of grouping. The Lf concentrations increased in both groups after LPS administration, with the CAR group showing greater concentrations in serum and milk than the CON group. After LPS administration, telomere length in blood increased, whereas mtDNAcn per cell decreased; however, both remained unaffected in liver. For mitochondrial protein import genes, the hepatic mRNA abundance of the translocase of the mitochondrial inner membrane (TIM)-17B was increased in CAR cows. Moreover, TIM23 increased in both groups after LPS administration. Regarding the mRNA abundance of genes related to stress response mechanisms, 7 out of 14 genes showed group × time interactions, indicating a (local) protective effect due to the dietary LC supplementation against oxidative stress in mid-lactating dairy cows. For mtDNAcn and telomere length, the effects of the LPS-induced inflammation were more pronounced than the dietary supplementation of LC. Dietary LC supplementation affected the response to LPS primarily by altering mitochondrial dynamics. Regarding mRNA abundance of genes related to the mitochondrial protein import system, the inner mitochondrial membrane translocase (TIM complex) seemed to be more sensitive to dietary LC than the outer mitochondrial membrane translocase (TOM complex).


Asunto(s)
Enfermedades de los Bovinos , Lactancia , Femenino , Bovinos , Animales , Lactancia/fisiología , Lipopolisacáridos/efectos adversos , Carnitina/metabolismo , ADN Mitocondrial , Variaciones en el Número de Copia de ADN , Dinámicas Mitocondriales , Inflamación/veterinaria , Suplementos Dietéticos , Hígado/metabolismo , Leche/metabolismo , Dieta/veterinaria , Expresión Génica , Fibrinógeno/efectos adversos , Fibrinógeno/metabolismo , ARN Mensajero/metabolismo , Proteínas Mitocondriales/metabolismo , Telómero , Enfermedades de los Bovinos/metabolismo
8.
Microb Cell Fact ; 22(1): 128, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443049

RESUMEN

BACKGROUND: Mitochondrial carriers (MCs) can deeply affect the intracellular flux distribution of metabolic pathways. The manipulation of their expression level, to redirect the flux toward the production of a molecule of interest, is an attractive target for the metabolic engineering of eukaryotic microorganisms. The non-conventional yeast Yarrowia lipolytica is able to use a wide range of substrates. As oleaginous yeast, it directs most of the acetyl-CoA therefrom generated towards the synthesis of lipids, which occurs in the cytoplasm. Among them, the odd-chain fatty acids (OCFAs) are promising microbial-based compounds with several applications in the medical, cosmetic, chemical and agricultural industries. RESULTS: In this study, we have identified the MC involved in the Carnitine/Acetyl-Carnitine shuttle in Y. lipolytica, YlCrc1. The Y. lipolytica Ylcrc1 knock-out strain failed to grow on ethanol, acetate and oleic acid, demonstrating the fundamental role of this MC in the transport of acetyl-CoA from peroxisomes and cytoplasm into mitochondria. A metabolic engineering strategy involving the deletion of YlCRC1, and the recombinant expression of propionyl-CoA transferase from Ralstonia eutropha (RePCT), improved propionate utilization and its conversion into OCFAs. These genetic modifications and a lipogenic medium supplemented with glucose and propionate as the sole carbon sources, led to enhanced accumulation of OCFAs in Y. lipolytica. CONCLUSIONS: The Carnitine/Acetyl-Carnitine shuttle of Y. lipolytica involving YlCrc1, is the sole pathway for transporting peroxisomal or cytosolic acetyl-CoA to mitochondria. Manipulation of this carrier can be a promising target for metabolic engineering approaches involving cytosolic acetyl-CoA, as demonstrated by the effect of YlCRC1 deletion on OCFAs synthesis.


Asunto(s)
Carnitina , Yarrowia , Acetilcoenzima A/metabolismo , Carnitina/metabolismo , Acetilcarnitina/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Ácidos Grasos/metabolismo , Propionatos/metabolismo , Mitocondrias/metabolismo , Ingeniería Metabólica
9.
Histochem Cell Biol ; 160(4): 341-347, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37329457

RESUMEN

L-Carnitine (ß-hydroxy-γ-trimethylaminobutyric acid, LC) is a crucial molecule for the mitochondrial oxidation of fatty acids. It facilitates the transport of long-chain fatty acids into the mitochondrial matrix. The reduction in LC levels during the aging process has been linked to numerous cardiovascular disorders, including contractility dysfunction, and disrupted intracellular Ca2+ homeostasis. The aim of this study was to examine the effects of long-term (7 months) LC administration on cardiomyocyte contraction and intracellular Ca2+ transients ([Ca2+]i) in aging rats. Male albino Wistar rats were randomly assigned to either the control or LC-treated groups. LC (50 mg/kg body weight/day) was dissolved in distilled water and orally administered for a period of 7 months. The control group received distilled water alone. Subsequently, ventricular single cardiomyocytes were isolated, and the contractility and Ca2+ transients were recorded in aging (18 months) rats. This study demonstrates, for the first time, a novel inotropic effect of long-term LC treatment on rat ventricular cardiomyocyte contraction. LC increased cardiomyocyte cell shortening and resting sarcomere length. Furthermore, LC supplementation led to a reduction in resting [Ca2+]i level and an increase in the amplitude of [Ca2+]i transients, indicative of enhanced contraction. Consistent with these results, decay time of Ca2+ transients also decreased significantly in the LC-treated group. The long-term administration of LC may help restore the Ca2+ homeostasis altered during aging and could be used as a cardioprotective medication in cases where myocyte contractility is diminished.


Asunto(s)
Carnitina , Miocitos Cardíacos , Ratas , Masculino , Animales , Miocitos Cardíacos/metabolismo , Carnitina/farmacología , Carnitina/metabolismo , Señalización del Calcio/fisiología , Ratas Wistar , Envejecimiento , Homeostasis , Agua/metabolismo , Agua/farmacología , Calcio/metabolismo
10.
Anim Reprod Sci ; 252: 107249, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37119563

RESUMEN

Maternal obesity elevates non-esterified fatty acids (NEFA) follicular concentrations. Bovine cumulus-oocyte complexes (COCs) matured in vitro under high NEFA have altered metabolism and reduced quality. Systemically, obesity promotes altered mitochondrial metabolism linked to L-carnitine insufficiency. We hypothesized that L-carnitine supplementation during IVM of bovine COCs in the presence of high NEFA would lessen the negative effects of exposure to excessive lipids on embryonic development and oxidative stress. COCs were collected from abattoir ovaries and matured in four groups: CON (control), LC (3 mM L-carnitine), HN (high NEFA: 200uM oleic, 150uM palmitic and 75uM stearic acid), and HNLC (HN and LC). Mature oocytes were assayed for aerobic and anaerobic metabolism utilizing oxygen and pH microsensors or fertilized in vitro (D0). Cleavage (D3) and blastocyst (D7, D8) rates were assessed. D3 embryos with ≥ 4 cells were stained for cytosolic and mitochondrial ROS. D8 blastocysts were assayed for gene transcript abundance of metabolic enzymes. Oocyte metabolism was not affected by IVM treatment. D3 formation of embryos with ≥ 4 cells were lower in LC or HN than CON or HNLC; blastocyst rates were greater for CON and lower for HN than LC and HNLC. D3 embryo mitochondrial and cytosolic ROS were reduced in HNLC when compared to other groups. IVM in HN altered blastocyst gene transcript abundance when compared to CON, but not LC or HNLC. In conclusion, supplementation with L-carnitine protects oocytes exposed to high NEFA during IVM and improves their developmental competence, suggesting that high lipid exposure may lead to L-carnitine insufficiency in bovine oocytes.


Asunto(s)
Carnitina , Técnicas de Maduración In Vitro de los Oocitos , Animales , Bovinos , Femenino , Embarazo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Carnitina/farmacología , Carnitina/metabolismo , Ácidos Grasos no Esterificados/farmacología , Ácidos Grasos no Esterificados/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oocitos , Blastocisto , Desarrollo Embrionario
11.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047049

RESUMEN

To investigate the role of peroxisome proliferator-activated receptor alpha (PPARα) in carnitine status and intestinal fatty acid oxidation in neonates, a total of 72 suckled newborn piglets were assigned into 8 dietary treatments following a 2 (±0.35% clofibrate) × 4 (diets with: succinate+glycerol (Succ), tri-valerate (TC5), tri-hexanoate (TC6), or tri-2-methylpentanoate (TMPA)) factorial design. All pigs received experimental milk diets with isocaloric energy for 5 days. Carnitine statuses were evaluated, and fatty acid oxidation was measured in vitro using [1-14C]-palmitic acid (1 mM) as a substrate in absence or presence of L659699 (1.6 µM), iodoacetamide (50 µM), and carnitine (1 mM). Clofibrate increased concentrations of free (41%) and/or acyl-carnitine (44% and 15%) in liver and plasma but had no effects in the intestine. The effects on carnitine status were associated with the expression of genes involved in carnitine biosynthesis, absorption, and transportation. TC5 and TMPA stimulated the increased fatty acid oxidation rate induced by clofibrate, while TC6 had no effect on the increased fatty acid oxidation induced by clofibrate (p > 0.05). These results suggest that dietary clofibrate improved carnitine status and increased fatty acid oxidation. Propionyl-CoA, generated from TC5 and TMPA, could stimulate the increased fatty acid oxidation rate induced by clofibrate as anaplerotic carbon sources.


Asunto(s)
Carnitina , Clofibrato , Animales , Porcinos , Clofibrato/farmacología , Animales Recién Nacidos , Carnitina/farmacología , Carnitina/metabolismo , Hígado/metabolismo , Ácido Palmítico/farmacología , Triglicéridos/metabolismo , Intestinos , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Oxidación-Reducción
12.
Nutrients ; 15(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986087

RESUMEN

The beneficial effects of L-carnitine on non-alcoholic fatty liver disease (NAFLD) were revealed in previous reports. However, the underlying mechanisms remain unclear. In this study, we established a high fat diet (HFD)-induced NAFLD mice model and systematically explored the effects and mechanisms of dietary L-carnitine supplementation (0.2% to 4%) on NAFLD. A lipidomics approach was conducted to identify specific lipid species involved in the ameliorative roles of L-carnitine in NAFLD. Compared with a normal control group, the body weight, liver weight, concentrations of TG in the liver and serum AST and ALT levels were dramatically increased by HFD feeding (p < 0.05), accompanied with obvious liver damage and the activation of the hepatic TLR4/NF-κB/NLRP3 inflammatory pathway. L-carnitine treatment significantly improved these phenomena and exhibited a clear dose-response relationship. The results of a liver lipidomics analysis showed that a total of 12 classes and 145 lipid species were identified in the livers. Serious disorders in lipid profiles were noticed in the livers of the HFD-fed mice, such as an increased relative abundance of TG and a decreased relative abundance of PC, PE, PI, LPC, LPE, Cer and SM (p < 0.05). The relative contents of PC and PI were significantly increased and that of DG were decreased after the 4% L-carnitine intervention (p < 0.05). Moreover, we identified 47 important differential lipid species that notably separated the experimental groups based on VIP ≥ 1 and p < 0.05. The results of a pathway analysis showed that L-carnitine inhibited the glycerolipid metabolism pathway and activated the pathways of alpha-linolenic acid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and Glycosylphosphatidylinositol (GPI)-anchor biosynthesis. This study provides novel insights into the mechanisms of L-carnitine in attenuating NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Dieta Alta en Grasa/efectos adversos , Carnitina/farmacología , Carnitina/metabolismo , Lipidómica , Hígado/metabolismo , Metabolismo de los Lípidos , Lípidos/farmacología , Ratones Endogámicos C57BL
13.
Anim Reprod Sci ; 249: 107186, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36638648

RESUMEN

In vitro follicle growth and oocyte maturation still has a series of limitations, since not all oocytes matured in vitro have the potential to develop in viable embryos. One of the factors associated with low oocyte quality is the generation of reactive oxygen species (ROS) during in vitro culture. Therefore, this review aims to discuss the role of non-enzymatic antioxidants in the control of oxidative stress during in vitro follicular growth, oocyte maturation and embryonic development. A wide variety of non-enzymatic antioxidants (melatonin, resveratrol, L-ascorbic acid, L-carnitine, N-acetyl-cysteine, cysteamine, quercetin, nobiletin, lycopene, acteoside, mogroside V, phycocyanin and laminarin) have been used to supplement culture media. Some of them, like N-acetyl-cysteine, cysteamine, nobiletin and quercetin act by increasing the levels of glutathione (GSH), while melatonin and resveratrol increase the expression of antioxidant enzymes and minimize oocyte oxidative stress. L-ascorbic acid reduces free radicals and reactive oxygen species. Lycopene positively regulates the expression of many antioxidant genes. Additionally, L-carnitine protects DNA against ROS-induced damage, while acteoside and laminarin reduces the expression of proapoptotic genes. Mogrosides increases mitochondrial function and reduces intracellular ROS levels, phycocyanin reduces lipid peroxidation, and lycopene neutralizes the adverse effects of ROS. Thus, it is very important to know their mechanisms of actions, because the combination of two or more antioxidants with different activities has great potential to improve in vitro culture systems.


Asunto(s)
Antioxidantes , Melatonina , Animales , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Melatonina/farmacología , Resveratrol/farmacología , Licopeno/farmacología , Quercetina/farmacología , Cisteamina/metabolismo , Cisteamina/farmacología , Ficocianina/metabolismo , Ficocianina/farmacología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Estrés Oxidativo , Oocitos/fisiología , Glutatión/farmacología , Acetilcisteína/farmacología , Carnitina/metabolismo , Carnitina/farmacología , Ácido Ascórbico/farmacología , Desarrollo Embrionario
14.
Br Poult Sci ; 64(3): 384-397, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36607291

RESUMEN

1. This experiment investigated the efficacy of varying doses of an emulsifier blend (EB; 0 and 1 g/kg of diet), betaine (BT; 0 and 1 g/kg of diet) and L-carnitine (CT; 0 and 0.5 g/kg of diet) in broilers subjected to circular heat stress (HS) conditions. A total of 1080 one-day-old male broiler chickens (Ross 308) were randomly assigned to one of nine treatment groups (six pens/treatment with 20 birds/pen) according to a completely randomised design. The thermoneutral control broiler chickens were housed at a comfortable temperature and fed a standard diet (no additives). The other eight groups were exposed to cyclic HS conditions (34°C) for 8 h (10:00-18:00).2. There were EB × BT × CT interactions for body weight (BW) at 24 d (P = 0.038) and average daily gain (ADG) during the 10-24 d period (P = 0.049), with the greatest values found with concurrent supplementation of three supplements.3. Inclusion of EB resulted in greater (P < 0.05) BW, ADG, European performance index, uniformity rate, primary antibody titres against sheep red blood cells (SRBC), duodenal villus height (VH) and villus surface area, digestible energy (DE) and the coefficient of apparent ileal digestibility (CAID) of dry matter, crude protein, and fat However, feed conversion ratio, mortality rate and heterophile to lymphocyte ratio were lower (P < 0.05).4. Dietary BT supplementation improved (P < 0.05) all performance indicators, primary antibody titres against SRBC and Newcastle disease virus, serum total antioxidant capacity, duodenal VH, Jejunal VH/crypt depth and the CAID of dry matter and crude protein. The effect of dietary supplementation with CT was limited to an increase (P < 0.05) in ADG (d 10-24) and a decrease (P < 0.05) in serum malondialdehyde concentration (42 d) and jejunal crypt depth (42 d).5. In conclusion, dietary supplementation of either EB or BT alone or in combination ameliorated some of the detrimental effects of HS on growth performance, immunity and intestinal health in broilers, while a minor positive effect on performance and antioxidant status was observed with CT supplementation.


Asunto(s)
Betaína , Pollos , Animales , Masculino , Ovinos , Betaína/farmacología , Betaína/metabolismo , Pollos/fisiología , Antioxidantes/metabolismo , Carnitina/metabolismo , Suplementos Dietéticos , Dieta/veterinaria , Nutrientes , Respuesta al Choque Térmico , Inmunidad , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
15.
J Biol Chem ; 299(2): 102848, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36587768

RESUMEN

In eukaryotes, carnitine is best known for its ability to shuttle esterified fatty acids across mitochondrial membranes for ß-oxidation. It also returns to the cytoplasm, in the form of acetyl-L-carnitine (LAC), some of the resulting acetyl groups for posttranslational protein modification and lipid biosynthesis. While dietary LAC supplementation has been clinically investigated, its effects on cellular metabolism are not well understood. To explain how exogenous LAC influences mammalian cell metabolism, we synthesized isotope-labeled forms of LAC and its analogs. In cultures of glucose-limited U87MG glioma cells, exogenous LAC contributed more robustly to intracellular acetyl-CoA pools than did ß-hydroxybutyrate, the predominant circulating ketone body in mammals. The fact that most LAC-derived acetyl-CoA is cytosolic is evident from strong labeling of fatty acids in U87MG cells by exogenous 13C2-acetyl-L-carnitine. We found that the addition of d3-acetyl-L-carnitine increases the supply of acetyl-CoA for cytosolic posttranslational modifications due to its strong kinetic isotope effect on acetyl-CoA carboxylase, the first committed step in fatty acid biosynthesis. Surprisingly, whereas cytosolic carnitine acetyltransferase is believed to catalyze acetyl group transfer from LAC to coenzyme A, CRAT-/- U87MG cells were unimpaired in their ability to assimilate exogenous LAC into acetyl-CoA. We identified carnitine octanoyltransferase as the key enzyme in this process, implicating a role for peroxisomes in efficient LAC utilization. Our work has opened the door to further biochemical investigations of a new pathway for supplying acetyl-CoA to certain glucose-starved cells.


Asunto(s)
Acetilcoenzima A , Acetilcarnitina , Carnitina Aciltransferasas , Carnitina , Acetilcoenzima A/metabolismo , Acetilcarnitina/farmacología , Carnitina/metabolismo , Carnitina Aciltransferasas/metabolismo , Carnitina O-Acetiltransferasa/genética , Carnitina O-Acetiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Oxidación-Reducción , Humanos , Línea Celular Tumoral
16.
Br J Nutr ; 129(1): 29-40, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35473947

RESUMEN

Dietary l-carnitine (LC) is a nutritional factor that reduces liver lipid content. However, whether dietary LC can improve lipid metabolism via simultaneous activation of mitochondrial fatty acid (FA) ß-oxidation and suppression of endoplasmic reticulum (ER) stress is still unknown. Large yellow croaker were fed with a high-fat diet (HFD) supplemented with dietary LC at 0, 1·2 or 2·4 ‰ for 10 weeks. The results indicated that a HFD supplemented with LC reduced the liver total lipid and TAG content and improved serum lipid profiles. LC supplementation administered to this fish increased the liver antioxidant capacity by decreasing serum and liver malondialdehyde levels and enhancing the liver antioxidant capacity, which then relieved the liver damage. Dietary LC increased the ATP dynamic process and mitochondrial number, decreased mitochondrial DNA damage and enhanced the protein expression of mitochondrial ß-oxidation, biogenesis and mitophagy. Furthermore, dietary LC supplementation increased the expression of genes and proteins related to peroxisomal ß-oxidation and biogenesis. Interestingly, feeding fish with LC-enriched diets decreased the protein levels indicative of ER stress, such as glucose-regulated protein 78, p-eukaryotic translational initiation factor 2a and activating transcription factor 6. Dietary LC supplementation downregulated mRNA expression relative to FA synthesis, reduced liver lipid and relieved liver damage through regulating ß-oxidation and biogenesis of mitochondria and peroxisomes, as well as the ER stress pathway in fish fed with HFD. The present study provides the first evidence that dietary LC can improve lipid metabolism via simultaneously promoting FA ß-oxidation capability and suppressing the ER stress pathway in fish.


Asunto(s)
Metabolismo de los Lípidos , Perciformes , Animales , Dieta Alta en Grasa/efectos adversos , Antioxidantes/metabolismo , Carnitina/metabolismo , Hígado/metabolismo , Ácidos Grasos/metabolismo , Perciformes/genética , Estrés del Retículo Endoplásmico , Lípidos
17.
J Invest Dermatol ; 143(2): 305-316.e5, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36058299

RESUMEN

Circulating tumor cells are the key link between a primary tumor and distant metastases, but once in the bloodstream, loss of adhesion induces cell death. To identify the mechanisms relevant for melanoma circulating tumor cell survival, we performed RNA sequencing and discovered that detached melanoma cells and isolated melanoma circulating tumor cells rewire lipid metabolism by upregulating fatty acid (FA) transport and FA beta-oxidation‒related genes. In patients with melanoma, high expression of FA transporters and FA beta-oxidation enzymes significantly correlates with reduced progression-free and overall survival. Among the highest expressed regulators in melanoma circulating tumor cells were the carnitine transferases carnitine O-octanoyltransferase and carnitine acetyltransferase, which control the shuttle of peroxisome-derived medium-chain FAs toward mitochondria to fuel mitochondrial FA beta-oxidation. Knockdown of carnitine O-octanoyltransferase or carnitine acetyltransferase and short-term treatment with peroxisomal or mitochondrial FA beta-oxidation inhibitors thioridazine or ranolazine suppressed melanoma metastasis in mice. Carnitine O-octanoyltransferase and carnitine acetyltransferase depletion could be rescued by medium-chain FA supplementation, indicating that the peroxisomal supply of FAs is crucial for the survival of nonadherent melanoma cells. Our study identifies targeting the FA-based cross-talk between peroxisomes and mitochondria as a potential therapeutic opportunity to challenge melanoma progression. Moreover, the discovery of the antimetastatic activity of the Food and Drug Administration‒approved drug ranolazine carries translational potential.


Asunto(s)
Melanoma , Células Neoplásicas Circulantes , Ratones , Animales , Carnitina O-Acetiltransferasa/genética , Carnitina O-Acetiltransferasa/metabolismo , Carnitina Aciltransferasas/genética , Carnitina Aciltransferasas/metabolismo , Ranolazina , Oxidación-Reducción , Ácidos Grasos/metabolismo , Melanoma/tratamiento farmacológico , Carnitina/metabolismo
18.
J Nutr Biochem ; 114: 109224, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36403701

RESUMEN

Increased fructose intake from sugar-sweetened beverages and highly processed sweets is a well-recognized risk factor for the development of obesity and its complications. Fructose strongly supports lipogenesis on a normal chow diet by providing both, a substrate for lipid synthesis and activation of lipogenic transcription factors. However, the negative health consequences of dietary sugar are best observed with the concomitant intake of a HFD. Indeed, the most commonly used obesogenic research diets, such as "Western diet", contain both fructose and a high amount of fat. In spite of its common use, how the combined intake of fructose and fat synergistically supports development of metabolic complications is not fully elucidated. Here we present the preponderance of evidence that fructose consumption decreases oxidation of dietary fat in human and animal studies. We provide a detailed review of the mitochondrial ß-oxidation pathway. Fructose affects hepatic activation of fatty acyl-CoAs, decreases acylcarnitine production and impairs the carnitine shuttle. Mechanistically, fructose suppresses transcriptional activity of PPARα and its target CPT1α, the rate limiting enzyme of acylcarnitine production. These effects of fructose may be, in part, mediated by protein acetylation. Acetylation of PGC1α, a co-activator of PPARα and acetylation of CPT1α, in part, account for fructose-impaired acylcarnitine production. Interestingly, metabolic effects of fructose in the liver can be largely overcome by carnitine supplementation. In summary, fructose decreases oxidation of dietary fat in the liver, in part, by impairing acylcarnitine production, offering one explanation for the synergistic effects of these nutrients on the development of metabolic complications, such as NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fructosa/metabolismo , PPAR alfa/metabolismo , Hígado/metabolismo , Carnitina/metabolismo , Dieta Occidental/efectos adversos , Grasas de la Dieta/farmacología , Dieta Alta en Grasa
19.
Pediatr Cardiol ; 44(3): 720-726, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36107209

RESUMEN

Carnitine is an essential amino acid involved in transporting fatty acids across the mitochondrial membrane. Fatty acids are a primary source of energy for the myocardium. Studies in adults demonstrated decreased carnitine levels in the ischemic myocardium, but subsequent exogenous carnitine supplementation showed improvement of myocardial metabolism and left ventricular function. However, only limited data regarding carnitine are available in pediatrics. A single-center retrospective, paired data study was conducted. Patients < 18 years, left ventricular ejection fraction (LVEF) < 55% by echocardiography, and had received at least 7 days of oral or intravenous carnitine supplementation between January 2018 and March 2021 are included in the study. Several endpoints and covariates were collected for each patient: before, one week after, one month after, and 6 months after carnitine supplementation. Univariate analysis consisted of an analysis of variance (ANOVA), followed by an analysis of covariance (ANCOVA) to model LVEF while adjusting for other variables. 44 patients included in the final analyses. LVEF significantly improved from 50.5 to 56.6% (p < 0.01). When LVEF was adjusted for other interventions (mechanical ventilation, afterload reduction, diuretic therapy, spironolactone), the estimated means demonstrated a significant increase from 45.7 to 58.0% (p < 0.01). Free carnitine level increased significantly (p = 0.03), and N-terminal-pro-brain natriuretic peptide (p = 0.03), creatinine (p < 0.01), and lactate (p < 0.01) all significantly decreased over the study period. Carnitine supplementation in pediatric patients with left ventricular systolic dysfunction may be associated with an increase in LVEF and improvement in laboratory markers of myocardial stress and cardiac output.


Asunto(s)
Carnitina , Disfunción Ventricular Izquierda , Adulto , Humanos , Niño , Carnitina/metabolismo , Carnitina/farmacología , Función Ventricular Izquierda , Volumen Sistólico , Estudios Retrospectivos , Suplementos Dietéticos , Ácidos Grasos/farmacología
20.
Food Funct ; 13(23): 12039-12050, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36331311

RESUMEN

Metabolic syndrome (MS) is a collection of risk factors of serious metabolic diseases. L-Carnitine is an essential nutrient for human health, and the precursor of trimethylamine N-oxide (TMAO). Previous studies have shown that the effect of L-carnitine on MS is controversial, and no studies have considered the role of gut microbiota in the regulation of MS by L-carnitine. In the present study, we established a high-fat diet (HFD)-induced obese mice model and systematically explored the effect of a broad range of dietary L-carnitine concentrations (0.2% to 4%) on the major components of MS. The results show that L-carnitine (0.5%-4%) reduced HFD-caused body-weight gain, visceral adipose tissue, glucose intolerance, hyperglycemia, HOMA-IR index, hyperlipemia, hypertension, and hyperuricemia. The elevation in the concentrations of IL-6, IL-1ß, and TNF-α and decline in IL-10 in both serum and adipose tissue were also attenuated by L-carnitine. Furthermore, dietary L-carnitine increased the serum levels of TMAO produced by gut microbes. High-dose L-carnitine (2% and 4%), but not low-dose L-carnitine (0.2%-1%), notably modulated the composition of gut microbiota and partially attenuated HFD-induced gut microbiota dysbiosis. These results suggest that the ameliorative effect of L-carnitine on MS was independent of TMAO production and only partially related to the regulation of gut microbiota. This study provides crucial evidence for the utilization of L-carnitine as a safe and effective supplement for MS.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Humanos , Ratones , Animales , Carnitina/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Obesos , Síndrome Metabólico/tratamiento farmacológico , Metilaminas/metabolismo , Suplementos Dietéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA