Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.891
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 272, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605293

RESUMEN

BACKGROUND: Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS: This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION: Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.


Asunto(s)
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza/metabolismo , Tolerancia a la Sal/genética , Transcriptoma , Lignina/metabolismo , Flavonoides/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Transporte Iónico , Carbono/metabolismo , Suelo , Factores de Transcripción/genética
2.
Molecules ; 29(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611864

RESUMEN

The Passiflora genus is recognised for its ethnopharmacological, sensorial, and nutritional significance. Yet, the screening of its dietary and bioactive molecules has mainly targeted hydrophilic metabolites. Following the PRISMA-P protocol, this review assessed the current knowledge on carotenoid composition and analysis within Passiflora, examining 968 records from seven databases and including 17 studies focusing on carotenoid separation and identification in plant parts. Those publications originated in America and Asia. P. edulis was the most frequently examined species of a total of ten, while pulp was the most studied plant part (16 studies). Carotenoid analysis involved primarily high-performance liquid chromatography separation on C18 columns and detection using diode array detectors (64.71%). Most studies identified the provitamin A ß-carotene and xanthophylls lutein and zeaxanthin, with their geometric configuration often neglected. Only one study described carotenoid esters. Besides the methodology's insufficient description, the lack of use of more accurate techniques and practices led to a high risk of bias in the carotenoid assignment in 17.65% of the articles. This review highlights the opportunity to broaden carotenoid studies to other species and parts within the diverse Passiflora genus, especially to wild, locally available fruits, which may have a strategic role in enhancing food diversity and security amidst climatic changes. Additionally, it urges the use of more accurate and efficient analytical methods based on green chemistry to better identify Passiflora carotenoids.


Asunto(s)
Passiflora , Revisiones Sistemáticas como Asunto , Metaanálisis como Asunto , Carotenoides , Frutas
3.
Methods Mol Biol ; 2788: 3-18, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656505

RESUMEN

Carotenoids are the natural pigments available in nature and exhibit different colors such as yellow, red, and orange. These are a class of phytonutrients that have anti-cancer, anti-inflammatory, anti-oxidant, immune-modulatory, and anti-aging properties. These were used in food, pharmaceutical, nutraceutical, and cosmetic industries. They are divided into two classes: carotenes and xanthophylls. The carotenes are non-oxygenated derivatives and xanthophylls are oxygenated derivatives. The major source of carotenoids are vegetables, fruits, and tissues. Carotenoids also perform the roles of photoprotection and photosynthesis. In addition to the roles mentioned above, they are also involved and act as precursor molecules for the biosynthesis of phytohormones such as strigolactone and abscisic acid. This chapter briefly introduces carotenoids and their extraction method from plant tissue. Proposed protocol describes the extraction of carotenoid using solvents chloroform and dichloromethane. Reverse-phase HPLC can be performed with C30 columns using gradient elution. The column C30 is preferred to the C18 column because the C30 column has salient features, which include selective nature in the separation of structural isomers and hydrophobic, long-chain compounds, and shows the best compatibility with highly aqueous mobile phases. A complete pipeline for the extraction of carotenoids from plant tissue is given in the present protocol.


Asunto(s)
Carotenoides , Carotenoides/aislamiento & purificación , Carotenoides/química , Carotenoides/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Plantas/química , Plantas/metabolismo , Extractos Vegetales/química
4.
BMC Plant Biol ; 24(1): 288, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627611

RESUMEN

One of the major problems endangering plant growth and productivity worldwide is salt stress. This study aimed to assess the effects of potassium silicate (K2O3Si) on the physical, biochemical, and morphological characteristics of chicory (Cichorium intybus L.) under various levels of salinity stress. The plants were treated with K2O3Si at concentrations of 0, 1, 2, and 3 mM and cultivated under different salt stress conditions (0, 80, 160, and 240 mM NaCl). The findings revealed that salt stress led to decreased root and shoot dry weights, Fv/Fm ratio, chlorophyll a, b, and total chlorophyll, as well as inulin contents. However, foliar exposure to K2O3Si at all salinity levels resulted in improvements in the measured traits. As salinity levels increased, there was a corresponding increase in the accumulation of sodium ions (Na+) and a sharp reduction in potassium ions (K +) in the shoot. Nonetheless, treatment with K2O3Si caused a decrease in Na + accumulation and an improvement in K+ content under all salinity levels. Carotenoid content increased under 80 mM salinity stress, but decreased with higher salinity levels. Application of K2O3Si at all levels resulted in increased carotenoid content under salinity stress conditions. The content of MDA increased significantly with increasing salinity stress, particularly at 240 mM. However, foliar spraying with K2O3Si significantly decreased MDA content at all salinity levels. Salinity stress up to 160 mM increased the total phenol, flavonoid, and anthocyanin contents, while 240 mM NaCl decreased the biosynthesis of phytochemicals. Additionally, the use of K2O3Si increased the content of total phenol, flavonoid, and anthocyanin at all salt levels. Foliar application of K2O3Si increased the tolerance of chicory plants to salinity stress by reducing MDA and increasing phenolic compounds and potassium content. These results suggest that exogenous K2O3Si can be a practical strategy to improve the growth and yield of chicory plants exposed to saline environments.


Asunto(s)
Cichorium intybus , Clorofila A , Potasio , Antocianinas , Cloruro de Sodio , Estrés Salino , Antioxidantes , Iones , Silicatos , Fitoquímicos , Carotenoides , Fenoles , Salinidad , Estrés Fisiológico
5.
Nanoscale ; 16(17): 8378-8389, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38602041

RESUMEN

Bacterial infection is one of the most serious clinical complications, with life-threatening outcomes. Nature-inspired biomaterials offer appealing microscale and nanoscale architectures that are often hard to fabricate by traditional technologies. Inspired by the light-harvesting nature, we engineered sulfuric acid-treated sunflower sporopollenin exine-derived microcapsules (HSECs) to capture light and bacteria for antimicrobial photothermal therapy. Sulfuric acid-treated HSECs show a greatly enhanced photothermal performance and a strong bacteria-capturing ability against Gram-positive bacteria. This is attributed to the hierarchical micro/nanostructure and surface chemistry alteration of HSECs. To test the potential for clinical application, an in situ bacteria-capturing, near-infrared (NIR) light-triggered hydrogel made of HSECs and curdlan is applied in photothermal therapy for infected skin wounds. HSECs and curdlan suspension that spread on bacteria-infected skin wounds of mice first capture the local bacteria and then form hydrogels on the wound upon NIR light stimulation. The combination shows a superior antibacterial efficiency of 98.4% compared to NIR therapy alone and achieved a wound healing ratio of 89.4%. The current study suggests that the bacteria-capturing ability and photothermal properties make HSECs an excellent platform for the phototherapy of bacteria-infected diseases. Future work that can fully take advantage of the hierarchical micro/nanostructure of HSECs for multiple biomedical applications is highly promising and desirable.


Asunto(s)
Biopolímeros , Cápsulas , Carotenoides , Helianthus , Terapia Fototérmica , Polen , Animales , Ratones , Helianthus/química , Polen/química , Cápsulas/química , Antibacterianos/química , Antibacterianos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Staphylococcus aureus/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Rayos Infrarrojos
6.
J Oleo Sci ; 73(4): 393-409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556275

RESUMEN

Cold-pressed oils are oils prepared from pressing plant materials with a screw or hydraulic press, yielding oils with little contamination of harmful chemicals and high content of nutrients and functional constituents. Cold-pressed oils have gained increasing recognition as food supplements for preventing and ameliorating body deterioration due to ageing and the progression of lifestyle diseases or non-communicable diseases. This article aimed to review their structure, bioactivity, and chromatographic analysis of the mostly found functional compounds in cold-pressed oils, including phytosterols, carotenoids, tocols (tocopherols and tocotrienols), phenolic compounds (flavonoids, phenolic acids, tannins, stilbenes, and lignans), and squalene.


Asunto(s)
Aceites de Plantas , Carotenoides/análisis , Fitosteroles/análisis , Aceites de Plantas/química , Tocoferoles/análisis
7.
Food Chem ; 448: 139061, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537550

RESUMEN

Recently, deep eutectic solvents (DES) have been extensively researched as a more biocompatible and efficient alternative to conventional solvents for extracting pigments from natural resources. The efficiency of DES extraction for the anthocyanin and carotenoid can be enhanced by microwave-assisted extraction (MAE) and/or ultrasound-assisted extraction (UAE) techniques. Apart from the extraction efficiency, the toxicity and recovery of the pigments and their bioavailability are crucial for potential applications. A plethora of studies have explored the extraction efficiency, toxicity, and recovery of pigments from various natural plant-based matrices using DES. Nevertheless, a detailed review of the deep eutectic solvent extraction of natural pigments has not been reported to date. Additionally, the toxicity, safety, and bioavailability of the extracted pigments, and their potential applications are not thoroughly documented. Therefore, this review is designed to understand the aforementioned concepts in using DES for anthocyanin and carotenoid extraction.


Asunto(s)
Antocianinas , Carotenoides , Disolventes Eutécticos Profundos , Tecnología Química Verde , Extractos Vegetales , Antocianinas/química , Antocianinas/aislamiento & purificación , Carotenoides/química , Carotenoides/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Fraccionamiento Químico/métodos , Microondas
8.
Phytother Res ; 38(5): 2482-2495, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38446350

RESUMEN

Saffron is a spice derived from the flower of Crocus sativus L., which has been used for centuries as a coloring and flavoring agent, as well as a source of medicinal compounds. Saffron contains various bioactive constituents, such as crocin, crocetin, safranal, picrocrocin, and kaempferol, that have shown potential benefits for human health. Among them, crocin is the most abundant and characteristic constituent of saffron, responsible for its bright red color and antioxidant properties. One of the most promising applications of saffron and its constituents is in the prevention and treatment of neurological disorders, such as depression, anxiety, Alzheimer's disease, Parkinson's disease, and other brain disorders. Saffron and its constituents have been reported to exert neuroprotective effects through various mechanisms, such as modulating neurotransmitters, enhancing neurogenesis, reducing neuroinflammation, regulating oxidative stress, activating the Nrf2 signaling pathway, and modulating epigenetic factors. Several clinical and preclinical studies have demonstrated the efficacy and safety of saffron and its constituents in improving cognitive function, mood, and other neurological outcomes. In this review, we summarize the current evidence on the therapeutic potential of saffron and its constituents in neurological disorders, from bench to bedside. We also discuss the challenges and future directions for the development of saffron-based therapies for brain health.


Asunto(s)
Encefalopatías , Crocus , Crocus/química , Humanos , Animales , Encefalopatías/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Carotenoides/farmacología , Carotenoides/uso terapéutico , Estrés Oxidativo/efectos de los fármacos
9.
Bioresour Technol ; 398: 130513, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432540

RESUMEN

Demonstrating outdoor cultivation of engineered microalgae at considerable scales is essential for their prospective large-scale deployment. Hence, this study focuses on the outdoor cultivation of an engineered Chlamydomonas reinhardtii strain, 3XAgBs-SQs, for bisabolene production under natural dynamic conditions of light and temperature. Our preliminary outdoor experiments showed improved growth, but frequent culture collapses in conventional Tris-acetate-phosphate medium. In contrast, modified high-salt medium (HSM) supported prolonged cell survival, outdoor. However, their subsequent outdoor scale-up from 250 mL to 5 L in HSM was effective with 10 g/L bicarbonate supplementation. Pulse amplitude modulation fluorometry and metabolomic analysis further validated their improved photosynthesis and uncompromised metabolic fluxes towards the biomass and the products (natural carotenoids and engineered bisabolene). These strains could produce 906 mg/L bisabolene and 54 mg/L carotenoids, demonstrating the first successful outdoor photoautotrophic cultivation of engineeredC. reinhardtii,establishing it as a one-cell two-wells biorefinery.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/metabolismo , Estudios Prospectivos , Chlamydomonas reinhardtii/metabolismo , Fotosíntesis , Carotenoides/metabolismo
10.
Nutrients ; 16(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474753

RESUMEN

This study explores age- and time-dependent variations in postprandial micronutrient absorption after a micronutrient-rich intervention meal within the Biomiel (bioavailability of micronutrients in elderly) study. Comprising 43 healthy participants, the study compares young (n = 21; mean age 26.90 years) and old (n = 22; mean age 66.77 years) men and women, analyzing baseline concentrations and six-hour postprandial dynamics of iron (Fe), copper (Cu), zinc (Zn), selenium (Se), iodine (I), free zinc (fZn), vitamin C, retinol, lycopene, ß-carotene, α-tocopherol, and γ-tocopherol, along with 25(OH) vitamin D (quantified only at baseline). Methodologically, quantifications in serum or plasma were performed at baseline and also at 90, 180, 270, and 360 min postprandially. Results reveal higher baseline serum Zn and plasma lycopene concentrations in the young group, whereas Cu, Se, Cu/Zn ratio, 25(OH) vitamin D, α-tocopherol, and γ-tocopherol were higher in old participants. Postprandial variability of Zn, vitamin C, and lycopene showed a strong time-dependency. Age-related differences in postprandial metabolism were observed for Se, Cu, and I. Nevertheless, most of the variance was explained by individuality. Despite some limitations, this study provides insights into postprandial micronutrient metabolism (in serum/plasma), emphasizing the need for further research for a comprehensive understanding of this complex field. Our discoveries offer valuable insights for designing targeted interventions to address and mitigate micronutrient deficiencies in older adults, fostering optimal health and well-being across the lifespan.


Asunto(s)
Selenio , Oligoelementos , Masculino , Humanos , Femenino , Anciano , Adulto , Micronutrientes , Licopeno , alfa-Tocoferol , Carotenoides , gamma-Tocoferol , Vitaminas , Vitamina A , Zinc , Ácido Ascórbico , Vitamina D
11.
Molecules ; 29(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338351

RESUMEN

Sweet potato provides rich nutrients and bioactive substances for the human diet. In this study, the volatile organic compounds of five pigmented-fleshed sweet potato cultivars were determined, the characteristic aroma compounds were screened, and a correlation analysis was carried out with the aroma precursors. In total, 66 volatile organic compounds were identified. Terpenoids and aldehydes were the main volatile compounds, accounting for 59% and 17%, respectively. Fifteen compounds, including seven aldehydes, six terpenes, one furan, and phenol, were identified as key aromatic compounds for sweet potato using relative odor activity values (ROAVs) and contributed to flower, sweet, and fat flavors. The OR sample exhibited a significant presence of trans-ß-Ionone, while the Y sample showed high levels of benzaldehyde. Starch, soluble sugars, 20 amino acids, and 25 fatty acids were detected as volatile compounds precursors. Among them, total starch (57.2%), phenylalanine (126.82 ± 0.02 g/g), and fatty acids (6.45 µg/mg) were all most abundant in Y, and LY contained the most soluble sugar (14.65%). The results of the correlation analysis revealed the significant correlations were identified between seven carotenoids and trans-ß-Ionone, soluble sugar and nerol, two fatty acids and hexanal, phenylalanine and 10 fatty acids with benzaldehyde, respectively. In general, terpenoids and aldehydes were identified as the main key aromatic compounds in sweet potatoes, and carotenoids had more influence on the aroma of OR than other cultivars. Soluble sugars, amino acids, and fatty acids probably serve as important precursors for some key aroma compounds in sweet potatoes. These findings provide valuable insights for the formation of sweet potato aroma.


Asunto(s)
Ipomoea batatas , Norisoprenoides , Solanum tuberosum , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Benzaldehídos , Ipomoea batatas/química , Carotenoides , Odorantes/análisis , Terpenos , Aldehídos/análisis , Azúcares , Ácidos Grasos , Fenilalanina , Almidón
12.
Mult Scler Relat Disord ; 83: 105454, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38306888

RESUMEN

BACKGROUND: Multiple sclerosis (MS), as a demyelinating disease correlated with inflammation and oxidative stress, affects the central nervous system and causes a wide range of complications, including psychiatric disorders. Considering the anti-inflammatory and antioxidant properties associated with the bioactive components of saffron, such as crocin (trans-crocetin bis(ß-d-gentiobiosyl) ester), and their potential impact on ameliorating psychiatric symptoms, our study aimed to investigate the effect of crocin on biomarkers of inflammation, oxidative stress, and mental health, e.g., depression and anxiety in individuals with MS. METHOD: Patients with MS were randomized into two groups, taking either 15 mg crocin tablets twice a day (n = 25; 30 mg/day) or placebo tablets (n = 25) for 8 weeks. The valid and reliable Beck depression and anxiety scale questionnaire was recorded, and fasting blood samples were collected to measure biomarkers, including high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and nitric oxide (NO) at baseline and week 8 following the intervention. RESULTS: The data analysis using ANCOVA showed that supplementation with crocin for 8 weeks significantly lowered hs-CRP levels (p-value= 0.01). In addition, within-group comparisons showed crocin significantly decreased anxiety (p-value= 0.01). However, crocin did not affect serum MDA and NO after 8 weeks of intervention. CONCLUSION: Our findings suggest that crocin may keep promise in attenuating inflammation, evidenced by reducing hs-CRP in patients with MS. However, supplementation for 8 weeks may not be sufficient to improve mental health, and future clinical studies with higher sample sizes and various doses and durations are recommended.


Asunto(s)
Proteína C-Reactiva , Carotenoides , Esclerosis Múltiple , Humanos , Proteína C-Reactiva/metabolismo , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/tratamiento farmacológico , Método Doble Ciego , Biomarcadores , Inflamación/tratamiento farmacológico , Estado de Salud , Suplementos Dietéticos
13.
Planta ; 259(4): 74, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407665

RESUMEN

MAIN CONCLUSION: The combined analysis of transcriptome and metabolome provided molecular insight into the dynamics of multiple active ingredients biosynthesis and accumulation across different cultivars of Lycium barbarum. Lycium barbarum L. has a high concentration of active ingredients and is well known in traditional Chinese herbal medicine for its therapeutic properties. However, there are many Lycium barbarum cultivars, and the content of active components varies, resulting in inconsistent quality between Lycium barbarum cultivars. At present, few research has been conducted to reveal the difference in active ingredient content among different cultivars of Lycium barbarum at the molecular level. Therefore, the transcriptome of 'Ningqi No.1' and 'Qixin No.1' during the three development stages (G, T, and M) was constructed in this study. A total of 797,570,278 clean reads were obtained. Between the two types of wolfberries, a total of 469, 2394, and 1531 differentially expressed genes (DEGs) were obtained in the 'G1 vs. G10,' 'T1 vs. T10,' and 'M1 vs. M10,' respectively, and were annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. Using these transcriptome data, most DEGs related to the metabolism of the active ingredients in 'Ningqi No.1' and 'Qixin No.1' were identified. Moreover, a widely targeted metabolome analysis of the metabolites of 'Ningqi 1' and 'Qixin 1' fruits at the maturity stage revealed 1,135 differentially expressed metabolites (DEMs) in 'M1 vs. M10,' and many DEMs were associated with active ingredients such as flavonoids, alkaloids, terpenoids, and so on. We further quantified the flavonoid, lignin, and carotenoid contents of the two Lycium barbarum cultivars during the three developmental stages. The present outcome provided molecular insight into the dynamics of multiple active ingredients biosynthesis and accumulation across different cultivars of Lycium barbarum, which would provide the basic data for the formation of Lycium barbarum fruit quality and the breeding of outstanding strains.


Asunto(s)
Lycium , Lycium/genética , Transcriptoma/genética , Fitomejoramiento , Metaboloma , Carotenoides , Flavonoides/genética
14.
Fitoterapia ; 174: 105857, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354821

RESUMEN

Mauritia flexuosa, known as buriti in Brazil, is a widespread palm tree in Amazonia. It has many ethnobotanical uses, including food, oil, and medicine. The oil obtained from buriti's fruit pulp has high levels of monounsaturated fatty acids, carotenoids, and tocopherols, and is used in the food, cosmetic, and pharmaceutical industries for its antioxidant properties. Many biological activities have been reported for buriti oil, such as antioxidant, antimicrobial, chemopreventive, and immunomodulatory. Due to its high content of bioactive compounds, buriti oil is considered a functional ingredient with possible benefits in preventing oxidative stress and chronic diseases, particularly in the gastrointestinal tract. Peptic ulcer disease is a multifactorial disorder, involving lesions in the stomach and duodenum mucosa, which has a complex healing process. In this context, some nutrients and bioactive compounds help the maintenance of gastrointestinal mucosal integrity and function, such as carotenoids, tocopherols, and unsaturated fatty acids, which makes buriti oil an interesting candidate to be used in the prevention and management of gastrointestinal diseases. This study aimed to evaluate the gastroprotective and antiulcer effects of buriti oil and its possible mechanisms of action. Buriti oil reduced the ulcerative area and lipid peroxidation induced by ethanol. The gastroprotective activity of buriti oil partially depends on nitric oxide and sulfhydryl compounds. In acetic acid-induced gastric ulcers, buriti oil accelerated healing and stimulated the formation of new gastric glands. These results demonstrated the potential of buriti oil as a functional ingredient to promote health benefits in the gastrointestinal tract.


Asunto(s)
Antioxidantes , Arecaceae , Aceites de Plantas , Antioxidantes/farmacología , Promoción de la Salud , Estructura Molecular , Carotenoides/farmacología , Tocoferoles/farmacología
15.
Environ Pollut ; 345: 123456, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38307241

RESUMEN

The role of rhizobia in alleviating cadmium (Cd) stress in woody legumes is still unclear. Therefore, two types of black locust (Robinia pseudoacacia L.) with high and low Cd accumulation abilities were selected from 11 genotypes in China, and the effects of rhizobium (Mesorhizobium huakuii GP1T11) inoculation on the growth, CO2 and H2O gas exchange parameters, Cd accumulation, and the absorption of mineral elements of the high (SX) and low Cd-accumulator (HB) were compared. The results showed that rhizobium-inoculation significantly increased biomass, shoot Cd contents, Cd accumulation, root-to-shoot translocation factor (TF) and the absorption and accumulation of mineral elements in both SX and HB. Rhizobium-inoculation increased chlorophyll a and carotenoid contents, and the intercellular carbon dioxide concentrations in HB plants. Under Cd exposure, the high-accumulator SX exhibited a significant decrease in photosynthetic CO2 fixation (Pn) and an enhanced accumulation of Cd in leaves, but coped with Cd exposure by increasing chlorophyll synthesis, regulating stomatal aperture (Gs), controlling transpiration (Tr), and increasing the absorption and accumulation of mineral elements. In contrast, the low-accumulator HB was more sensitive to Cd exposure despite preferential accumulation of Cd in roots, with decreased chlorophyll and carotenoid contents, but significantly increased root biomass. Compared to the low-accumulator HB, non-inoculated Cd-exposed SX plants had higher chlorophyll contents, and rhizobium-inoculated Cd-exposed SX plants had higher Pn, Tr, and Gs as well as higher levels of P, K, Fe, Ca, Zn, and Cu. In conclusion, the high- and low-Cd-accumulator exhibited different physiological responses to Cd exposure. Overall, rhizobium-inoculation of black locust promoted the growth and heavy metal absorption, providing an effective strategy for the phytoremediation of heavy metal-contaminated soils by this woody legume.


Asunto(s)
Metales Pesados , Rhizobium , Robinia , Contaminantes del Suelo , Cadmio/toxicidad , Robinia/fisiología , Clorofila A , Dióxido de Carbono/análisis , Metales Pesados/farmacología , Clorofila , Minerales , Carotenoides , Biodegradación Ambiental , Contaminantes del Suelo/análisis
16.
Molecules ; 29(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38398667

RESUMEN

The primary goal of this study was to generate different kinds of functional products based on carrots that were supplemented with lactic acid bacteria. The fact that carrots (Daucus carota sp.) rank among the most popular vegetables in our country led to the convergence of the research aim. Their abundance of bioactive compounds, primarily polyphenols, flavonoids, and carotenoids, offers numerous health benefits. Among the obtained products, the freeze-dried carrot powder (FDCP) variation presented the highest concentrations of total carotenoids (TCs) and ß-carotene (BC) of 26.977 ± 0.13 mg/g DW and 22.075 ± 0.14 mg/g DW, respectively. The amount of total carotenoids and ß-carotene significantly increased with the addition of the selected lactic acid bacteria (LAB) for most of the samples. In addition, a slight increase in the antioxidant activity compared with the control sample for the FDCP variant, with the highest value of 91.74%, was observed in these functional food products. The content of polyphenolic compounds varied from 0.044 to 0.091 mg/g DW, while the content of total flavonoids varied from 0.03 to 0.66 mg/g DW. The processing method had an impact on the population of L. plantarum that survived, as indicated by the viability of bacterial cells in all the analyzed products. The chromatographic analysis through UHPLC-MS/MS further confirmed the abundance of the bioactive compounds and their corresponding derivatives by revealing 19 different compounds. The digestibility study indicated that carotenoid compounds from carrots followed a rather controlled release. The carrot-based products enriched with Lactobacillus plantarum can be considered newly functional developed products based on their high content of biologically active compounds with beneficial effects upon the human body. Furthermore, these types of products could represent innovative products for every related industry such as the food, pharmaceutical, and cosmeceutical industries, thus converging a new strategy to improve the health of consumers or patients.


Asunto(s)
Daucus carota , Lactobacillus plantarum , Humanos , beta Caroteno/análisis , Daucus carota/química , Espectrometría de Masas en Tándem , Carotenoides/análisis , Flavonoides
17.
Nutrients ; 16(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38398886

RESUMEN

BACKGROUND: Liver diseases are constantly increasing throughout the world and are often associated with other diseases, but above all they are caused by improper diet. Adherence to a diet with abundant vegetables has now been widely demonstrated to be important in combating this pathological condition. The aim of this study was to explore the protective role of lycopene (LYC) extracts from cooked and fresh tomato. METHODS: The study cohort included 969 participants assessed in the NUTRIHEP cohort (2005-2006) and the associated follow-up (2014-2016), divided into two groups, based on liver condition: NAFLD, or AFLD and FLD. RESULTS: The results indicated a statistical significance of LYC consumption, showing a protective role against liver disease, the best concentration being 9.50 mg/die, with an RR value of 0.59, p = 0.01, 0.39 to 0.90 at 95% C.I., and RRR = 0.40, p = 0.002, 0.22 to 0.71 at 95% C.I. CONCLUSIONS: The protective role of LYC extracts from tomato has not been amply demonstrated in humans. We conclude that this is one of the few papers in the literature to evaluate the protective effect of LYC against liver disease, as well as how this molecule could be used in future possible treatments. Utilizing lycopene as a supplement alone or in combination with other foods could be useful for developing treatments with reduced contraindications.


Asunto(s)
Carotenoides , Enfermedad del Hígado Graso no Alcohólico , Humanos , Licopeno , Carotenoides/uso terapéutico , Suplementos Dietéticos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Antioxidantes/uso terapéutico
18.
Eur J Nutr ; 63(3): 905-918, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240773

RESUMEN

PURPOSE: Vitamin A deficiency (VAD) remains a significant contributor to childhood morbidity and mortality in developing countries; therefore, the implementation of sustainable and cost-effective approaches to control VAD is of utmost pertinence. This study aims to investigate the efficacy of red palm olein (RPO)-enriched biscuit supplementation in improving vitamin A, haematological, iron, and inflammatory status among vitamin A-deficient schoolchildren. METHODS: We conducted a double-blinded, randomised controlled trial involving 651 rural primary schoolchildren (8-12 years) with VAD in Malaysia. The schoolchildren were randomised to receive either RPO-enriched biscuits (experimental group, n = 334) or palm olein-enriched biscuits (control group, n = 317) for 6-month duration. RESULTS: Significant improvements in retinol and retinol-binding protein 4 levels were observed in both groups after supplementation (P < 0.001). The improvement in retinol levels were similar across groups among subjects with confirmed VAD (P = 0.40). Among those with marginal VAD, greater improvement in retinol levels was recorded in the control group (P < 0.001) but lacked clinical significance. The levels of α- and ß-carotenes, haematological parameters (haemoglobin, packed cell volume, mean corpuscular volume and mean corpuscular haemoglobin) and iron enhanced more significantly in the experimental group (P < 0.05). The significant reduction in the prevalence of microcytic anaemia (- 21.8%) and high inflammation (- 8.1%) was only observed in the experimental group. CONCLUSION: The supplementation of RPO-enriched biscuits enhanced levels of provitamin A carotenes, iron, and erythropoiesis, and exhibited anti-inflammatory effects. Therefore, the incorporation of RPO into National Nutritional Intervention Programs may be a potential measure to improve the health status of vitamin A-deficient children, among various other interventions. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov (NCT03256123).


Asunto(s)
Deficiencia de Vitamina A , Vitamina A , Niño , Humanos , Carotenoides , Provitaminas , Hierro , Eritropoyesis , Deficiencia de Vitamina A/tratamiento farmacológico , Deficiencia de Vitamina A/epidemiología , Suplementos Dietéticos , Estado Nutricional
19.
Mol Biol Rep ; 51(1): 111, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227208

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is characterized by progressive cognitive decline and a reduction in hippocampal neurotrophins, in which trimethytin (TMT) infusion causes tangles and neuronal dysfunction, creating an AD-like model in rats. Previous studies have demonstrated that crocin, which has anti-inflammatory properties, can enhance learning, memory acquisition, and cognitive behavior. This study aimed to assess the combined impact of aerobic exercise and crocin on memory, learning, and hippocampal Tau and neurotrophins gene expression in AD-like model rats. METHODS: Forty male Sprague Dawley rats were randomly divided into five groups: (1) healthy control, (2) Alzheimer's control, (3) endurance training, (4) crocin consumption, and (5) endurance training + crocin. Alzheimer's induction was achieved in groups 2-5 through intraperitoneal injection of 8 mg/kg TMT. Rats in groups 3 and 5 engaged in treadmill running three sessions per week, 15-30 min per session, at a speed of 15-20 m/min for eight weeks, and groups 4 and 5 received daily crocin supplementation of 25 mg/kg. RESULTS: Alzheimer's induction with TMT showed significant reduction in memory, learning, NGF, BDNF, and TrkB gene expression, and increase in tau gene expression (all p < 0.05). Notably, endurance training and crocin consumption separately significantly increased memory, learning, NGF, BDNF, and TrkB gene expression while significantly decreasing tau gene expression (all p < 0.05). Importantly, combined endurance training with crocin yielded the most profound effects on memory (p = 0.001), NGF (p = 0.002), BDNF (p = 0.001), and TrkB (p = 0.003) gene expression (p < 0.005), as well as a reduction in tau gene expression (p = 0.001). CONCLUSION: These findings underscore the possible impact of endurance training, particularly when coupled with crocin, on enhancing memory, learning, and neurotrophin gene expression and reducing tau gene expression in Alzheimer's rats. These results highlight the possibility of synergistic interventions for improved therapeutic outcomes.


Asunto(s)
Enfermedad de Alzheimer , Carotenoides , Entrenamiento Aeróbico , Masculino , Ratas , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Ratas Sprague-Dawley , Expresión Génica
20.
Mol Biol Rep ; 51(1): 224, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281199

RESUMEN

According to the World Health Organization (WHO) reports, oral health has an indispensable role in the maintenance of human public health. However, oral problems, especially periodontitis, are known as bad players in this issue. Periodontitis, as the most prevalent oral disease, is a type of chronic illness mediated by bacterial pathogens and immune system reactions, which is linked with the destruction of tooth-protecting tissues, such as alveolar bone and periodontal ligament. Periodontitis has a high prevalence (over 40% in the United States) and can be associated with other systemic ailments, for instance, arthritis, osteoporosis, metabolic syndrome, cancer, respiratory diseases, chronic kidney disease, and Alzheimer's disease. The common treatments for periodontitis are classified into invasive (surgical) and noninvasive (antibiotic therapy, scaling, and root planning) methods; however, these therapies have not reflected enough effectiveness for related patients. New documents inform the beneficial effects of plant-based compounds in healing various disorders, like periodontitis. In conjunction with this subject, it has been revealed that crocin, as an active component of saffron, regulates the balance between osteoclasts and osteoblasts and has a stroking role in the accumulation of the most common collagen in teeth and bone (type 1 collagen). Besides, this carotenoid compound possesses anti-inflammatory and anti-oxidative effects, which can be associated with the therapeutic processes of crocin in this oral disease. Hence, this narrative review study was performed to reflect the reparative/regenerative aspects of crocin agonist periodontitis.


Asunto(s)
Periodontitis , Humanos , Periodontitis/tratamiento farmacológico , Periodontitis/microbiología , Carotenoides/uso terapéutico , Carotenoides/farmacología , Enfermedad Crónica , Ligamento Periodontal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA