Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Endocrinol ; 582: 112138, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147954

RESUMEN

Consumption of diets high in sugar and fat is related to the development of Metabolic dysfunction-associated steatotic liver disease (MASLD). Carnosine (CAR) is a dipeptide with antioxidant and anti-inflammatory action and has been studied for treating diseases. This work aimed to evaluate the effects of CAR on diet-induced MASLD in rats. Male Wistar rats were distributed into 2 groups (17 weeks): normocaloric (Co, n = 12), and hypercaloric diet rich in lipids and simple carbohydrates (MASLD, n = 12). After, the animals were redistributed to begin the treatment with CAR (4 weeks): Co (n = 6), Co + CAR (n = 6), MASLD (n = 6), and MASLD + CAR (n = 6), administered intraperitoneally (250 mg/kg). Evaluations included nutritional, hormonal and metabolic parameters; hepatic steatosis, inflammatory and oxidative markers. MASLD group had a higher adiposity index, systolic blood pressure, glucose, plasma and liver triglycerides and cholesterol, insulin, hepatic steatosis, oxidative markers, and lower PPAR-α (Peroxisome Proliferator-activated receptor α), compared to the Co. CAR attenuated plasma and hepatic triglyceride and cholesterol levels, hepatic steatosis, CD68+ macrophages, and hepatic oxidative markers, in addition to increasing HDL cholesterol levels and PPAR-α, compared to the untreated MASLD group. CAR acts in importants pathophysiological processes of MASLD and may be a therapeutic compound to control the disease.


Asunto(s)
Carnosina , Hígado Graso , Enfermedades Metabólicas , Masculino , Animales , Ratas , Ratas Wistar , Carnosina/farmacología , Carnosina/uso terapéutico , Receptores Activados del Proliferador del Peroxisoma , Dieta , Colesterol , Suplementos Dietéticos
2.
J Food Sci ; 89(1): 710-726, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38146794

RESUMEN

The beneficial role of carnosine during in vitro digestion of meat was previously demonstrated, and it was hypothesized that such benefits could also be obtained in a meal system. The current study, therefore, assessed carnosine effects on markers of lipid and protein oxidation and of advanced glycation end products (AGEs) during gastric and duodenal in vitro digestion of a burger meal model. The model included intrinsic (low) and enhanced (medium and high) carnosine levels in a mix of pork mince and bread, with or without ascorbic acid (AA) and/or fructose as anti- and prooxidants, respectively. In the presence of either AA or fructose, a carnosine prooxidative potential during digestion was observed at the medium carnosine level depending on markers and digestive phases. However, free carnosine found at the high carnosine level exerted a protective effect reducing the formation of 4-hydroxynonenal in the gastric phase and glyoxal in both the gastric and duodenal phases. Dual effects of carnosine are likely concentration related, whereby at the medium level, free radical production increases through carnosine's ferric-reducing capacity, but there is insufficient quantity to reduce the resulting oxidation, while at the higher carnosine level some decreases in oxidation are observed. In order to obtain carnosine benefits during meal digestion, these findings demonstrate that consideration must be given to the amount and nature of other anti- and prooxidants present and any potential interactions. PRACTICAL APPLICATION: Carnosine, a natural compound in meat, is a multifunctional and beneficial molecule for health. However, both pro- and antioxidative effects of carnosine were observed during digestion of a model burger meal when ascorbic acid was included at a supplemental level. Therefore, to obtain benefits of dietary carnosine during digestion of a meal, consideration needs to be given to the amount and nature of all anti- and prooxidants present and any potential interactions.


Asunto(s)
Carnosina , Carnosina/metabolismo , Carnosina/farmacología , Ácido Ascórbico , Antioxidantes/farmacología , Digestión , Fructosa
3.
BMC Ophthalmol ; 23(1): 502, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066465

RESUMEN

BACKGROUND: To assess oxidative effects induced by a high-calorie diet on the retina of Wistar rats and test the antioxidative effects of carnosine supplementation. METHODS: Wistar rats were randomly divided into the following groups: standard diet (SD), high-calorie diet (HcD), standard diet + carnosine (SD + Car), and high-calorie diet + carnosine (HcD + Car). The body weight, adiposity index, plasma glucose, total lipids, high-density lipoprotein (HDL), low-density lipoprotein (LDL), uric acid, creatinine, and triglycerides of the animals were evaluated. The retinas were analyzed for markers of oxidative stress. Hydrogen peroxide production was assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCF) oxidation. The total glutathione (tGSH), total antioxidant capacity (TAC), protein carbonyl, and sulfhydryl groups of the antioxidant system were analyzed. RESULTS: TAC levels increased in the retinas of the SD + Car group compared to the SD group (p < 0.05) and in the HcD + Car group compared to the HcD group (p < 0.05). The levels of GSH and the GSSH:GSSG ratio were increased in the HcD + Car group compared to the SD + Car group (p < 0.05). An increase in the retinal carbonyl content was observed in the HcD group compared to the SD group (p < 0.05) and in the HcD + Car group compared to the SD + Car group (p < 0.05). A high-calorie diet (HcD) was also associated with a decrease in retinal sulfhydryl-type levels compared to the SD group (p < 0.05). CONCLUSION: The results suggest that feeding a high-calorie diet to rats can promote an increase in carbonyl content and a reduction in sulfhydryl groups in their retinas. The administration of carnosine was not effective in attenuating these oxidative markers. TRIAL REGISTRATION: Animal Ethics Committee of Botucatu Medical School - Certificate number 1292/2019.


Asunto(s)
Antioxidantes , Carnosina , Ratas , Animales , Antioxidantes/farmacología , Carnosina/farmacología , Ratas Wistar , Estrés Oxidativo , Dieta , Suplementos Dietéticos
4.
Biochemistry (Mosc) ; 88(8): 1181-1190, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37758316

RESUMEN

Using nutritional interventions to cure and manage psychiatric disorders is a promising tool. In this regard, accumulating documents support strong relationships between the diet and brain health throughout the lifespan. Evidence from animal and human studies demonstrated that ß-alanine (Beta-alanine; BA), a natural amino acid, provides several benefits in fight against cognitive decline promoting mental health. This review summarizes and reports state-of-the-art evidence on how BA affects cognitive health and argues existence of potential unrevealed biochemical mechanisms and signaling cascades. There is a growing body of evidence showing that BA supplement has a significant role in mental health mediating increase of the cell carnosine and brain-derived neurotrophic factor (BDNF) content. BDNF is one of the most studied neurotrophins in the mammalian brain, which activates several downstream functional cascades via the tropomyosin-related kinase receptor type B (TrkB). Activation of TrkB induces diverse processes, such as programmed cell death and neuronal viability, dendritic branching growth, dendritic spine formation and stabilization, synaptic development, cognitive-related processes, and synaptic plasticity. Carnosine exerts its main effect via its antioxidant properties. This critical antioxidant also scavenges hypochlorous acid (HOCl), another toxic species produced in mammalian cells. Carnosine regulates transcription of hundreds of genes related to antioxidant mechanisms by increasing expression of the nuclear erythroid 2-related factor 2 (Nrf2) and translocating Nrf2 to the nucleus. Another major protective effect of carnosine on the central nervous system (CNS) is related to its anti-glycating, anti-aggregate activities, anti-inflammatory, metal ion chelator activity, and regulation of pro-inflammatory cytokine secretion. These effects could be associated with the carnosine ability to form complexes with metal ions, particularly with zinc (Zn2+). Thus, it seems that BA via BDNF and carnosine mechanisms may improve brain health and cognitive function over the entire human lifespan.


Asunto(s)
Carnosina , Animales , Humanos , Carnosina/farmacología , Carnosina/metabolismo , Antioxidantes , Factor Neurotrófico Derivado del Encéfalo/genética , Factor 2 Relacionado con NF-E2 , Cognición , beta-Alanina , Mamíferos/metabolismo
5.
High Alt Med Biol ; 24(4): 302-311, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37643283

RESUMEN

Rathor, Richa, Sukanya Srivastava, and Geetha Suryakumar. A comparative biochemical study between L-carnosine and ß-alanine in amelioration of hypobaric hypoxia-induced skeletal muscle protein loss. High Alt Med Biol. 24:302-311, 2023. Background: Carnosine (CAR; ß-alanyl-L-histidine), a biologically active dipeptide is known for its unique pH-buffering capacity, metal chelating activity, and antioxidant and antiglycation property. ß-Alanine (ALA) is a nonessential amino acid and used to enhance performance and cognitive functions. Hypobaric hypoxia (HH)-induced muscle protein loss is regulated by multifaceted signaling pathways. The present study investigated the beneficial effects of CAR and ALA against HH-associated muscle loss. Methodology: Simulated HH exposure was performed in an animal decompression chamber. Gastric oral administration of CAR (50 mg·kg-1) and ALA (450 mg·kg-1) were given daily for 3 days and at the end of the treatment, hindlimb skeletal muscle tissue was excised for western blot and biochemical assays. Results: Cosupplementation of CAR and ALA alone was able to ameliorate the hypoxia-induced inflammation, oxidative stress (FOXO), ER stress (GRP-78), and atrophic signaling (MuRF-1) in the skeletal muscles. Creatinine phospho kinase activity and apoptosis were also decreased in CAR- and ALA-supplemented rats. However, CAR showed enhanced protection in HH-induced muscle loss as CAR supplementation was able to enhance protein concentration, body weight, and decreased the protein oxidation and ALA administration was not able to restore the same. Conclusions: Hence, the present comprehensive study supports the fact that CAR (50 mg·kg-1) is more beneficial as compared with ALA (450 mg·kg-1) in ameliorating the hypoxia-induced skeletal muscle loss.


Asunto(s)
Carnosina , Ratas , Animales , Carnosina/farmacología , Carnosina/metabolismo , Músculo Esquelético/metabolismo , Suplementos Dietéticos , Proteínas Musculares/metabolismo , beta-Alanina/farmacología , beta-Alanina/metabolismo , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo
6.
Eur Rev Med Pharmacol Sci ; 27(3): 1083-1094, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36808356

RESUMEN

OBJECTIVE: The aim of this study was to investigate the hypolipidemic effects of carnosine and a commercial carnosine supplement on lipid status, liver and kidney function, and inflammation associated with dyslipidemia in rats with high-fat diet-induced hyperlipidemia. MATERIALS AND METHODS: The study was conducted on adult male Wistar rats, divided into control and experimental groups. Animals were kept in standard laboratory conditions and according to groups were treated with saline, carnosine, carnosine dietary supplement, simvastatin, and their combinations. All substances were prepared fresh every day and used by oral gavage. RESULTS: Treatment with a carnosine-based supplement significantly improved total and LDL cholesterol levels in serum, especially in the combination with simvastatin as a conventional drug in dyslipidemia treatment. The effect of carnosine on the metabolism of triglycerides was not as evident as in the case of cholesterol. Nevertheless, the values of the atherogenic index showed that the combinations of carnosine and carnosine supplement with simvastatin were the most effective in lowering this comprehensive lipid index. Dietary carnosine supplementation resulted also in anti-inflammatory effects, as demonstrated by immunohistochemical analyses. Besides, the good safety profile of carnosine in terms of its effect on liver and kidney functions was also confirmed. CONCLUSIONS: The use of carnosine supplements in preventing and/or treatment of metabolic disorders requires further investigations into the mechanisms of action and potential interactions with conventional therapy.


Asunto(s)
Carnosina , Dislipidemias , Ratas , Masculino , Animales , Hipolipemiantes/farmacología , Dieta Alta en Grasa , Carnosina/farmacología , Carnosina/uso terapéutico , Ratas Wistar , Triglicéridos , Suplementos Dietéticos , Hígado/metabolismo , Dislipidemias/metabolismo , Simvastatina/farmacología
7.
Nutrients ; 15(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36839397

RESUMEN

ß-alanine is a nonessential amino acid that combines with the amino acid histidine to form the intracellular dipeptide carnosine, an important intracellular buffer. Evidence has been well established on the ability of ß-alanine supplementation to enhance anaerobic skeletal muscle performance. As a result, ß-alanine has become one of the more popular supplements used by competitive athletes. These same benefits have also been reported in soldiers. Evidence accumulated over the last few years has suggested that ß-alanine can result in carnosine elevations in the brain, which appears to have broadened the potential effects that ß-alanine supplementation may have on soldier performance and health. Evidence suggests that ß-alanine supplementation can increase resilience to post-traumatic stress disorder, mild traumatic brain injury and heat stress. The evidence regarding cognitive function is inconclusive but may be more of a function of the stressor that is applied during the assessment period. The potential benefits of ß-alanine supplementation on soldier resiliency are interesting but require additional research using a human model. The purpose of this review is to provide an overview of the physiological role of ß-alanine and why this nutrient may enhance soldier performance.


Asunto(s)
Carnosina , Personal Militar , Humanos , Carnosina/farmacología , Ejercicio Físico/fisiología , Suplementos Dietéticos , beta-Alanina/farmacología , Cognición , Músculo Esquelético/metabolismo
8.
Int J Sport Nutr Exerc Metab ; 33(2): 84-92, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36623508

RESUMEN

Carnosine (ß-alanyl-L-histidine) and its methylated analogues anserine and balenine are highly concentrated endogenous dipeptides in mammalian skeletal muscle that are implicated in exercise performance. Balenine has a much better bioavailability and stability in human circulation upon acute ingestion, compared to carnosine and anserine. Therefore, ergogenic effects observed with acute carnosine and anserine supplementation may be even more pronounced with balenine. This study investigated whether acute balenine supplementation improves physical performance in four maximal and submaximal exercise modalities. A total of 20 healthy, active volunteers (14 males; six females) performed cycling sprints, maximal isometric contractions, a 4-km TT and 20-km TT following either preexercise placebo or 10 mg/kg of balenine ingestion. Physical, as well as mental performance, along with acid-base balance and glucose concentration were assessed. Balenine was unable to augment peak power (p = .3553), peak torque (p = .3169), time to complete the 4 km (p = .8566), nor 20 km time trial (p = .2660). None of the performances were correlated with plasma balenine or CN1 enzyme activity. In addition, no effect on pH, bicarbonate, and lactate was observed. Also, the supplement did not affect mental performance. In contrast, glucose remained higher during and after the 20 km time trial following balenine ingestion. In conclusion, these results overall indicate that the functionality of balenine does not fully resemble that of carnosine and anserine, since it was unable to elicit performance improvements with similar and even higher plasma concentrations.


Asunto(s)
Carnosina , Masculino , Animales , Femenino , Humanos , Carnosina/farmacología , Anserina , Dipéptidos , Suplementos Dietéticos , Mamíferos
9.
J Anim Physiol Anim Nutr (Berl) ; 107(3): 878-886, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36575591

RESUMEN

ß-alanine has been demonstrated to improve carcass traits and meat quality of animals. However, no research has been found on the effects of dietary ß-alanine in the meat quality control of finishing pigs, which are among the research focus. Therefore, this study aimed to evaluate the effects of dietary ß-alanine supplementation on growth performance, meat quality, carnosine content, amino acid composition and muscular antioxidant capacity of Chinese indigenous Ningxiang pigs. The treatments contained a basal diet (control, CON) and a basal diet supplemented with 600 mg/kg ß-alanine. Each treatment group consisted of five pens, with five pigs per pen. Results showed that compared with CON, supplemental ß-alanine did not affect the final body weight, average daily gain, average daily feed intake and the feed-to-gain ratio of pigs. Dietary ß-alanine supplementation tended to increase the pH45 min (p = 0.071) while decreasing the shear force (p = 0.085) and the drip loss (p = 0.091). Moreover, it improved (p < 0.05) the activities of glutathione peroxidase and catalase and lessened (p < 0.05) malondialdehyde concentration. Added ß-alanine in diets of finishing pigs could enhance the concentrations of arginine, alanine, and glutamate (p < 0.05) in the longissimus dorsi muscle and tended to raise the levels of cysteine, glycine and anserine (p = 0.060, p = 0.098 and p = 0.091 respectively). Taken together, our results showed that dietary ß-alanine supplementation contributed to the improvement of the carcass traits, meat quality and anserine content, the amelioration of muscle antioxidant capacity and the regulation of amino acid composition in Chinese indigenous Ningxiang pigs.


Asunto(s)
Antioxidantes , Carnosina , Porcinos , Animales , Antioxidantes/metabolismo , Aminoácidos/metabolismo , Carnosina/metabolismo , Carnosina/farmacología , Anserina/metabolismo , Anserina/farmacología , Suplementos Dietéticos , Dieta/veterinaria , Carne/análisis , beta-Alanina/farmacología , beta-Alanina/metabolismo , Alimentación Animal/análisis , Composición Corporal
10.
Physiol Res ; 72(1): 87-97, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36545878

RESUMEN

Carnosine is a performance-enhancing food supplement with a potential to modulate muscle energy metabolism and toxic metabolites disposal. In this study we explored interrelations between carnosine supplementation (2 g/day, 12 weeks) induced effects on carnosine muscle loading and parallel changes in (i) muscle energy metabolism, (ii) serum albumin glycation and (iii) reactive carbonyl species sequestering in twelve (M/F=10/2) sedentary, overweight-to-obese (BMI: 30.0+/-2.7 kg/m2) adults (40.1+/-6.2 years). Muscle carnosine concentration (Proton Magnetic Resonance Spectroscopy; 1H-MRS), dynamics of muscle energy metabolism (Phosphorus Magnetic Resonance Spectroscopy; 31P-MRS), body composition (Magnetic Resonance Imaging; MRI), resting energy expenditure (indirect calorimetry), glucose tolerance (oGTT), habitual physical activity (accelerometers), serum carnosine and carnosinase-1 content/activity (ELISA), albumin glycation, urinary carnosine and carnosine-propanal concentration (mass spectrometry) were measured. Supplementation-induced increase in muscle carnosine was paralleled by improved dynamics of muscle post-exercise phosphocreatine recovery, decreased serum albumin glycation and enhanced urinary carnosine-propanal excretion (all p<0.05). Magnitude of supplementation-induced muscle carnosine accumulation was higher in individuals with lower baseline muscle carnosine, who had lower BMI, higher physical activity level, lower resting intramuscular pH, but similar muscle mass and dietary protein preference. Level of supplementation-induced increase in muscle carnosine correlated with reduction of protein glycation, increase in reactive carbonyl species sequestering, and acceleration of muscle post-exercise phosphocreatine recovery.


Asunto(s)
Carnosina , Humanos , Adulto , Carnosina/metabolismo , Carnosina/farmacología , Reacción de Maillard , Fosfocreatina/metabolismo , Músculo Esquelético/metabolismo , Suplementos Dietéticos
11.
Aging (Albany NY) ; 14(21): 8688-8699, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36375474

RESUMEN

BACKGROUND: A complex of Zn and carnosine, called Zinc-L-carnosine (ZnC), enjoys a wide application as part of a Zn supplement therapeutic method as well as in treating peptic ulcers. However, researches fail to confirm the biological functions possessed by ZnC as well as tumor immune microenvironment in colorectal cancer (CRC). METHODS: Cell counting kit 8(CCK8), 5-ethynyl-2'-deoxyuridine (EdU), transwell and wound healing assays were conducted to study the influence of ZnC in the proliferating, invading and migrating processes of CRC cell lines (HCT116, LOVO) in vitro. The antitumor activity ZnC as well as its effects on tumor immune microenvironment were then assessed using CRC subcutaneous tumors in the C57BL/6 mouse model. RESULTS: According to CCK8, EdU, transwell and wound healing assays, ZnC inhibited CRC cell lines in terms of proliferation, invasion and migration. ZnC could inhibit miR-570 for up-regulating PD-L1 expression. In vivo experiments showed that gavage (100 mg/kg, once every day) of ZnC inhibited the tumor growth of CRC, and the combination of ZnC and anti-PD1 therapy significantly improved the efficacy exhibited by anti-PD1 in treating CRC. In addition, mass cytometry results showed that immunosuppressive cells including regulatory T cells (tregs), bone marrow-derived suppressor cells (MDSC), and M2 macrophages decreased whereas CD8+ T cells elevated after adding ZnC. CONCLUSIONS: The present study reveals that ZnC slows the progression of CRC by inhibiting CRC cells in terms of proliferation, invasion and migration, meanwhile up-regulating PD-L1 expression via inhibiting miR-570. The ZnC-anti-PD1 co-treatment assists in synergically increasing anti-tumor efficacy in CRC therapy.


Asunto(s)
Carnosina , Neoplasias Colorrectales , MicroARNs , Ratones , Animales , Carnosina/farmacología , Carnosina/uso terapéutico , Ratones Endogámicos C57BL , Antígeno B7-H1 , Inmunoterapia , Factores Inmunológicos , Neoplasias Colorrectales/tratamiento farmacológico , Proliferación Celular , Movimiento Celular , Microambiente Tumoral
12.
J Cachexia Sarcopenia Muscle ; 13(5): 2361-2372, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35977911

RESUMEN

BACKGROUND: Beta-alanine (BA) supplementation increases muscle carnosine, an abundant endogenous antioxidant and pH buffer in skeletal muscle. Carnosine loading promotes exercise capacity in healthy older adults. As patients with chronic obstructive pulmonary disease (COPD) suffer from elevated exercise-induced muscle oxidative/carbonyl stress and acidosis, and from reduced muscle carnosine stores, it was investigated whether BA supplementation augments muscle carnosine and induces beneficial changes in exercise capacity, quadriceps function, and muscle oxidative/carbonyl stress in patients with COPD. METHODS: In this double-blind, randomized, placebo (PL)-controlled trial (clinicaltrials.gov identifier: NCT02770417), 40 patients (75% male) with COPD (mean ± standard deviation: age 65 ± 6 years; FEV1 % predicted 55 ± 14%) were assigned to 12 weeks oral BA or PL supplementation (3.2 g/day). The primary outcome, i.e. muscle carnosine, was quantified from m. vastus lateralis biopsies obtained before and after intervention. Co-primary outcomes, i.e. incremental and constant work rate cycle capacity, were also assessed. Linear mixed model analyses were performed. Compliance with and side effects of supplement intake and secondary outcomes (quadriceps strength and endurance, and muscle oxidative/carbonyl stress) were also assessed. RESULTS: Beta-alanine supplementation increased muscle carnosine in comparison with PL in patients with COPD (mean difference [95% confidence interval]; +2.82 [1.49-4.14] mmol/kg wet weight; P < 0.001). Maximal incremental cycling capacity (VO2 peak: +0.5 [-0.7 to 1.7] mL/kg/min; P = 0.384, Wpeak: +5 [-1 to 11] W; P = 0.103) and time to exhaustion on the constant work rate cycle test (+28 [-179 to 236] s; P = 0.782) did not change significantly. Compliance with supplement intake was similar in BA (median (quartile 1-quartile 3); 100 (98-100)%) and PL (98 (96-100)%) (P = 0.294) groups, and patients did not report side effects possibly related to supplement intake. No change was observed in secondary outcomes. CONCLUSIONS: Beta-alanine supplementation is efficacious in augmenting muscle carnosine (+54% from mean baseline value) without side effects in patients with COPD in comparison with PL. However, accompanied beneficial changes in exercise capacity, quadriceps function, and muscle oxidative/carbonyl stress were not observed.


Asunto(s)
Carnosina , Enfermedad Pulmonar Obstructiva Crónica , Anciano , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Carnosina/farmacología , Carnosina/uso terapéutico , Suplementos Dietéticos , Ejercicio Físico/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , beta-Alanina/farmacología , beta-Alanina/uso terapéutico
13.
Molecules ; 27(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630780

RESUMEN

Carnosine (ß-alanyl-L-histidine) is a naturally occurring endogenous dipeptide and an over-the-counter food supplement with a well-demonstrated multimodal mechanism of action that includes the detoxification of reactive oxygen and nitrogen species, the down-regulation of the production of pro-inflammatory mediators, the inhibition of aberrant protein formation, and the modulation of cells in the peripheral (macrophages) and brain (microglia) immune systems. Since its discovery more than 100 years ago, a plethora of in vivo preclinical studies have been carried out; however, there is still substantial heterogeneity regarding the route of administration, the dosage, the duration of the treatment, and the animal model selected, underlining the urgent need for "coordinated/aligned" preclinical studies laying the foundations for well-defined future clinical trials. The main aim of the present position paper is to critically and concisely consider these key points and open a discussion on the possible "alignment" for future studies, with the goal of validating the full therapeutic potential of this intriguing molecule.


Asunto(s)
Carnosina , Animales , Encéfalo , Carnosina/farmacología , Suplementos Dietéticos , Modelos Animales de Enfermedad
14.
Biomed Pharmacother ; 151: 113157, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35605299

RESUMEN

Zinc (Zn) has an existence within large quantities in the human brain, while accumulating within synaptic vesicle. There is growing evidence that Zn metabolic equilibrium breaking participates into different diseases (e.g., vascular dementia, carcinoma, Alzheimer's disease). Carnosine refers to an endogenic dipeptide abundant in skeletal muscle and brains and exerts a variety of positive influences (e.g., carcinoma resistance, crosslinking resistance, metal chelation and oxidation limitation). A complex of Zn and carnosine, called Zinc-L-carnosine (ZnC), has been extensively employed within Zn supplement therapeutic method and the treating approach for ulcers. ZnC has been shown to play a variety of roles in the body, including inhibiting intracellular reactive oxygen species(ROS) and free radical levels, inhibiting inflammation, supplementing zinc enzymes and promoting wound healing and mucosal cell repair. The present study conducting a reviewing process for the advances of ZnC in tumor adjuvant therapy.


Asunto(s)
Carcinoma , Carnosina , Compuestos Organometálicos , Carcinoma/tratamiento farmacológico , Carnosina/análogos & derivados , Carnosina/farmacología , Carnosina/uso terapéutico , Humanos , Compuestos Organometálicos/farmacología , Zinc/metabolismo , Compuestos de Zinc
15.
Commun Biol ; 5(1): 462, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577977

RESUMEN

Fractures and related complications are a common challenge in the field of skeletal tissue engineering. Vitamin D and calcium are the only broadly available medications for fracture healing, while zinc has been recognized as a nutritional supplement for healthy bones. Here, we aimed to use polaprezinc, an anti-ulcer drug and a chelate form of zinc and L-carnosine, as a supplement for fracture healing. Polaprezinc induced upregulation of osteogenesis-related genes and enhanced the osteogenic potential of human bone marrow-derived mesenchymal stem cells and osteoclast differentiation potential of mouse bone marrow-derived monocytes. In mouse experimental models with bone fractures, oral administration of polaprezinc accelerated fracture healing and maintained a high number of both osteoblasts and osteoclasts in the fracture areas. Collectively, polaprezinc promotes the fracture healing process efficiently by enhancing the activity of both osteoblasts and osteoclasts. Therefore, we suggest that drug repositioning of polaprezinc would be helpful for patients with fractures.


Asunto(s)
Carnosina , Animales , Carnosina/análogos & derivados , Carnosina/farmacología , Reposicionamiento de Medicamentos , Curación de Fractura , Humanos , Ratones , Compuestos Organometálicos , Zinc/farmacología , Compuestos de Zinc
16.
J Int Soc Sports Nutr ; 19(1): 70-91, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35599917

RESUMEN

Background: Recent studies suggest that acute-combined carnosine and anserine supplementation has the potential to improve the performance of certain cycling protocols. Yet, data on optimal dose, timing of ingestion, effective exercise range, and mode of action are lacking. Three studies were conducted to establish dosing and timing guidelines concerning carnosine and anserine intake and to unravel the mechanism underlying the ergogenic effects. Methods: First, a dose response study A was conducted in which 11 men randomly received placebo, 10, 20, or 30 mg.kg-1 of both carnosine and anserine. They performed 3x maximal voluntary isometric contractions (MVC), followed by a 5 x 6 s repeated cycling sprint ability test (RSA), once before the supplement and 30 and 60 minutes after. In a second study, 15 men performed 3x MVCs with femoral nerve electrical stimulation, followed by an RSA test, once before 30 mg.kg-1 carnosine and anserine and 60 minutes after. Finally, in study C, eight men performed a high intensity cycling training after randomly ingesting 30 mg.kg-1 of carnosine and anserine, a placebo or antihistamines (reduce post-exercise blood flow) to investigate effects on muscle perfusion. Results: Study A showed a 3% peak power (p = 0.0005; 95% CI = 0.07 to 0.27; ES = 0.91) and 4.5% peak torque (p = 0.0006; 95% CI = 0.12 to 0.50; ES = 0.87) improvement on RSA and MVC, with 30 mg.kg-1 carnosine + anserine ingestion 60 minutes before the performance yielding the best results. Study B found no performance improvement on group level; however, a negative correlation (r = -0.54; p = 0.0053; 95% CI = -0.77 to -0.19) was found between carnosinase enzyme activity (responsible for carnosine and anserine breakdown) and performance improvement. No effect of the supplement on neuromuscular function nor on muscle perfusion was found. Conclusions: These studies reveal that acute ingestion of 30 mg.kg-1 of both carnosine and anserine, 60 minutes before a high intensity exercise, can potentially improve performance, such as short cycling sprints or maximal muscle contractions. Subjects with lower carnosinase activity, and thus a slower breakdown of circulating dipeptides, appear to benefit more from this ergogenic effect. Finally, neither the involvement of a direct effect on neuromuscular function, nor an indirect effect on recovery through increased muscle perfusion could be confirmed as potential mechanism of action. The ergogenic mechanism therefore remains elusive.


Asunto(s)
Carnosina , Sustancias para Mejorar el Rendimiento , Anserina/farmacología , Carnosina/farmacología , Suplementos Dietéticos , Humanos , Contracción Isométrica , Masculino , Sustancias para Mejorar el Rendimiento/farmacología
17.
Nutrients ; 14(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35276873

RESUMEN

Studies suggest that carnosine (beta-alanyl-L-histidine) is effective in treating neuromuscular diseases associated with aging, but there is still a need to clarify its role in motor units (MUs) function during aging. In this study, 40 male Wistar rats aged 15 months were randomly assigned to a control or to two experimental groups in which 0.1% carnosine supplementation was performed for 10 or 34 weeks. After 34 weeks, we examined fast fatigable (FF), fast fatigue-resistant (FR) and slow (S) MUs' force properties and fatigability, as well as antioxidant potential, advanced glycation end products, activity of enzymes, and histidyl dipeptides content in the medial gastrocnemius muscle. Short- and long-term carnosine supplementation maintained the force of FF MUs at a higher level during its rapid decline seen from the initial 10 to 70 s of the fatigue test. In FF, especially long-term, and in FR MUs, especially short-term, carnosine supplementation resulted in less rapid force decline during the initial 70 s of the second fatigue protocol. Carnosine supplementation did not change muscle antioxidant potential and mortality rate (~35% in all groups), nor muscle mass with aging. Moreover, instead of the expected increase, a decrease in histidyl dipeptides by ~30% in the red portion of medial gastrocnemius muscle after long-term supplementation was found. After chronic carnosine supplementation, the specific changes in fatigue resistance were observed in FF and FR units, but not in S MU types that were not accompanied by an improvement of antioxidant potential and activity of glycolytic or oxidative enzymes in aged rats. These observations indicate that carnosine supplementation during aging may generate different physiological adaptations which should be considered as an important factor when planning treatment strategies.


Asunto(s)
Carnosina , Contracción Muscular , Animales , Carnosina/farmacología , Suplementos Dietéticos , Masculino , Neuronas Motoras , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Ratas , Ratas Wistar
18.
Int. j. morphol ; 40(1): 91-97, feb. 2022. ilus
Artículo en Inglés | LILACS | ID: biblio-1385597

RESUMEN

SUMMARY: Carnosine is known as a natural dipeptide, which inhibits the proliferation of tumor cells throughout its action on mitochondrial respiration and cell glycolysis. However, not much is known about its effects on the metabolism of healthy cells. We explored the effects of Karnozin EXTRA® capsule with different concentrations of L-carnosine, on the cell viability and the expressions of intermediate filament vimentin (VIM) and superoxide dismutase (SOD2) in normal fibroblasts BHK-21/C13. Furthermore, we investigated its action on the energy production of these cells. Cell viability was quantified by the MTT assay. The Clark oxygen electrode (Oxygraph, Hansatech Instruments, England) was used to measure the "intact cell respiration rate", state 3 of ADP-stimulated oxidation, maximum oxidation capacity and the activities of complexes I, II and IV. Results showed that Karnozin EXTRA® capsule in concentrations of 2 and 5 mM of L-carnosine did not induce toxic effects and morphological changes in treated cells. Our data revealed a dose-dependent immunofluorescent signal amplification of VIM and SOD2 in the BHK-21/C13 cell line. This supplement substantially increased the recorded mitochondrial respiration rates in the examined cell line. Due to the stimulation of mitochondrial energy production in normal fibroblasts, our results suggested that Karnozin EXTRA® is a potentially protective dietary supplement in the prevention of diseases with altered mitochondrial function.


RESUMEN: La carnosina se conoce como dipéptido natural, que inhibe la proliferación de células tumorales a través de su acción sobre la respiración mitocondrial y la glucólisis celular. Sin embargo, no se sabe mucho de sus efectos sobre el metabolismo de las células sanas. Exploramos los efectos de la cápsula Karnozin EXTRA® con diferentes concentraciones de L-carnosina, sobre la viabilidad celular y las expresiones de vimentina de filamento intermedio (VIM) y superóxido dismutasa (SOD2) en fibroblastos normales BHK-21 / C13. Además, estudiamos su acción sobre la producción de energía de estas células. La viabilidad celular se cuantificó mediante el ensayo MTT. Se utilizó el electrodo de oxígeno Clark (Oxygraph, Hansatech Instruments, Inglaterra) para medir la "tasa de respiración de células intactas", el estado 3 de oxidación estimulada por ADP, la capacidad máxima de oxidación y las actividades de los complejos I, II y IV. Los resultados mostraron que la cápsula de Karnozin EXTRA® en concentraciones de 2 y 5 mM de L- carnosina no indujo efectos tóxicos ni cambios morfológicos en las células tratadas. Nuestros datos revelaron una amplificación de señal inmunofluorescente dependiente de la dosis de VIM y SOD2 en la línea celular BHK-21 / C13. Este suplemento aumentó sustancialmente las tasas de respiración mitocondrial registradas en la línea celular examinada. Debido a la estimulación de la producción de energía mitocondrial en fibroblastos normales, nuestros resultados sugirieron que Karnozin EXTRA® es un suplemento dietético potencialmente protector en la prevención de enfermedades con función mitocondrial alterada.


Asunto(s)
Animales , Carnosina/farmacología , Fibroblastos/efectos de los fármacos , Riñón/citología , Superóxido Dismutasa/efectos de los fármacos , Vimentina/efectos de los fármacos , Bioensayo , Supervivencia Celular/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Cricetinae , Técnicas de Cultivo de Célula , Metabolismo Energético
19.
J Physiol Biochem ; 78(1): 109-124, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35091983

RESUMEN

Recent studies have suggested that irisin may act as a potential neurokine. Exercise and L-carnosine supplementation showed neuroprotective effects in Alzheimer's disease (AD)-like conditions. However, the regulation of irisin in the hippocampus of streptozotocin (STZ)-induced memory impairment and its relation to insulin signalling remain to be investigated. This study was designed to compare the effect of swimming exercise and L-carnosine intake on serum, CSF and hippocampal irisin in rats received intracerebroventricular (ICV) injection of STZ. Rats were recruited in swimming paradigm, received oral carnosine (100 mg/kg/day) or vehicle treated. After 5 weeks, rats were sacrificed after neurobehavioural testing. CSF and serum irisin were determined. Hippocampal tissues were used to assess expression of FNDC5/irisin, BDNF and proteins related to insulin signalling, in addition to ß-amyloid peptide and phosphorylated tau protein levels. We observed decreased hippocampal, but not CSF or serum, irisin in ICV-STZ-injected rats. Exercise and carnosine intake almost normalized hippocampal FNDC5/irisin expression which was associated with reduced soluble ß-amyloid peptide and phosphorylated tau protein, improved BDNF and insulin signalling proteins, with corresponding mitigated cognitive impairments. However, hippocampal FNDC5/irisin was not correlated with serum or CSF irisin levels. Histologically, both interventions ameliorated the hippocampal damage in STZ-injected rats. The current study reveals that carnosine is equivalent to exercise in reversing cognitive decline and Alzheimer's biomarkers. In both interventions, enhancement of hippocampal FNDC5/irisin and insulin signalling may be involved in mediating these neuroprotective effects.


Asunto(s)
Enfermedad de Alzheimer , Carnosina , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Animales , Carnosina/metabolismo , Carnosina/farmacología , Suplementos Dietéticos , Fibronectinas/metabolismo , Fibronectinas/farmacología , Hipocampo/metabolismo , Ratas , Natación
20.
IUBMB Life ; 74(1): 101-116, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34455667

RESUMEN

High altitude is an environmental stress that is accompanied with numerous adverse biological responses, including skeletal muscle weakness and muscle protein loss. Skeletal muscle wasting is an important clinical problem, progressing to critical illness, associated with increased morbidity and mortality. The present study explores the protective efficacy of endogenous dipeptide, carnosine (CAR), supplementation in ameliorating skeletal muscle protein loss under hypobaric hypoxia (HH). Male Sprague-Dawley rats (n = 5) were randomly divided into control group, HH-exposed group (3 days HH exposure equivalent to 7,620 m), and HH-exposed rats supplemented with carnosine (3 days; 150 mg/kg b.w, orally) (HH + CAR). HH-exposed rats supplemented with CAR ameliorated HH-induced oxidative protein damage, lipid peroxidation, and maintained pro-inflammatory cytokines levels. HH-associated muscle protein degradative pathways, including calpain, ubiquitination, endoplasmic reticulum stress, autophagy, and apoptosis were also regulated in carnosine-supplemented rats. Further, the muscle damage marker, the levels of serum creatine phosphokinase were also reduced in HH + CAR co-supplemented rats which proved the protective efficacy of CAR against hypobaric hypoxia-induced muscle protein loss. Altogether, CAR supplementation ameliorated HH-induced skeletal muscle protein loss via performing multifaceted ways, mainly by maintaining redox homeostasis and proteostasis in skeletal muscle.


Asunto(s)
Carnosina , Proteostasis , Animales , Carnosina/metabolismo , Carnosina/farmacología , Suplementos Dietéticos , Dipéptidos/metabolismo , Estrés del Retículo Endoplásmico , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Masculino , Músculo Esquelético/metabolismo , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA