Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 148: 109521, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552889

RESUMEN

In mammals, ß-catenin participates in innate immune process through interaction with NF-κB signaling pathway. However, its role in teleost immune processes remains largely unknown. We aimed to clarify the function of ß-catenin in the natural defense mechanism of Qi river crucian carp (Carassius auratus). ß-catenin exhibited a ubiquitous expression pattern in adult fish, as indicated by real-time PCR analysis. Following lipopolysaccharide (LPS), Polyinosinic-polycytidylic acid (polyI: C) and Aeromonas hydrophila (A. hydrophila) challenges, ß-catenin increased in gill, intestine, liver and kidney, indicating that ß-catenin likely plays a pivotal role in the immune response against pathogen infiltration. Inhibition of the ß-catenin pathway using FH535, an inhibitor of Wnt/ß-catenin pathway, resulting in pathological damage of the gill, intestine, liver and kidney, significant decrease of innate immune factors (C3, defb3, LYZ-C, INF-γ), upregulation of inflammatory factors (NF-κB, TNF-α, IL-1, IL-8), and downregulation of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities, increase of Malondialdehyde (MDA) content. Following A. hydrophila invasion, the mortality rate in the FH535 treatment group exceeded that of the control group. In addition, the diversity of intestinal microflora decreased and the community structure was uneven after FH535 treatment. In summary, our findings strongly suggest that ß-catenin plays a vital role in combating pathogen invasion and regulating intestinal flora in Qi river crucian carp.


Asunto(s)
Carpas , Enfermedades de los Peces , Microbioma Gastrointestinal , Infecciones por Bacterias Gramnegativas , Sulfonamidas , Animales , Carpa Dorada/genética , Carpa Dorada/metabolismo , Carpas/genética , Carpas/metabolismo , FN-kappa B , Ríos , beta Catenina/genética , Qi , Inmunidad Innata/genética , Antioxidantes , Aeromonas hydrophila/fisiología , Proteínas de Peces , Infecciones por Bacterias Gramnegativas/veterinaria , Mamíferos/metabolismo
2.
J Agric Food Chem ; 72(9): 4977-4990, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38386875

RESUMEN

Ochratoxin A (OTA) is a common mycotoxin in food and feed that seriously harms human and animal health. This study investigated the effect of OTA on the muscle growth of juvenile grass carp (Ctenopharyngodon idella) and its possible mechanism in vitro. Our results have the following innovative findings: (1) Dietary OTA increased the expression of increasing phase I metabolic enzymes and absorbing transporters while reducing the expression of efflux transporters, thereby increasing their residue in muscles; (2) OTA inhibited the expressions of cell cycle and myogenic regulatory factors (MyoD, MyoG, and MyHC) and induced ferroptosis by decreasing the mRNA and protein expressions of FTH, TFR1, GPX4, and Nrf2 both in vivo and in vitro; and (3) the addition of DFO improved OTA-induced ferroptosis of grass carp primary myoblasts and promoted cell proliferation, while the addition of AKT improved OTA-inhibited myoblast differentiation and fusion, thus inhibiting muscle growth. Overall, this study provides a potential research target to further mitigate the myotoxicity of OTA.


Asunto(s)
Carpas , Ferroptosis , Enfermedades de los Peces , Ocratoxinas , Animales , Humanos , Suplementos Dietéticos , Inmunidad Innata , Transducción de Señal , Carpas/genética , Carpas/metabolismo , Dieta , Músculos/metabolismo , Alimentación Animal/análisis , Proteínas de Peces/metabolismo
3.
Fish Shellfish Immunol ; 146: 109414, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296006

RESUMEN

This experiment was conducted to investigate the impacts of dietary selenium yeast (SeY) on the growth performance, fish body composition, metabolic ability, antioxidant capability, immunity and inflammatory responses in juvenile black carp (Mylopharyngodn piceus). The base diet was supplemented with 0.00, 0.30 and 0.60 g/kg SeY (0.04, 0.59 and 1.15 mg/kg of selenium) to form three isonitrogenous and isoenergetic diets for juvenile black carp with a 60-day. Adequate dietary SeY (0.30 and 0.60 g/kg) could significantly increase the weight gain (WG), special growth rate (SGR) compared to the SeY deficient groups (0.00 g/kg) (P < 0.05). Meanwhile, 0.30 and 0.60 g/kg SeY elevated the mRNA levels of selenoprotein T2 (SEPT2), selenoprotein H (SEPH), selenoprotein S (SEPS) and selenoprotein M (SEPM) in the liver and intestine compared with the SeY deficient groups (P < 0.05). Adequate dietary SeY could promote glucose catabolism and utilization through activating glucose transport (GLUT2), glycolysis (GCK, HK, PFK, PK, PDH), tricarboxylic acid cycle (ICDH and MDH), glycogen synthesis (LG, GCS and GBE) and IRS/PI3K/AKT signal pathway molecules (IRS2b, PI3Kc and AKT1) compared with the SeY deficient groups (P < 0.05). Similarly, adequate dietary SeY could improve lipid transport and triglycerides (TG) synthesis through increasing transcription amounts of CD36, GK, DGAT, ACC and FAS in the fish liver compared with the SeY deficient groups (P < 0.05). In addition, adequate SeY could markedly elevate activities of antioxidant enzymes (T-SOD, CAT, GR, GPX) and contents of T-AOC and GSH, while increased transcription amounts of Nrf2, Cu/Zn-SOD, CAT, and GPX in fish liver and intestine (P < 0.05). However, adequate SeY notably decreased contents of MDA, and the mRNA transcription levels of Keap1 in the intestine compared with the SeY deficient groups (P < 0.05). Adequate SeY markedly increased amounts or levels of the immune factors (ALP, ACP, LZM, C3, C4 and IgM) and the transcription levels of innate immune-related functional genes in the liver and intestine (LZM, C3 and C9) compared to the SeY deficient groups (P < 0.05). Moreover, adequate SeY could notably reduce levels of IL-8, IL-1ß, and IFN-γ and elevate TGF-1ß levels in fish intestine (P < 0.05). The transcription levels of MAPK13, MAPK14 and NF-κB p65 were notably reduced in fish intestine treated with 0.30 and 0.60 g/kg SeY (P < 0.05). In conclusion, these results suggested that 0.30 and 0.60 g/kg SeY could not only improve growth performance, increase Se, glucose and lipid metabolic abilities, enhance antioxidant capabilities and immune responses, but also alleviate inflammation, thereby supplying useful reference for producing artificial feeds in black carp.


Asunto(s)
Carpas , Selenio , Animales , Antioxidantes/metabolismo , Carpas/genética , Carpas/metabolismo , Selenio/metabolismo , Saccharomyces cerevisiae/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Inmunidad Innata , Fosfatidilinositol 3-Quinasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Suplementos Dietéticos , Dieta/veterinaria , ARN Mensajero , Glucosa , Selenoproteínas/metabolismo , Lípidos , Superóxido Dismutasa/metabolismo , Alimentación Animal/análisis , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
4.
Fish Shellfish Immunol ; 144: 109227, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984616

RESUMEN

Millettia speciosa Champ (MSP) is a natural Chinese herb that improves gastrointestinal health and enhances animal immunity. An 8-week feeding trial with different MSP levels (0, 150, 300, and 600 mg/kg) was conducted to evaluate the promotive effects of MSP in Cyprinus carpio. Results indicate that MSP improved intestinal immunity to some extent evidenced by the immuno-antioxidant parameters and the 16S rRNA in the Illumina MiSeq platform. With the analysis of transcriptome sequencing, 4685 differentially expressed genes (DEGs) were identified, including 2149 up-regulated and 2536 down-regulated. According to the GO and KEGG enrichments, DEGs were mainly involved in the immune system. Transcriptional expression of the NOD-like signaling pathway and key genes retrieved from the transcriptome database confirmed that innate immunity was improved in response to dietary MSP administration. Therefore, MSP could be used as a feed supplement that enhances immunity. This may provide insight into Chinese herb additive application in aquaculture production.


Asunto(s)
Carpas , Millettia , Animales , Millettia/genética , Carpas/genética , ARN Ribosómico 16S , Suplementos Dietéticos/análisis , Intestinos
5.
Mar Biotechnol (NY) ; 26(1): 74-91, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38153607

RESUMEN

The study aimed to compare the effects of crystalline L-lysine and L-glutamate (CAA), Lys-Glu dipeptide (KE) on the growth and muscle development of grass carp (Ctenopharyngodon idellus), and related molecular mechanisms. Five experimental diets (CR, 0.5% CAA, 1.5% CAA, 0.5% KE, 1.5% KE) containing Lys and Glu as free (Lys and Glu, CAA) dipeptide (Lys-Glu, KE) forms were prepared, respectively. A total of 450 juvenile grass carp with an initial weight of 10.69 ± 0.07 g were randomly assigned to 15 cages, and 5 treatments with 3 replicates of 30 fish each for 61 days of feeding. The results showed that the group of 0.5% KE exhibited the best growth performances according to the indicator's weight gain rate (WGR) and specific growth rate (SGR), although no statistically significant occurred among all groups; diet supplemented with 0.5% CAA significantly elevated the condition factor (CF) and viscerasomatic index (VSI) of juvenile grass carp. Diet supplemented with different Lys and Glu co-forms at different levels promoted the muscle amino acid content compared with those of CR group. Comparing with the CR group and other groups, the hardness of 0.5% CAA group significantly increased, and the springiness of 0.5% KE group excelled. Both the muscle fiber diameter and density of 0.5% KE group showed significant difference with those of the CR group, and a negative correlation between them was also observed. To uncover the related molecular mechanism of the differences caused by the different co-forms of Lys and Glu, the effect of different diets on the expressions of protein absorption, muscle quality, and antioxidation-related genes was analyzed. The results suggested that comparing with those of CR group, the dipeptide KE inhibited the expressions of genes associated with protein metabolism, such as AKT, S6K1, and FoxO1a but promoted PCNA expression, while the free style of CAA would improve the FoxO1a expression. Additionally, the muscle development-related genes (MyoD, MyOG, and Myf5) were significantly boosted in CAA co-form groups, and the expressions of fMYHCs were blocked but fMYHCs30 significantly promoted in 0.5% KE group. Finally, the effect of different co-forms of Lys and Glu on muscle antioxidant was examined. The 0.5% CAA diet was verified to increase GPX1a but obstruct Keap1 and GSTP1 expressions, resulting in enhanced SOD activity and reduced MDA levels in plasma. Collectively, the different co-forms of Lys and Glu influenced the growth of juvenile grass carp, and also the muscle development and quality through their different regulation on the protein metabolism, muscle development- and antioxidative-related genes.


Asunto(s)
Antioxidantes , Carpas , Animales , Antioxidantes/metabolismo , Lisina , Ácido Glutámico , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Carpas/genética , Carpas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Dieta/veterinaria , Dipéptidos/genética , Dipéptidos/metabolismo , Expresión Génica , Alimentación Animal/análisis , Proteínas de Peces/genética
6.
Fish Shellfish Immunol ; 138: 108847, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37230306

RESUMEN

Selenium (Se), one of the essential trace elements of fish, regulates immune system function and maintains immune homeostasis. Muscle is the important tissue that generate movement and maintain posture. At present, there are few studies on the effects of Se deficiency on carp muscle. In this experiment, carps were fed with dietary with different Se content to successfully establish a Se deficiency model. Low-Se dietary led to the decrease of Se content in muscle. Histological analysis showed that Se deficiency resulted in muscle fiber fragmentation, dissolution, disarrangement and increased myocyte apoptosis. Transcriptome revealed a total of 367 differentially expressed genes (DEGs) were screened, including 213 up-regulated DEGs and 154 down-regulated DEGs. Bioinformatics analysis showed that DEGs were concentrated in oxidation-reduction process, inflammation and apoptosis, and were related to NF-κB and MAPKs pathways. Further exploration of the mechanism showed that Se deficiency led to excessive accumulation of ROS, decreased the activity of antioxidant enzymes, and also resulted in increased expression of the NF-κB and MAPKs pathways. In addition, Se deficiency significantly increased the expressions of TNF-α, IL-1ß and IL-6, and the pro-apoptotic factors BAX, p53, caspase-7 and caspase-3, while decreased the expressions of anti-apoptotic factors Bcl-2 and Bcl-xl. In conclusion, Se deficiency reduced the activities of antioxidant enzymes and led to excessive accumulation of ROS, which caused oxidative stress and affected the immune function of carp, leading to muscle inflammation and apoptosis.


Asunto(s)
Carpas , Desnutrición , Selenio , Animales , Antioxidantes/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Suplementos Dietéticos , Selenio/metabolismo , Carpas/genética , Carpas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Inmunidad Innata , Transducción de Señal , Inflamación/veterinaria , Apoptosis , Músculos/metabolismo
7.
Fish Shellfish Immunol ; 138: 108830, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37244318

RESUMEN

This study evaluated the effects of jamun leaf extract (JLE) as a feed supplement on growth performance, haemato-immunological, oxidative stress-related parameters, and cytokine gene expression in Cyprinus carpio challenged with Aeromonas hydrophila.. Diets containing four different JLE concentrations, that is, 0 (basal diet), 5 (JLE5), 10 (JLE10), and 15 g kg-1 (JLE15), were fed to carp (6.17 ± 0.43 g) for eight weeks. Growth performance was significantly higher in JLE10. Haemato-immunological and antioxidant parameters were determined in fish at 48 h post-challenge with A. hydrohila. The cumulative survival was highest in JLE10 (69.69%) 14 days post-challenge. Serum protein (2.18 ± 0.06 g dL-1), lysozyme (32.38 ± 1.2 U mL-1), alternative complement pathway (70.43 ± 1.61 U mL-1), phagocytic activity (21.18 ± 0.48%), respiratory burst activity (0.289 ± 0.09 OD630nm), and immunoglobulin levels (6.67 ± 0.36 U mg mL-1) were significantly higher in JLE10 than in the control. Serum alanine aminotransferase (44.06 ± 1.62 Unit mL-1), aspartate aminotransferase (31.58 ± 1.82 Unit mL-1), and malondialdehyde (2.57 ± 0.26 nmol mL-1) levels were lower in JLE10 than in the control (p < 0.05), whereas myeloperoxidase activity was significantly higher in JLE5 and JLE10 than in the control. Superoxide dismutase levels in the serum were higher (p < 0.05) in JLE5 and JLE10 than in the other groups. Gene expression analysis revealed that the mRNA expression of pro-inflammatory cytokines TNF-α and IL-1ß was upregulated (p < 0.05) in the liver, head-kidney, and intestine of challenged carp in JLE10. The signalling molecule NF-κB p65 was upregulated in lymphoid organs in JLE10 but not in the liver. The anti-inflammatory cytokine IL-10 was significantly downregulated in challenged carp in JLE10 compared with that in the control. Quadratic regression analysis showed that optimal dietary JLE was estimated to be 9.03-10.15 g kg-1 to maximize the growth performance. Results of the present study revealed that dietary JLE at 10 g kg-1 can significantly improve the immunity and disease resistance of C. carpio. Thus, JLE is a promising food additive for carp aquaculture.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Syzygium , Animales , Carpas/genética , Carpas/metabolismo , Syzygium/genética , Syzygium/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Antioxidantes/metabolismo , Citocinas/genética , Citocinas/metabolismo , Expresión Génica , Extractos Vegetales/farmacología , Alimentación Animal/análisis , Aeromonas hydrophila/fisiología
8.
Fish Shellfish Immunol ; 133: 108532, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36639064

RESUMEN

Antimicrobial peptides are small, cationic, and amphiphilic peptides found in most organisms, and many of these peptides have broad antimicrobial activity against Gram-negative, -positive bacteria and fungi. In the present study, a derivative of antimicrobial peptide Tatritin, 6His-Tatritin, was designed and expressed by Pichia pastoris using a constitutive vector pGAPZαA with the promoter of pGAP. The 6His-Tatritin had a broad-spectrum antibacterial activity based on the Oxford cup method and the micro broth dilution test. In addition, to explore the role of 6His-Tatritin in vivo, grass carps (Ctenopharyngodon idellus) were infected with Aeromonas hydrophila after they were fed with 6His-Tatritin as feed additives for 28 days. The results revealed that 6His-Tatritin could significantly up-regulate the expression levels of Hepcidin, Leap-2b, Nrf-2, CuZn-SOD and LZM (P < 0.05). In addition, 6His-Tatritin could significantly reduce the mortality (P < 0.05) and the intestinal injury of grass carps infected with bacteria. The 16S sequencing analysis showed that the structure of microbial community in intestine of fish was more diversified compared with control after treatment with 6His-Tatritin. In summary, the peptide of 6His-Tatritin could promote antimicrobial defense via regulating immune ability and intestinal microbial community in grass carp. This study provides an effective method and approach for the application of antimicrobial peptide Tatritin in aquaculture, and also provides insights into the function of antimicrobial peptides in immunity against pathogens in fish.


Asunto(s)
Antiinfecciosos , Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Transducción de Señal , Suplementos Dietéticos/análisis , Dieta/veterinaria , FN-kappa B/metabolismo , Carpas/genética , Carpas/metabolismo , Intestinos , Antiinfecciosos/farmacología , Péptidos Antimicrobianos , Aeromonas hydrophila/fisiología , Alimentación Animal/análisis
9.
Artículo en Inglés | MEDLINE | ID: mdl-36400267

RESUMEN

6-pyruvoyl-tetrahydropterin synthase (PTPS) is the second key enzyme of the pteridine biosynthetic pathway and it plays vital roles in fish body color formation. In this study, Ccptps of koi carp (Cyprinus carpio L.) was cloned, identified and characterized. The full-length cDNA of Ccptps was 1140 bp and encodes for 139 amino acids. Multiple alignments revealed that the amino acids sequence of CcPTPS shared the highest identity to that of C. carpio, and Ccptps was clustered with cyprinid fishes in phylogenetic tree. Liver tissues of koi carp exhibited the highest expression of Ccptps, followed by muscle and skin tissues. During early developmental stages, the expression of Ccptps declined from 2 dph to 4 dph, and increased from 4 dph to 12 dph. The expressions of Ccptps in three color-related tissues (skin, scale and caudal fin) of whole red (WR) koi carp were significantly higher than that of whole while (WW) koi carp. Immunohistochemistry results of skin tissues showed that CcPTPS was mainly located in epidermis, stratum compactum of dermis and muscle layer, with the signal intensities in stratum compactum and muscle layer were stronger in WR koi carp compared to WW koi carp. Co-expressions of CcPTPS, CcSPR and CcXDH were detected in skin tissues of WW and WR koi carps, with CcPTPS exhibited stronger signal intensity compared to CcSPR and CcXDH. These findings imply that Ccptps is potentially involved in koi carp body color formation through the pteridine synthesis pathway.


Asunto(s)
Carpas , Enfermedades de los Peces , Animales , Carpas/genética , Filogenia , ADN Complementario , Aminoácidos , Pteridinas
10.
Biol Trace Elem Res ; 201(2): 904-925, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35199287

RESUMEN

Green evolutionary products such as biologically fabricated nanoparticles (NPs) pose a hazard to aquatic creatures. Herein, biogenic silver nanoparticles (AgNPs) were synthesized by the reaction between ionic silver (AgNO3) and aqueous onion peel extract (Allium cepa L). The synthesized biogenic AgNPs were characterized with UV-Visible spectrophotometer, XRD, FT-IR, and TEM with EDS analysis; then, their toxicity was assessed on common carp fish (Cyprinus carpio) using biomarkers of haematological alterations, oxidative stress, histological changes, differential gene expression patterns, and bioaccumulation. The 96 h lethal toxicity was analysed with various concentrations (2, 4, 6, 8, and 10 mg/l) of biogenic AgNPs. Based on 96 h LC50, sublethal concentrations (1/15th, 1/10th, and 1/5th) were given to C. carpio for 28 days. At the end of experiment, the bioaccumulations of Ag content were accumulated mainly in the gills, followed by the liver and muscle. At an interval of 7 days, the haematological alterations showed significance (p < 0.05) and elevation of antioxidant defence mechanism reveals the toxicity of biogenic synthesized AgNPs. Adverse effects on oxidative stress were probably related to the histopathological damage of its vital organs like gill, liver, and muscle. Finally, the fish treated with biogenic synthesized AgNPs were significantly (p < 0.05) downregulates the oxidative stress genes such as Cu-Zn SOD, CAT, GPx1a, GST-α, CYP1A, and Nrf-2 expression patterns. The present study provides evidence of biogenic synthesized AgNPs influence on the aquatic life through induction of oxidative stress.


Asunto(s)
Carpas , Nanopartículas del Metal , Contaminantes Químicos del Agua , Animales , Cebollas/genética , Cebollas/metabolismo , Carpas/genética , Carpas/metabolismo , Plata/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Oxidativo , Agua Dulce , Branquias/metabolismo , Contaminantes Químicos del Agua/metabolismo
11.
Food Chem ; 399: 133799, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998490

RESUMEN

Flesh quality is evaluated according to nutritional value and sensory quality. Cinnamaldehyde (CIN) improves mammalian meat quality, but research relating this to aquaculture is scarce. In this study, five doses of CIN (0, 36, 72, 108, 144 mg/kg diet) were fed to grass carp (Ctenopharyngodon idella) for 60 days. The results show that CIN supplementation increased nutritional value by increasing crude protein content. CIN also improved the sensory quality by increasing the pH and collagen content, decreasing shear force, lactate, and cooking loss. These changes may be related to changes in muscle fiber growth by increasing myofiber diameter. The increased myofiber diameter induced by CIN is associated with TOR mRNA and protein levels, and down-regulated FOXO3a mRNA levels, which might be associated with PTP1B/IGF1/PI3K/AKTs-TOR/FOXO3a signaling. Based on muscle crude protein content, optimal CIN supplementation dosage was 88.01 mg/kg.


Asunto(s)
Carpas , Enfermedades de los Peces , Acroleína/análogos & derivados , Alimentación Animal/análisis , Animales , Carpas/genética , Carpas/metabolismo , Dieta , Suplementos Dietéticos , Enfermedades de los Peces/genética , Proteínas de Peces/metabolismo , Inmunidad Innata , Mamíferos/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Mensajero/genética , Transducción de Señal
12.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36233179

RESUMEN

Gelsemium elegans Benth. (GEB) is a traditional medicinal plant in China, and acts as a growth promoter in pigs and goats. Koumine (KM) is the most abundant alkaloid in GEB and produces analgesic, anti-cancer, and immunomodulatory effects. KM can be used as an aquatic immune stimulant, but its growth-promoting effects and transcriptional mechanisms have not been investigated. Diets containing KM at 0, 0.2, 2, and 20 mg/kg were fed to Cyprinus carpio for 71 days to investigate its effects on growth performance, intestinal morphology, microflora, biochemical indicators, and transcriptional mechanisms. Cyprinus carpio fed with KM as the growth promoter, and the number of intestinal crypts and intestinal microbial populations were influenced by KM concentration. KM increased the abundance of colonies of Afipia, Phyllobacterium, Mesorhizobium, and Labrys, which were associated with compound decomposition and proliferation, and decreased the abundance of colonies of pathogenic bacteria Methylobacterium-Methylorubrum. A total of 376 differentially-expressed genes (DEGs) among the four experimental groups were enriched for transforming growth factor-ß1 and small mother against decapentaplegic (TGF-ß1/Smad), mitogen-activated protein kinase (MAPK), and janus kinases and signal transducers and activators of transcription (Jak/Stat) signaling pathways. In particular, tgfbr1, acvr1l, rreb-1, stat5b, smad4, cbp, and c-fos were up-regulated and positively correlated with KM dose. KM had a growth-promoting effect that was related to cell proliferation driven by the TGF-ß1/Smad, MAPK, and Jak/Stat signaling pathways. KM at 0.2 mg/kg optimized the growth performance of C. carpio, while higher concentrations of KM (2 and 20 mg/kg) may induce apoptosis without significantly damaging the fish intestinal structure. Therefore, KM at low concentration has great potential for development as an aquatic growth promotion additive.


Asunto(s)
Carpas , Microbiota , Alimentación Animal/análisis , Animales , Carpas/genética , Carpas/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Alcaloides Indólicos , Quinasas Janus , Proteínas Quinasas Activadas por Mitógenos , Receptor Tipo I de Factor de Crecimiento Transformador beta , Porcinos , Factor de Crecimiento Transformador beta1/metabolismo
13.
Fish Shellfish Immunol ; 131: 358-367, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183982

RESUMEN

We evaluated the effect of dietary supplementation with Moringa oleifera leaf extract on the resistance to Aeromonas hydrophila infection in crucian carp. The fish were randomly divided into five groups: the basal diet, the basal diet supplied with 0.25% (0.25 M), 0.5% (0.5 M), 0.75% (0.75 M) and 1.0% M. oleifera leaf extract (1.0 M) for 8 weeks. The growth, antioxidant capabilities, related immune genes as well as resistance to A. hydrophila infection were determined. The results showed that compared with the control group, the weight gain, specific growth rate in the group of 0.5% M. oleifera leaf extract, serum superoxide dismutase (SOD), albumin (ALB) and glutathione peroxidase (GSH-Px), the gene expression of hepatopancreas BTB and CNC homolog 1 (Bach1), NF-E2-related factor 2 (Nrf2), peroxidases (PRX) and NADPH oxidase (NOX) in the group of 0.5%-1.0% M. oleifera leaf extract increased, while feed conversion ratio, serum cortisol, red blood cell (RBC), alanine aminotransferase (ALT), malonaldehyde (MDA) decreased in the group of 0.5%-1.0% M. oleifera leaf extract before the stress. After the infection, the group of 0.5% or 0.75% M. oleifera leaf extract also could improve the serum ALB, hepatopancreas Kelch-like-ECH-associated protein 1 (Keap1), Bach1, Nrf2, TOR, PRX and NOX and reduce cortisol compared with the control group. In summary, this study suggested that 0.5% M. oleifera leaf extract inclusion increased the growth performance, even had positive effects on physiological and immune function, and enhanced resistance against pathogenic infections in crucian carp. The optimum level of M. oleifera leaf extract for crucian carp was estimated to be 0.35%-0.48% based on polynomial comparison with FCR and SGR.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas hydrophila/fisiología , Carpas/genética , Carpas/metabolismo , Factor 2 Relacionado con NF-E2/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Hidrocortisona , Infecciones por Bacterias Gramnegativas/veterinaria , Alimentación Animal/análisis , Dieta/veterinaria , Antioxidantes/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Expresión Génica , Suplementos Dietéticos
14.
PLoS One ; 17(4): e0266447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35395053

RESUMEN

Spinal deformity is a serious economic and animal welfare problem in intensive fish farming systems, which will be a significant unsolved problem for the fish sector. The aim of this study was to determine the relative expression of genes (Akt1 substrate 1, Calreticulin, Collagen type I alpha 2 chain, Corticotropin-releasing hormone, Chromodomain-Helicase DNA-binding, Growth hormone, Insulin like growth factor 1, Myostatin, Sine oculis-related homeobox 3, Toll-like receptor 2) in different tissues associated with spinal deformity and to determine the macroelement (calcium, magnesium, phosphorus, potassium, sodium, sulfur) and microelement (barium, copper, iron, manganese, strontium, zinc) content of spine in healthy and deformed common carps (Cyprinus carpio) in Hungary. The mRNA levels of the genes were measured in 7 different tissues (abdominal fat, blood, brain, dorsal muscle, genitals, heart, liver) by qRT-PCR. Correlations between gene expression and element content were analyzed by using linear regression and Spearman rank correlation. In a total of 15 cases, we found a statistically significant connection between gene expression in a tissue and the macro- or microelement content of the spine. In these contexts, the genes Akt1 substrate 1 (3), Collagen type I alpha 2 chain (2), Corticotropin-releasing hormone (4), Insulin-like growth factor 1 (4), and Myostatin (2), the tissue's blood (3), brain (6), heart (5), and liver (1), the macroelements sodium (4), magnesium (4), phosphorus (1) and sulfur (2) as well as the microelement iron (4) were involved. We also found statistically significant mRNA level differences between healthy and deformed common carps in tissues that were not directly affected by the deformation. Based on our results, genes regulating the nervous system and growth, elements, and tissues are the most associated components in the phenomenon of spinal deformity. With our study, we wish to give direction to and momentum for the exploration of these complex processes.


Asunto(s)
Carpas , Animales , Carpas/genética , Colágeno Tipo I , Hormona Liberadora de Corticotropina/genética , Hierro , Magnesio , Miostatina , Sistema Nervioso , Fósforo , ARN Mensajero/genética , Sodio , Azufre
15.
Sci Rep ; 12(1): 3711, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260667

RESUMEN

The potential nutritional value of duckweed Lemna minor (Lemnaceae) was evaluated for common carp Cyprinus carpio fry. Fish were fed diets containing five graded levels of duckweed: 0% (LM0, control), 5% (LM5), 10% (LM10), 15% (LM15) and 20% (LM20). The final weight and specific growth rate were significantly higher in LM15 and LM20 diets fed fish compared to others. Feed conversion ratio was minimum in fish fed diet LM20. Amylase activity was significantly higher in LM0 treatment. Total protease, trypsin and chymotrypsin activities showed linear relationships with the increased level of duckweed in the diet. Protein and essential amino acids contents were significantly higher in carp fed diets LM15 and LM20 compared to others. Lipid content was significantly higher in fish fed duckweed-based diets compared to control. A direct relationship was found between the inclusion level of duckweed in the diet and n-3 long-chain polyunsaturated fatty acid (LC-PUFA) content of carp. Contents of desaturated and elongated products of dietary linolenic acid (18:3n-3) including 20:4n-3, 20:5n-3, 22:5n-3 and 22:6n-3 increased in a graded manner with increasing dietary duckweed. The monounsaturated fatty acids and n-6 PUFA contents reduced significantly in fish fed duckweed. Expression of fads2d6, elovl2, elovl5 and fas were higher in carp fed diets LM10, LM15 and LM20 compared to control fish. The inclusion of L. minor in diet enhanced the nutritional value of carp by increasing protein, lipid, amino acids and n-3 PUFA contents.


Asunto(s)
Araceae , Carpas , Ácidos Grasos Omega-3 , Alimentación Animal/análisis , Animales , Araceae/genética , Araceae/metabolismo , Carpas/genética , Carpas/metabolismo , Dieta/veterinaria , Fenómenos Fisiológicos del Sistema Digestivo , Ácidos Grasos , Ácidos Grasos Omega-3/metabolismo
16.
Gene ; 821: 146291, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35176426

RESUMEN

Glutathione peroxidase (Gpx) is an important member of antioxidant enzymes, which can play a vital role in metabolizing reactive oxygen species (ROS) and in maintaining cell homeostasis. In order to study the evolutionary dynamics of gpx gene family in allotetraploid fish species, we identified a total of 14 gpx genes in common carp Cyprinus carpio, while 9 gpx genes were discovered in the diploid progenitor-like species Poropuntius huangchuchieni. Comparative genomic analysis and phylogenetic analysis revealed that the common carp gpx genes had significant expansion and were divided into five distinct subclades. Exon-intron distribution patterns and conserved motif analysis revealed highly conserved evolutionary patterns. Transcript profiles suggested that different gpx genes had specific patterns of regulation during early embryonic development. In adult tissues, gpx genes had a relatively broad expression distribution, most of which were highly expressed in the gills, intestines, and gonads. RT-qPCR studies showed that most gpx genes were downregulated during the initial cd2+ treatment stage. Dietary supplementation of Bacillus coagulans at different concentrations (Group 2 of 1.0 × 107 cfu/g, Group 3 of 1.0 × 108 cfu/g, and Group 4 of 1.0 × 109 cfu/g) induced different regulatory responses of gpx subclades. This result suggested that the appropriate concentration of B. coagulans can improve gpx gene expression when exposed to heavy metal cadmium treatment, which may play a vital role in the resistance to oxidative stress and immune responses. This study has expanded our understanding of the functional evolution of the gpx gene family in common carp.


Asunto(s)
Bacillus coagulans/fisiología , Cadmio/toxicidad , Carpas/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Glutatión Peroxidasa/genética , Animales , Carpas/genética , Minería de Datos , Suplementos Dietéticos , Evolución Molecular , Proteínas de Peces/genética , Regulación Enzimológica de la Expresión Génica , Genómica , Estrés Oxidativo , Filogenia , Estrés Fisiológico
17.
Dev Comp Immunol ; 127: 104289, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34624357

RESUMEN

Meteorin-like (Metrnl) is a newly discovered cytokine but whether it exists in fish is unclear. In this study, we identified two Meteorin-like (Metrnl) homologues in grass carp Ctenopharyngodon idella (termed CiMetrnl-a and CiMetrnl-b) which share high sequence homology and conserved genomic organization of 4 exons and 3 introns with known Metrnl molecules. Also, gene synteny of Metrnl genes is well conserved in vertebrates. Expression analyses showed that the CiMetrnl-a gene was constitutively expressed in tissues of healthy fish whilst the levels of CiMetrnl-b transcripts were too low to be detected. The CiMetrnl-a gene was inducible by Flavobacterium columnare, grass carp reovirus and PAMPs. Recombinant CiMetrnl-a produced in the CHO-S cells was active in up-regulating the expression of cytokines involved in promoting inflammation (IL-1ß, IL-6, IL-8, IL-17A and TNF-α), type 1 immune response (IFN-γ and IL-2) and NF-κB signaling pathway (NF-κBp65 and NF-κBp52) in the primary head kidney leukocytes. Furthermore, luciferase reporter assay showed that CiMetrnl-a was able to activate the NF-κB promoter in the EPC cells, suggesting that CiMetrnl-a may upregulate pro-inflammatory cytokines via NF-κB dependent pathway.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Aeromonas hydrophila/fisiología , Alimentación Animal/análisis , Animales , Carpas/genética , Carpas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Suplementos Dietéticos , Proteínas de Peces/metabolismo , Inmunidad Innata , FN-kappa B/metabolismo
18.
Food Chem ; 369: 130911, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34455325

RESUMEN

Postmortem alteration by apoptosis has significant effects on flesh quality. Currently, the information necessary to understand the apoptotic behavior and the molecular mechanisms during postmortem alteration in fish muscle is still lacking. Activation of apoptosis and the cytokines involved in regulating apoptosis in fish muscle were evaluated during postmortem condition at 4 °C for 5 days in terms of apoptotic morphology changes, nucleus DNA fragmentation, caspases activation and related gene expressions. The triggering apoptotic mechanisms associated with multiple cytokines transcriptional levels showed that the up-regulated pro-apoptotic mediators [IFN-γ2, TNF-α, IL-6, IL-1ß, IL-17D, IL-12p35 and IL-10 (except IL-15)] and the down-regulated anti-apoptotic mediators of [IL-8 and IL-11 (except TGF-ß and IL-4)] both regulated apoptosis at early stage, which were regulated by NF-κB and TOR, respectively. Results suggested that transcriptional regulation of multiple cytokines produce a positive outcome on triggering apoptosis.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Aeromonas hydrophila , Alimentación Animal/análisis , Animales , Apoptosis , Carpas/genética , Citocinas/genética , Dieta , Suplementos Dietéticos , Proteínas de Peces/genética , Inmunidad Innata , Músculos , FN-kappa B/genética
19.
J Agric Food Chem ; 70(2): 520-531, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34881880

RESUMEN

Itaconate is a promising new candidate for anti-inflammatory and metabolic reprogramming, and 4-octyl itaconate (OI) is a cell-permeable itaconate derivative. To investigate the effect of OI in inflammatory response and glycolipid metabolism, we fed gibel carp with a 40% dietary soybean meal diet containing 0.1% OI (SBM + 0.1OI) or not (SBM) and compared these with fishmeal (FM) as reference. Compared with FM, dietary SBM decreased the growth performance, induced inflammation in the intestine and liver, and decreased the glucose utilization ability of the liver. However, 0.1% OI supplementation in SBM significantly increased the growth performance (from 20.11 ± 0.77 to 23.33 ± 0.45 g, P < 0.05), reduced inflammation in different organs through Nrf2 activation, and alleviated SBM-induced high plasma glucose (from 6.06 ± 0.23 to 4.37 ± 0.14 g, P < 0.05) and low crude body lipid (from 4.08 ± 0.17 to 4.91 ± 0.10 g, P < 0.05). Multi-omics revealed that OI had obvious effects on carbohydrate metabolism. OI regulates peroxisome proliferator-activated receptor gamma (ppar-γ), and its target genes (glut2 and gk) enhance liver glycolysis and lipid de novo lipogenesis, which are also dependent on Nrf2 activation. To conclude, dietary 0.1% OI can promote the growth of gibel carp and alleviate foodborne intestinal and hepatic inflammation and abnormal glycolipid metabolism by Nrf2-regulated Pparγ expression.


Asunto(s)
Carpas , Enfermedades Metabólicas , Alimentación Animal , Animales , Carpas/genética , Carpas/metabolismo , Dieta , Suplementos Dietéticos , Glucolípidos , Inflamación/tratamiento farmacológico , Inflamación/genética , Hígado/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , PPAR gamma/genética , Transducción de Señal , Glycine max/metabolismo , Succinatos
20.
Fish Shellfish Immunol ; 120: 547-559, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34923115

RESUMEN

Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila infection could decrease blood cell numbers, promote blood cell damage as well as alter the levels of alkaline phosphatase (ALP), lysozyme (LZM), aspartate aminotransferase (AST), total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in immune-related tissues of red crucian carp (RCC, 2 N = 100) and triploid cyprinid fish (3 N fish, 3 N = 150). In addition, the significant alternation of antioxidant status was observed in PBMCs isolated from RCC and 3 N following LPS stimulation. The core differential expression genes (DEGs) involved in apoptosis, immunity, inflammation and cellular signals were co-expressed differentially in RCC and 3 N following A. hydrophila challenge. NOD-like receptor (NLR) signals appeared to play a critical role in A. hydrophila-infected fish. DEGs of NLR signals in RCCah vs RCCctl were enriched in caspase-1-dependent Interleukin-1ß (IL-1ß) secretion, interferon (IFN) signals as well as cytokine activation, while DEGs of NLR signals in 3Nah vs 3Nctl were enriched in caspase-1-dependent IL-1ß secretion and antibacterial autophagy. These results highlighted the differential signal regulation of different ploidy cyprinid fish to cope with bacterial infection.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Transcriptoma , Aeromonas hydrophila , Animales , Antioxidantes , Células Sanguíneas , Carpas/genética , Carpas/inmunología , Caspasas , Suplementos Dietéticos , Resistencia a la Enfermedad , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/genética , Perfilación de la Expresión Génica , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Inmunidad Innata , Ploidias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA