Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Biol (Stuttg) ; 15(2): 405-14, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22759307

RESUMEN

Cellulose is the major component of plant cell walls and is an important source of industrial raw material. Although cellulose biosynthesis is one of the most important biochemical processes in plant biology, the regulatory mechanisms of cellulose synthesis are still unclear. Here, we report that 2,6-dichlorobenzonitrile (DCB), an inhibitor of cellulose synthesis, inhibits Arabidopsis root development in a dose- and time-dependent manner. When treated with DCB, the plant cell wall showed altered cellulose distribution and intensity, as shown by calcofluor white and S4B staining. Moreover, pectin deposition was reduced in the presence of DCB when immunostained with the monoclonal antibody JIM5, which was raised against pectin epitopes. This result was confirmed using Fourier transform infrared (FTIR) analysis. Confocal microscopy revealed that the organisation of the microtubule cytoskeleton was significantly disrupted in the presence of low concentrations of DCB, whereas the actin cytoskeleton only showed changes with the application of high DCB concentrations. In addition, the subcellular dynamics of Golgi bodies labelled with N-ST-YFP and TGN labelled with VHA-a1-GFP were both partially blocked by DCB. Transmission electron microscopy indicated that the cell wall structure was affected by DCB, as were the Golgi bodies. Scanning electron microscopy showed changes in the organisation of cellulose microfibrils. These results suggest that the inhibition of cellulose synthesis by DCB not only induced changes in the chemical composition of the root cell wall and cytoskeleton structure, but also changed the distribution of cellulose microfibrils, implying that cellulose plays an important role in root development in Arabidopsis.


Asunto(s)
Arabidopsis/efectos de los fármacos , Pared Celular/efectos de los fármacos , Celulosa/biosíntesis , Citoesqueleto/efectos de los fármacos , Nitrilos/farmacología , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Transporte Biológico , Pared Celular/química , Pared Celular/ultraestructura , Celulosa/antagonistas & inhibidores , Citoesqueleto/química , Relación Dosis-Respuesta a Droga , Aparato de Golgi/química , Aparato de Golgi/ultraestructura , Inmunohistoquímica , Microfibrillas/química , Microscopía Confocal , Microscopía Electrónica de Transmisión , Pectinas/química , Células Vegetales/química , Células Vegetales/ultraestructura , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Semillas/química , Semillas/crecimiento & desarrollo , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo
2.
Plant Signal Behav ; 4(11): 1069-71, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19829052

RESUMEN

The habituation of cell cultures to cellulose biosynthesis inhibitors constitutes a valuable method for learning more about the plasticity of plant cell wall composition and structure. The subculture of habituated cells in the absence of an inhibitor (dehabituation) offers complementary information: some habituation-associated modifications revert, whereas others remain, even after long-term (3-5 years) dehabituation processes. However, is dehabituation simply the opposite to the process of habituation, in the same way that the cloth woven by Penélope during the day was unwoven during the night? Principal Component Analysis applied to Fourier Transformed Infrared (FTIR) spectra of cell walls from dichlobenil-habituated and dehabituated bean cell lines has shown that dehabituation follows a different pathway to that of habituation. Principal component loadings show that dehabituated cells have more pectins, but that these display a lower degree of methyl-esterification, than those of habituated ones. Further analysis of cell walls focusing on the first steps of habituation would serve to identify which specific modifications in pectins are responsible to the fine modulation of cell wall architecture observed during the habituation/dehabituation process.


Asunto(s)
Pared Celular/fisiología , Celulosa/antagonistas & inhibidores , Fabaceae/fisiología , Herbicidas/farmacología , Nitrilos/farmacología , Pectinas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Técnicas de Cultivo de Célula , Esterificación , Fabaceae/efectos de los fármacos , Análisis de Componente Principal , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA