Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 103(13): 6208-6218, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37148152

RESUMEN

BACKGROUND: Black cumin seeds (black seed; BS) contain various bioactive compounds, such as thymoquinone (TQ). Roasting and ultrasound-assisted enzymatic treatment (UAET) as pre-treatments can increase the phytochemical content in the BS oil. This study aimed to investigate the effects of pre-treatments on the TQ content and the yield of the BS oil and to profile the composition of defatted BS meal (DBSM), followed by evaluating antioxidant properties of the DBSM. RESULTS: The extraction yield of crude oil from BS was not affected by the roasting time. The highest extraction yield (47.8 ± 0.4%) was obtained with UAET cellulase-pH 5 (enzyme concentration of 100%). Roasting decreased the TQ content of the oil, while the UAET cellulase-pH 5 treatment with an enzyme concentration of 100% yielded the highest TQ (125.1 ± 2.7 µg mL-1 ). Additionally, the UAET cellulase-pH 5 treatment increased total phenolics and flavonoids of DBSM by approximately two-fold, compared to roasting or ultrasound treatment (UT) alone. Principal component analysis revealed that the UAET method might be more suitable for extracting BS oil with higher TQ content than roasting and UT. CONCLUSION: Compared to roasting or UT, using ultrasound along with cellulase could improve the oil yield and TQ in the oil from BS and obtain the DBSM with higher phenolics, flavonoids, and antioxidant activity. © 2023 Society of Chemical Industry.


Asunto(s)
Celulasas , Nigella sativa , Antioxidantes/análisis , Nigella sativa/química , Benzoquinonas/química , Semillas/química , Flavonoides/análisis , Celulasas/análisis
2.
Sci Total Environ ; 833: 155163, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35413342

RESUMEN

Nitrogen (N) and phosphorus (P) control biogeochemical cycling in terrestrial ecosystems. However, N and P addition effects on litter decomposition, especially biological pathways in subtropical forests, remain unclear. Here, a two-year field litterbag experiment was employed in a subtropical forest in southwestern China to examine N and P addition effects on litter biological decomposition with nine treatments: low and high N- and P-only addition (LN, HN, LP, and HP), NP coaddition (LNLP, LNHP, HNLP, and HNHP), and a control (CK). The results showed that the decomposition coefficient (k) was higher in NP coaddition treatments (P < 0.05), and lower in N- and P-only addition treatments than in CK (P < 0.05). The highest k was observed with LNLP (P < 0.05). The N- and P-only addition treatments decreased the losses of litter mass, lignin, cellulose, and condensed tannins, litter microbial biomass carbon (MBC), litter cellulase, and soil pH (P < 0.05). The NP coaddition treatments increased the losses of litter mass, lignin, and cellulose, MBC concentration, litter invertase, urease, cellulase, and catalase activities, soil arthropod diversity (S) in litterbags, and soil pH (P < 0.05). Litter acid phosphatase activity and N:P ratio were lower in N-only addition treatments but higher in P-only addition and NP coaddition treatments than in CK (P < 0.05). Structural equation model showed that litter MBC, S, cellulase, acid phosphatase, and polyphenol oxidase contributed to the loss of litter mass (P < 0.05). The litter N:P ratio was negatively logarithmically correlated with mass loss (P < 0.01). In conclusion, the negative effect of N addition on litter decomposition was reversed when P was added by increasing decomposed litter soil arthropod diversity, MBC concentration, and invertase and cellulase activities. Finally, the results highlighted the important role of the N:P ratio in litter decomposition.


Asunto(s)
Celulasas , Nitrógeno , Fosfatasa Ácida/metabolismo , Carbono/análisis , Celulasas/análisis , Celulasas/metabolismo , China , Ecosistema , Bosques , Lignina/metabolismo , Nitrógeno/análisis , Fósforo/análisis , Hojas de la Planta/química , Suelo/química , beta-Fructofuranosidasa/análisis , beta-Fructofuranosidasa/metabolismo
3.
Environ Monit Assess ; 186(10): 6319-25, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24869954

RESUMEN

The impact of repeated applications of buprofezin and acephate, at concentrations ranging from 0.25 to 1.0 kg ha(-1), on activities of cellulases, amylase, and invertase in unamended and nitrogen, phosphorous, and potassium (NPK) fertilizer-amended soil planted with cotton was studied. The nontarget effect of selected insecticides, when applied once, twice, or thrice on soil enzyme activities, was dose-dependent; the activities decreased with increasing concentrations of insecticides. However, there was a rapid decline in activities of enzymes after three repeated applications of insecticides in unamended or NPK-amended soil. Our data clearly suggest that insecticides must be applied judiciously in pest management in order to protect the enzymes largely implicated in soil fertility.


Asunto(s)
Amilasas/análisis , Celulasas/análisis , Monitoreo del Ambiente , Insecticidas/toxicidad , Compuestos Organotiofosforados/toxicidad , Fosforamidas/toxicidad , Microbiología del Suelo , Tiadiazinas/toxicidad , beta-Fructofuranosidasa/análisis , Fertilizantes/análisis , Insecticidas/análisis , Nitrógeno/análisis , Fósforo/análisis , Potasio , Suelo
4.
Appl Biochem Biotechnol ; 121-124: 321-34, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15917610

RESUMEN

Corn fiber is the fibrous by-product of wet-mill corn processing. It typically consists of about 20% starch, 14% cellulose, and 30% hemicellulose in the form of arabinoxylan. Crude corn fiber (CCF) was fractionated into de-starched corn fiber (DSCF), corn fiber with cellulose (CFC) enriched, and corn fiber arabinoxylan (CFAX), and these fractions were evaluated as substrates for enzyme production by Trichoderma reesei. T. reesei QM9414 and Rut C-30 grew on CCF, DSCF, CFC, or CFAX and secreted a number of hydrolytic enzymes. The enzymes displayed synergism with commercial cellulases for corn fiber hydrolysis.


Asunto(s)
Celulasas/biosíntesis , Celulasas/química , Endo-1,4-beta Xilanasas/biosíntesis , Endo-1,4-beta Xilanasas/química , Trichoderma/enzimología , Trichoderma/crecimiento & desarrollo , Zea mays/microbiología , Reactores Biológicos/microbiología , Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Celulasas/análisis , Endo-1,4-beta Xilanasas/análisis , Extractos Vegetales/metabolismo , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA