Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Talanta ; 272: 125842, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428131

RESUMEN

A novel sensor array was developed based on the enzyme/nanozyme hybridization for the identification of tea polyphenols (TPs) and Chinese teas. The enzyme/nanozyme with polyphenol oxidase activity can catalyze the reaction between TPs and 4-aminoantipyrine (4-AAP) to produce differences in color, and the sensor array was thus constructed to accurately identify TPs mixed in different species, concentrations, or ratios. In addition, a machine learning based dual output model was further used to effectively predict the classes and concentrations of unknown samples. Therefore, the qualitative and quantitative detection of TPs can be realized continuously and quickly. Furthermore, the sensor array combining the machine learning based dual output model was also utilized for the identification of Chinese teas. The method can distinguish the six teas series in China, and then precisely differentiate the more specific tea varieties. This study provides an efficient and facile strategy for the identification of teas and tea products.


Asunto(s)
Camellia sinensis , Polifenoles , Polifenoles/análisis , , Catecol Oxidasa , Aprendizaje Automático
2.
Food Chem ; 446: 138866, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430769

RESUMEN

Fresh-cut potatoes are prone to surface browning and physiological degradation. Chlorogenic acid (CGA), a natural phenolic antioxidant, has demonstrated preservative properties in various postharvest products. However, the underlying mechanisms of its application on maintaining quality remain unclear. Therefore, the effect of exogenous CGA treatment on quality deterioration of potato slices and the mechanisms involved were investigated. Results revealed CGA treatment retarded the browning coloration, suppressed microbial growth and inhibited the declines in starch, and ascorbic acid contents in potato slices. Meanwhile, the treatment activated the phenylpropanoid pathway but decreased the activities of phenolic decomposition-related enzymes such as polyphenol oxidase (PPO) and tyrosinase and downregulated StPPO expression. Moreover, the treated slices exhibited reduced accumulation of reactive oxygen species and increased activity of antioxidant enzymes. Additionally, they displayed enhanced 2,2-diphenyl-1-picrylhydrazyl radicals scavenging capacity and higher ATP levels. Therefore, these findings indicated that CGA treatment was effective for quality maintenance and antioxidant capacity enhancement in fresh-cut potatoes, thereby providing potential strategies for the preservation and processing of fresh-cut produce.


Asunto(s)
Antioxidantes , Solanum tuberosum , Antioxidantes/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/metabolismo , Solanum tuberosum/metabolismo , Fenoles/metabolismo , Ácido Ascórbico/metabolismo , Catecol Oxidasa/metabolismo
3.
Molecules ; 29(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38542970

RESUMEN

Currently, little is known about the characteristics of polyphenol oxidase from wheat bran, which is closely linked to the browning of wheat product. The wheat PPO was purified by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange column, and Superdex G-75 chromatography column. Purified wheat PPO activity was 11.05-fold higher, its specific activity was 1365.12 U/mg, and its yield was 8.46%. SDS-PAGE showed that the molecular weight of wheat PPO was approximately 21 kDa. Its optimal pH and temperature were 6.5 and 35 °C for catechol as substrate, respectively. Twelve phenolic substrates from wheat and green tea were used for analyzing the substrate specificity. Wheat PPO showed the highest affinity to catechol due to its maximum Vmax (517.55 U·mL-1·min-1) and low Km (6.36 mM) values. Docking analysis revealed strong affinities between catechol, gallic acid, EGCG, and EC with binding energies of -5.28 kcal/mol, -4.65 kcal/mol, -4.21 kcal/mol, and -5.62 kcal/mol, respectively, for PPO. Sodium sulfite, ascorbic acid, and sodium bisulfite dramatically inhibited wheat PPO activity. Cu2+ and Ca2+ at 10 mM were considered potent activators and inhibitors for wheat PPO, respectively. This report provides a theoretical basis for controlling the enzymatic browning of wheat products fortified with green tea.


Asunto(s)
Catecol Oxidasa , Fibras de la Dieta , Catecol Oxidasa/química , Fibras de la Dieta/análisis , Concentración de Iones de Hidrógeno , Cinética , Proteínas de Plantas/metabolismo , Catecoles/análisis , Especificidad por Sustrato ,
4.
PLoS One ; 19(3): e0294318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38446779

RESUMEN

Enzymatic browning poses a significant challenge that limits in vitro propagation and genetic transformation of plant tissues. This research focuses on investigating how adding antioxidant substances can suppress browning, leading to improved efficiency in transforming plant tissues using Agrobacterium and subsequent plant regeneration from rough lemon (Citrus × jambhiri). When epicotyl segments of rough lemon were exposed to Agrobacterium, they displayed excessive browning and tissue decay. This was notably different from the 'Hamlin' explants, which did not exhibit the same issue. The regeneration process failed completely in rough lemon explants, and they accumulated high levels of total phenolic compounds (TPC) and polyphenol oxidase (PPO), which contribute to browning. To overcome these challenges, several antioxidant and osmoprotectant compounds, including lipoic acid, melatonin, glycine betaine, and proline were added to the tissue culture medium to reduce the oxidation of phenolic compounds and mitigate browning. Treating epicotyl segments with 100 or 200 µM melatonin led to a significant reduction in browning and phenolic compound accumulation. This resulted in enhanced shoot regeneration, increased transformation efficiency, and reduced tissue decay. Importantly, melatonin supplementation effectively lowered the levels of TPC and PPO in the cultured explants. Molecular and physiological analyses also confirmed the successful overexpression of the CcNHX1 transcription factor, which plays a key role in imparting tolerance to salinity stress. This study emphasizes the noteworthy impact of supplementing antioxidants in achieving successful genetic transformation and plant regeneration in rough lemon. These findings provide valuable insights for developing strategies to address enzymatic browning and enhance the effectiveness of plant tissue culture and genetic engineering methods with potential applications across diverse plant species.


Asunto(s)
Citrus , Melatonina , Plantas Modificadas Genéticamente , Melatonina/farmacología , Antioxidantes/farmacología , Citrus/genética , Agrobacterium , Catecol Oxidasa , Fenoles/farmacología , Regeneración , Suplementos Dietéticos
5.
Phytochem Anal ; 35(4): 903-922, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403936

RESUMEN

INTRODUCTION: The safety and quality of many medicinally important herbs are compromised since farmers and small organizations are involved in the cultivation, aggregation, and primary processing of these herbs. Such organizations often lack adequate quality control facilities. To improve the safety and quality of herbal products, simple, rapid, and affordable quality control systems are required. OBJECTIVES: The aim of this study was to assess the suitability of microwave oven-drying for moisture content (MC) determination and sample preparation of herbs in small organizations. METHODS: Microwave oven-drying (720 W) and convective oven-drying at 105°C for MC determination were compared. The effects of three different drying methods (microwave oven-drying, low-temperature convective drying, and freeze-drying) on in vitro antioxidant and polyphenol oxidase (PPO) activity were determined, similarity analysis was conducted using HPLC signature spectra, and validation was performed with LC-MS focusing on one herb. RESULTS: Microwave oven-drying at 720 W significantly reduced the drying time (from hours to minutes), whereas the spatial variation of temperature in convective ovens set at 105°C can cause about 10% underestimation of MC. Microwave oven-drying showed similar macro-properties like freeze-drying and higher extractability (10%-20%) and in vitro antioxidant capacity (33%-66%) and lower PPO activity compared to low-temperature convective drying. HPLC signature spectra revealed strong similarity of soluble components between freeze-dried and microwave oven-dried herbs. LC-MS analysis demonstrated more common compounds between freeze-dried and microwave oven-dried Centella asiatica extracts, whereas convective tray-dried samples had fewer compounds common with samples obtained by freeze-drying or microwave oven-drying. CONCLUSIONS: Microwave oven-drying is rapid (tens of min) and shows small batch-to-batch variation compared to oven-drying at 105°C. The in vitro antioxidant assays and signature spectra can be used for assessing the source and purity or quality of a specific herb variety.


Asunto(s)
Antioxidantes , Desecación , Liofilización , Microondas , Plantas Medicinales , Control de Calidad , Plantas Medicinales/química , Antioxidantes/análisis , Antioxidantes/química , Desecación/métodos , Liofilización/métodos , Cromatografía Líquida de Alta Presión/métodos , Catecol Oxidasa/análisis
6.
J Food Sci ; 89(4): 2232-2248, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38380698

RESUMEN

Sugarcane juice is a popular beverage and is also processed to produce sugar. The polyphenol oxidase (PPO) in sugarcane juice causes enzymatic browning and makes the process of sugar production complex and cumbersome. Storage of sugarcane juice is also hampered by the high sugar content and rapid microbial fermentation. The present research assessed the potential of lemon juice (LJ) and ginger extract (GE) as natural inhibitors of PPO. Enzyme kinetics and the mechanism of inhibition of LJ and GE were studied. Primary investigation was carried out using molecular docking approach to assess the inhibitory potential of LJ and GE and to determine the nature of interaction between the enzyme and inhibitors. Extracts were used as inhibitors and studies revealed that both reduced the PPO activity. Subsequently, pure bioactive inhibitors such as ascorbic acid, citric acid, and 6-shogaol present in these natural extracts were used to study the mode of inhibition of PPO. Citric acid decreased PPO activity by lowering pH, while ascorbic acid was found to be a competitive inhibitor of PPO with a Ki of 75.69 µM. The proportion of LJ and GE required in sugarcane juice was optimized on the basis of browning index and sensory acceptance. Further, the sugarcane cane juice after inhibition of PPO under optimized conditions was spray dried and evaluated for reconstitution properties. The product formulated in the present study is a new and effective approach to address quality-compromising issues associated with long-term storage of cane juice.


Asunto(s)
Saccharum , Saccharum/química , Catecol Oxidasa/química , Simulación del Acoplamiento Molecular , Ácido Ascórbico , Azúcares , Ácido Cítrico
7.
Biosens Bioelectron ; 250: 116056, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38271889

RESUMEN

Green tea is popular among consumers because of its high nutritional value and unique flavor. There is often a strong correlation among the type of tea, its quality level and the price. Therefore, the rapid identification of tea types and the judgment of tea quality grades are particularly important. In this work, a novel sensor array based on nanozyme with polyphenol oxidase (PPO) activity is proposed for the identification of tea polyphenols (TPs) and Chinese green tea. The absorption spectra changes of the nanozyme and its substrate in the presence of different TPs were first investigated. The feature spectra were scientifically selected using genetic algorithm (GA), and then a sensor array with 15 sensing units (5 wavelengths × 3 time) was constructed. Combined with the support vector machine (SVM) discriminative model, the discriminative rate of this sensor array was 100% for different concentrations of typical TPs in Chinese green tea with a detection limit of 5 µM. In addition, the identification of different concentrations of the same tea polyphenols and mixed tea polyphenols have also been achieved. Based on the above study, we further developed a facile and efficient new method for the category differentiation and adulteration identification of green tea, and the accuracy of this array was 96.88% and 100% for eight types of green teas and different adulteration ratios of Biluochun, respectively. This work has significance for the rapid discrimination of green tea brands and adulteration.


Asunto(s)
Técnicas Biosensibles , Camellia sinensis , , Polifenoles , Catecol Oxidasa , China
8.
J Food Sci ; 88(12): 5026-5043, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37872831

RESUMEN

In this study, a comprehensive approach to advance the inhibitory effect of Hibiscus sabdariffa extract on apple polyphenol oxidase (PPO) was performed. PPO was extracted, purified, and characterized for optimal activity, whereas response surface methodology generated a quadratic polynomial model to fit the experimental results for hibiscus extraction. The optimum conditions allowed to predict a maximum recovery of anthocyanins (256.11 mg delphinidin-3-O-glucoside/g), with a validated value of 272.87 mg delphinidin-3-O-glucoside/g dry weight (DW). The chromatographic methods highlighted the presence of gallic acid (36,812.90 µg/g DW extract), myricetin (141,933.84 µg/g DW extract), caffeic acid (101,394.07 µg/g DW extract), sinapic acid (1157.46 µg/g DW extract), kaempferol (2136.76 µg/g DW extract), and delphinidin 3-O-ß-d-glucoside (226,367.08 µg/g DW extract). The inactivation of PPO followed a first-order kinetic model. A temperature-mediated flexible fit between PPO and anthocyanins was suggested, whereas the molecular docking tests indicated that PPO is a good receptor for cafestol, gallic acid, and catechin, involving hydrophobic and hydrogen bond interactions. PRACTICAL APPLICATION: It is well known that enzymatic browning is one of the most important challenges in the industrial minimal processing of selected fruit and vegetable products. Novel inhibitors for polyphenol oxidase are proposed in this study by using an anthocyanin-enriched extract from Hibiscus sabdariffa L. Based on our results, combining the chemical effect of phytochemicals from hibiscus extract with different functional groups with minimal heating could be an interesting approach for the development of a new strategy to inhibit apple polyphenol oxidase.


Asunto(s)
Antocianinas , Hibiscus , Antocianinas/análisis , Hibiscus/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Catecol Oxidasa , Simulación del Acoplamiento Molecular , Ácido Gálico , Glucósidos
9.
J Plant Physiol ; 287: 154050, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37441911

RESUMEN

Browning is a crucial factor affecting the quality of fresh-cut apples. A safe, simple, and effective method to inhibit browning is urgently needed in fresh-cut apple production. We carried out this study to explore the effect mechanism of exogenous selenium (Se) fertilizer on fresh-cut apple browning. During the development of apples, 0.75 kg/plant Se fertilizer was exerted on the 'Fuji' apple tree at the critical stage of the young fruit stage (late May), early fruit expansion stage (late June), and fruit expansion stage (late July), an equal amount of Se-free organic fertilizer was used as control. Polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonia-lyase (PAL) activities, phenolic and malondialdehyde (MDA) content, antioxidant enzymes activity, and DPPH free radical scavenging rate of the apple at different development stages were investigated. The highest Se accumulation efficiency was observed in apple fruit one month after applying Se fertilizer, which was 41.1%. Se-rich apples exhibited a more remarkable ability to resist browning than control after fresh-cut. The anti-browning effect of the fertilization group (M7) was the best, the PPO activity decreased to 0.5 × 103 U kg-1, and the browning index was 28.6. The total Se content (TSC) of 331.4 µg kg-1 DW and organic Se content (OSC) of 292.0 µg kg-1 DW were the highest in the apple samples, reached the classification standard of Se content in Se-rich food. The correlation analysis found that fresh-cut apple browning was closely related to antioxidant capacity and PPO activity. The stronger the antioxidant capacity of fresh-cut apples treated with Se fertilizer, the lower their browning degree. Therefore, exogenous Se can alleviate fresh-cut apples browning by improving antioxidant capacity and reducing PPO activity. Se-rich apples could increase the Se content of the human essential trace element and inhibit the browning of fresh-cut apples, which would become a new, safe and effective way to solve the fresh-cut apples browning.


Asunto(s)
Malus , Selenio , Humanos , Antioxidantes/farmacología , Frutas/química , Selenio/farmacología , Fertilizantes/análisis , Catecol Oxidasa
10.
Plant Physiol Biochem ; 198: 107702, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37099880

RESUMEN

Pollen development is critical in plant reproduction. Polyphenol oxidases (PPOs) genes encode defense-related enzymes, but the role of PPOs in pollen development remains largely unexplored. Here, we characterized NtPPO genes, and then investigated their function in pollen via creating NtPPO9/10 double knockout mutant (cas-1), overexpression 35S::NtPPO10 (cosp) line and RNAi lines against all NtPPOs in Nicotiana tabacum. NtPPOs were abundantly expressed in the anther and pollen (especially NtPPO9/10). The pollen germination, polarity ratio and fruit weights were significantly reduced in the NtPPO-RNAi and cosp lines, while they were normal in cas-1 likely due to compensation by other NtPPO isoforms. Comparisons of metabolites and transcripts between the pollen of WT and NtPPO-RNAi, or cosp showed that decreased enzymatic activity of NtPPOs led to hyper-accumulation of flavonoids. This accumulation might reduce the content of ROS. Ca2+ and actin levels also decreased in pollen of the transgenic lines.Thus, the NtPPOs regulate pollen germination through the flavonoid homeostasis and ROS signal pathway. This finding provides novel insights into the native physiological functions of PPOs in pollen during reproduction.


Asunto(s)
Flavonoides , Nicotiana , Nicotiana/fisiología , Flavonoides/metabolismo , Catecol Oxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Polen/metabolismo , Homeostasis , Polifenoles/metabolismo
11.
Compr Rev Food Sci Food Saf ; 22(3): 2267-2291, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043598

RESUMEN

Polyphenol oxidase (PPO) is a metalloenzyme with a type III copper core that is abundant in nature. As one of the most essential enzymes in the tea plant (Camellia sinensis), the further regulation of PPO is critical for enhancing defensive responses, cultivating high-quality germplasm resources of tea plants, and producing tea products that are both functional and sensory qualities. Due to their physiological and pharmacological values, the constituents from the oxidative polymerization of PPO in tea manufacturing may serve as functional foods to prevent and treat chronic non-communicable diseases. However, current knowledge of the utilization of PPO in the tea industry is only available from scattered sources, and a more comprehensive study is required to reveal the relationship between PPO and tea obviously. A more comprehensive review of the role of PPO in tea was reported for the first time, as its classification, catalytic mechanism, and utilization in modulating tea flavors, compositions, and nutrition, along with the relationships between PPO-mediated enzymatic reactions and the formation of functional constituents in tea, and the techniques for the modification and application of PPO based on modern enzymology and synthetic biology are summarized and suggested in this article.


Asunto(s)
Camellia sinensis , Catecol Oxidasa/metabolismo , Oxidación-Reducción ,
12.
Int J Biol Macromol ; 240: 124353, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059281

RESUMEN

Theaflavins (TFs) are important quality compounds in black tea with a variety of biological activities. However, direct extraction of TFs from black tea is inefficient and costly. Therefore, we cloned two PPO isozymes from Huangjinya tea, termed HjyPPO1 and HjyPPO3. Both isozymes oxidized corresponding catechin substrates for the formation of four TFs (TF1, TF2A, TF2B, TF3), and the optimal catechol-type catechin to pyrogallol-type catechin oxidation rate of both isozymes was 1:2. In particular, the oxidation efficiency of HjyPPO3 was higher than that of HjyPPO1. The optimum pH and temperature of HjyPPO1 were 6.0 and 35 °C, respectively, while those of HjyPPO3 were 5.5 and 30 °C, respectively. Molecular docking simulation indicated that the unique residue of HjyPPO3 at Phe260 was more positive and formed a π-π stacked structure with His108 to stabilize the active region. In addition, the active catalytic cavity of HjyPPO3 was more conducive for substrate binding by extensive hydrogen bonding.


Asunto(s)
Camellia sinensis , Catequina , Camellia sinensis/química , Catequina/química , Catecol Oxidasa/metabolismo , Isoenzimas , Simulación del Acoplamiento Molecular , Antioxidantes , Té/genética , Té/química , Clonación Molecular
13.
Recent Pat Biotechnol ; 17(4): 395-404, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36722474

RESUMEN

BACKGROUND: Beetroot (Beta vulgaris L.) is botanically classified as a herbaceous biennial belonging to the Chenopodiaceae family and has several varieties with bulb colors ranging from yellow to red. Peroxidases are widely occurring in organisms including microorganisms, plants, and animals, and have been involved in various physiological and biochemical functions. OBJECTIVE: The study was conducted to investigate the characteristics of enzyme extracts from red beet leaves, root pulp, and peel. METHODS: The enzyme extraction involved the homogenization of the sample and filtrate in cold acetone and then the filtrate was homogenized in 0.1M sodium acetate buffer, pH 7. The protein content was determined using the Lowry assay using bovine serum albumin (BSA) as a standard protein. Then, enzymatic activity was determined by peroxidase, polyphenol oxidase, and catalase assays. The patent for biological activity of enzymes was obtained from the Office of Career Development, Haramaya University. The antioxidant activities of the enzyme extract were conducted by using DPPH and hydrogen peroxide free radical scavenging activities. RESULTS: The result indicated that the Enzymatic activity of crude enzyme extract of red beet leaf, root pulp and peel indicated that significantly the highest total soluble protein (16.68 mg/ml), peroxidase activity (PODA, 111.50 U/ml), polyphenol oxidase activity (PPOA, 170.90 U/ml), polyphenol oxidase specific activity (PPOspa, 10.25 U/mg), catalase activity (CATA, 180.50 U/ml) and catalase specific activity (CATspa, 10.82 U/mg), were recorded for red beet leaf enzyme extract. The antioxidant activity of the enzyme extracts demonstrated that significantly higher DPPH radical scavenging activity of leaf extract (59.16) and peel extract (61.92) were recorded. The Pearson correlation coefficient of enzyme activity parameters and free radical scavenging activities presented that protein content was significantly and positively correlated with CATA, PPOA, and PPOspa. Catalase- specific activity (CATspa) was significant and positively correlated only with HPSA. Peroxidase-specific activity (PODspa) was significant and positively correlated with PODA and DPPH. Based on the plot for principal component PC2 vs. PC1 for D statistics DPPH, PODA, and PODspa have close PC1 and PC2 scores (with vector angle < 90° showing similar/correlated effects. CONCLUSION: In this study, B. vulgaris has shown promising peroxidase enzyme activity. Beetroot peel contained higher antioxidant compounds thus promising a more intense utilization of the peels in food and nutraceuticals.


Asunto(s)
Antioxidantes , Beta vulgaris , Animales , Antioxidantes/farmacología , Antioxidantes/química , Catalasa , Extractos Vegetales/farmacología , Extractos Vegetales/química , Peroxidasa , Patentes como Asunto , Catecol Oxidasa , Radicales Libres
14.
Food Res Int ; 164: 112449, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36738009

RESUMEN

In this study, the browning degrees of fresh-cut potatoes of different cultivars were investigated. Fresh-cut potatoes of the 'Huangjin' cultivar exhibited a higher browning index and sensory quality deterioration over time compared with 'Minshu' potatoes. 'Huangjin' exhibited a higher activity of browning-related enzymes such as polyphenol oxidase, tyrosinase, peroxidase, phenylalanine ammonia-lyase, phospholipase D (PLD), and lipoxygenase (LOX) than 'Minshu'. Furthermore, 'Minshu' exhibited lower H2O2 and malonaldehyde (MDA) contents, lower membrane lipid degradation and peroxidation, and delayed browning, attributable to its low PLD and LOX activities. The ultrastructure of 'Minshu' cells remained intact 7 h after cutting, while that of 'Huangjin' cells was severely damaged, and 'Minshu' cells exhibited more Golgi complexes and black particles than 'Huangjin' cells. Moreover, 'Huangjin' cells exhibited numerous multivesicular bodies, which were nonexistent in 'Minshu' cells. The results show that 'Minshu' potatoes feature a lower browning-related enzyme activity than 'Huangjin', and a tough cell structure to resist post-cut browning.


Asunto(s)
Antioxidantes , Solanum tuberosum , Solanum tuberosum/química , Peróxido de Hidrógeno , Peroxidasa/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Catecol Oxidasa/metabolismo
15.
Molecules ; 28(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838710

RESUMEN

Tea polyphenol (TPs) oxidation caused by polyphenol oxidase (PPO) in manufacturing is responsible for the sensory characteristics and health function of fermented tea, therefore, this subject is rich in scientific and commercial interests. In this work, an in vitro catalysis of TPs in liquid nitrogen grinding of sun-dried green tea leaves by PPO was developed, and the changes in metabolites were analyzed by metabolomics. A total of 441 metabolites were identified in the catalyzed tea powder and control check samples, which were classified into 11 classes, including flavonoids (125 metabolites), phenolic acids (67 metabolites), and lipids (55 metabolites). The relative levels of 28 metabolites after catalysis were decreased significantly (variable importance in projection (VIP) > 1.0, p < 0.05, and fold change (FC) < 0.5)), while the relative levels of 45 metabolites, including theaflavin, theaflavin-3'-gallate, theaflavin-3-gallate, and theaflavin 3,3'-digallate were increased significantly (VIP > 1.0, p < 0.05, and FC > 2). The increase in theaflavins was associated with the polymerization of catechins catalyzed by PPO. This work provided an in vitro method for the study of the catalysis of enzymes in tea leaves.


Asunto(s)
Biflavonoides , Catequina , Polifenoles/análisis , Catecol Oxidasa/metabolismo , Catequina/metabolismo , Biflavonoides/metabolismo , Flavonoides , Té/metabolismo , Antioxidantes
16.
Protein Expr Purif ; 202: 106195, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36270466

RESUMEN

Enzymatic browning greatly affects the quality of potato products. Polyphenol oxidase (PPO) is the enzyme mainly responsible for potato enzymatic browning. PPO has soluble polyphenol oxidase (sPPO) and membrane-bound polyphenol oxidase (mPPO) forms. In this study, the properties of sPPO and mPPO were investigated in potato tubers. The molecular weight of potato sPPO and mPPO were estimated to be 69 kDa in the form of homodimers in vivo. The mass spectrometry results showed that the purified sPPO and mPPO protein in potato tubers was mainly tr|M1BMR6 (Uniprot). The optimum pH for sPPO and mPPO was 6.5, and the optimum temperatures were 20 and 30 °C, respectively. The Michaelis constant (Km) and maximum unit enzyme activity (Vmax) of sPPO were 6.08 mM and 2161 U/S when catechol was used as the substrate, whereas those of mPPO were 2.95 mM and 2129.53 U/S, respectively. The mPPO had stronger affinity to the substrate catechol than sPPO, whereas pyrogallic acid was stronger affinity for sPPO. Ascorbic acid and sodium sulfite were inhibitors of sPPO and mPPO, respectively. After understanding the different binding states of polyphenol oxidase, different inhibitors and treatment methods can be used to treat the enzyme according to different enzymatic properties, so as to achieve a greater degree of Browning control. These results will provide a theoretical basis for regulating PPO activity to reduce enzymatic browning during potato processing.


Asunto(s)
Catecol Oxidasa , Solanum tuberosum , Catecol Oxidasa/química , Tubérculos de la Planta , Catecoles
17.
Planta ; 257(1): 13, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522558

RESUMEN

MAIN CONCLUSION: Screening for resistance in 40 potato genotypes to Rhizoctonia solani AG-3PT-stem-canker, antioxidant enzymes activity as well as total phenol compounds were documented. Rhizoctonia solani AG-3PT-stem-canker is one of the most devastating diseases that leads to severe economic losses in potatoes, Solanum tuberosum globally. Crop management and eugenic practices, especially the use of resistance can be effective in reducing the disease incidence. However, the information about potato-R. Solani interaction is still limited. This study explored screening for resistance in forty potato genotypes to R. solani, analyzing biomass growth parameters (BGPs), as well as antioxidant enzymes activity of which peroxidase/peroxide-reductases (POXs), superoxide dismutase (SOD), polyphenol oxidase (PPO), catalase (CAT), phenylalanine ammonia-lyase (PAL), ß-1,3-glucanase (GLU) and total phenol compounds (TPCs) were taken into account. In addition, we analyzed up-regulation of two gene markers (PR-1 and Osmotin), using reverse transcription quantitative PCR (RT-qPCR). For which, the resistant 'Savalan', partially resistant 'Agria', partially susceptible 'Sagita' and susceptible 'Pashandi' were selected to explore the trails in their roots and leaves over the time courses of 1, 2 and 3-weeks post inoculation (wpi) following inoculation. Cluster analysis divided potatoes into four distinct groups, based on disease severity scales (0-100%) significance. The BGPs, shoot and root length, fresh and dry weight, and root volume were also significantly higher in infected potatoes compared to non-inoculated controls. Antioxidant enzymes activity also indicated the highest increased levels for POX (fourfold at 3wpi), CAT (1.5-fold at 3wpi), SOD (6.8-fold at 1wpi), and PAL (2.7-fold at 3wpi) in the resistant genotype, 'Savalan', whereas the highest activity was recorded in TPC (twofold at 1 wpi), PPO (threefold at 3wpi), and GLU (2.3-fold at 1wpi) in partially resistant genotypes. Although the defense-related enzymatic activities were sharply elevated in the resistant and partially resistant genotypes following inoculation, no significant correlations were between the activity trends of the related enzymes. The two related gene markers also showed comprehensive transcriptional responses up to 3.4-fold, predominantly in resistant genotypes. Surprisingly, the PR-1 gene marker, basically resistant to Wilting agent Verticillium dahlia was overexpressed in resistant 'Savalan' and 'Agria' against R. solani AG3-PT. Similar results were obtained on Osmotin gene marker resistant to late-blight P. infestans, and early-blight Alternaria solani that similarly modulates immunity against R. solani. Furthermore, there was a significant correlation between resistance, enzyme activity, and gene expression in the aforesaid cultivars. Studying the physiological metabolic pathways of antioxidant enzymes activity appears to be an important direction in research to elucidate resistance to R. solani in potatoes.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Resistencia a la Enfermedad/genética , Antioxidantes , Enfermedades de las Plantas , Rhizoctonia/fisiología , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Catecol Oxidasa/metabolismo , Superóxido Dismutasa , Fenoles , Mecanismos de Defensa
18.
Sci Rep ; 12(1): 18454, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323864

RESUMEN

Soya bean sprout is a nutrient-abundant vegetable. However, enzymatic browning of soya bean sprouts during storage remains a challenge. In this study, the effects of treatment with MnCl2 or ZnCl2 on the browning index, antioxidant nutrient accumulation, total antioxidant capacity and enzyme activities of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) were investigated in soya bean sprouts after storage at 4 °C and 90% relative humidity for 0, 7, 14 and 21 days. The results showed that postharvest treatment with 1, 2 and 10 mM MnCl2 or ZnCl2 profoundly retarded enzymatic browning in soya bean sprouts to different extents. Compared with the control, the 10 mM MnCl2 and ZnCl2 treatments drastically enhanced ascorbic acid, total thiol and phenolic content, and enhanced FRAP (ferric-reducing ability of plasma) antioxidant capacity in stored soya bean sprouts. Moreover, the MnCl2 and ZnCl2 treatments enhanced SOD, CAT and PAL but decreased PPO and POD activities compared with the control. In addition, the Mn and Zn content in soya bean sprouts significantly increased, by approximately two- to threefold, compared with the control. This study provides a new method for improving the nutrient quality of soya bean sprouts based on postharvest Mn or Zn supplementation.


Asunto(s)
Antioxidantes , Catecol Oxidasa , Fenoles , Fenilanina Amoníaco-Liasa , Superóxido Dismutasa
19.
Biodegradation ; 33(6): 621-639, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36214905

RESUMEN

The enhanced biodegradation of oil-contaminated soil by fixing microorganisms with corn cob biochar was investigated. It was found that the components of oil in the test soil were mainly straight-chain alkanes and branched alkanes. When using corn cob biochar as a carrier to immobilize microorganisms, the best particle size of corn cob biochar as an immobilization carrier was 0.08 mm, and the best immobilization time was 18 h. SEM analysis confirmed that the microorganisms were immobilized on the corn cob biochar. Immobilized microorganisms exhibited high biodegradability under stress to high concentrations of petroleum pollutants, heavy metals, and organic pollutants. Infrared spectroscopy analysis showed that oxygen-containing groups such as hydroxyl, carboxyl, and methoxy on the surface of biochar were involved in the complexation of heavy metals. The mechanism of immobilization promoted microbial degradation of oil contamination was explained by gas chromatography mass. First, alkanes and aromatics were adsorbed by corn cob biochar and passed to immobilized microorganisms to promote their degradation. Their bioavailability increased, especially for aromatics. Second, biochar provided a more suitable environment for microorganisms to degrade. Third, the conversion of ketones to acids was accelerated during the biodegradation of alkanes, and the biodegradation of alkanes was accelerated by immobilization. The biodegradable efficiency of oil by immobilized microorganisms in soil was 70.10% within 60 days, 28.80% higher than that of free microorganisms. The degradation of immobilized microorganisms was highly correlated with the activities of catalase, urease, and polyphenol oxidase.


Asunto(s)
Metales Pesados , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Gas Natural , Catalasa , Contaminantes del Suelo/análisis , Ureasa , Carbón Orgánico , Petróleo/análisis , Suelo/química , Microbiología del Suelo , Alcanos , Oxígeno/análisis , Cetonas , Catecol Oxidasa
20.
Ultrason Sonochem ; 90: 106205, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36274416

RESUMEN

The shelf life of fresh-cut fruits and vegetables is affected by microbial growth, enzymatic browning, and loss of flavor. Although ultrasound (US) treatment is often used in the preservation of fresh-cut fruits and vegetables, it has limited antibacterial and preservative effects. Here, we used cactus polysaccharides (CP) to enhance the preservative effect of ultrasound treatment and extended the shelf life of fresh-cut potatoes. The results showed that combined treatment (CP + US) exerted better antimicrobial and anti-browning effects than individual treatments (either US or CP alone). In addition, CP + US has no adverse effect on texture and quality properties, as well as reduced the mobility of internal water. Combination treatment not only significantly decreased the activities of polyphenol oxidase and peroxidase (P < 0.05), but also maintained a high level of phenylalanine ammonia lyase activity and total phenol content during storage. It also maintained the integrity of cell membrane and reduced its permeability by inhibiting the peroxidation of membrane lipids. In addition, CP + US treatment significantly inhibited the activity of antioxidant enzymes and maintained a high DPPH scavenging ability. GC-IMS technology was used to evaluate the flavor of fresh-cut potatoes. The results showed that CP + US treatment reduced the production of a peculiar smell during storage and maintained a good flavor by inhibiting the production of aldehydes. Taken together, these results indicate that the effective preservation method of CP + US treatment can be utilized to increase the shelf life of fresh-cut potatoes.


Asunto(s)
Cactaceae , Solanum tuberosum , Solanum tuberosum/química , Catecol Oxidasa/metabolismo , Frutas/química , Verduras , Polisacáridos/farmacología , Polisacáridos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA