Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biol Open ; 13(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38526189

RESUMEN

CENP-A determines the identity of the centromere. Because the position and size of the centromere and its number per chromosome must be maintained, the distribution of CENP-A is strictly regulated. In this study, we have aimed to understand mechanisms to regulate the distribution of CENP-A (Cnp1SP) in fission yeast. A mutant of the ufd1+ gene (ufd1-73) encoding a cofactor of Cdc48 ATPase is sensitive to Cnp1 expressed at a high level and allows mislocalization of Cnp1. The level of Cnp1 in centromeric chromatin is increased in the ufd1-73 mutant even when Cnp1 is expressed at a normal level. A preexisting mutant of the cdc48+ gene (cdc48-353) phenocopies the ufd1-73 mutant. We have also shown that Cdc48 and Ufd1 proteins interact physically with centromeric chromatin. Finally, Cdc48 ATPase with Ufd1 artificially recruited to the centromere of a mini-chromosome (Ch16) induce a loss of Cnp1 from Ch16, leading to an increased rate of chromosome loss. It appears that Cdc48 ATPase, together with its cofactor Ufd1 remove excess Cnp1 from chromatin, likely in a direct manner. This mechanism may play a role in centromere disassembly, a process to eliminate Cnp1 to inactivate the kinetochore function during development, differentiation, and stress response.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cromatina/genética , Cromatina/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Centrómero/genética , Centrómero/metabolismo , Adenosina Trifosfatasas/metabolismo , Extractos Vegetales/metabolismo
2.
Plant J ; 118(1): 171-190, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38128038

RESUMEN

Sugar beet and its wild relatives share a base chromosome number of nine and similar chromosome morphologies. Yet, interspecific breeding is impeded by chromosome and sequence divergence that is still not fully understood. Since repetitive DNAs are among the fastest evolving parts of the genome, we investigated, if repeatome innovations and losses are linked to chromosomal differentiation and speciation. We traced genome and chromosome-wide evolution across 13 beet species comprising all sections of the genera Beta and Patellifolia. For this, we combined short and long read sequencing, flow cytometry, and cytogenetics to build a comprehensive framework that spans the complete scale from DNA to chromosome to genome. Genome sizes and repeat profiles reflect the separation into three gene pools with contrasting evolutionary patterns. Among all repeats, satellite DNAs harbor most genomic variability, leading to fundamentally different centromere architectures, ranging from chromosomal uniformity in Beta and Patellifolia to the formation of patchwork chromosomes in Corollinae/Nanae. We show that repetitive DNAs are causal for the genome expansions and contractions across the beet genera, providing insights into the genomic underpinnings of beet speciation. Satellite DNAs in particular vary considerably between beet genomes, leading to the evolution of distinct chromosomal setups in the three gene pools, likely contributing to the barriers in beet breeding. Thus, with their isokaryotypic chromosome sets, beet genomes present an ideal system for studying the link between repeats, genomic variability, and chromosomal differentiation and provide a theoretical fundament for understanding barriers in any crop breeding effort.


Asunto(s)
Beta vulgaris , Beta vulgaris/genética , Secuencia de Bases , ADN Satélite , Pool de Genes , Fitomejoramiento , Secuencias Repetitivas de Ácidos Nucleicos/genética , Verduras/genética , ADN , Centrómero/genética , Azúcares
3.
Cytogenet Genome Res ; 161(5): 272-277, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34289478

RESUMEN

The genus Dracaena is the main source of dragon's blood, which is a plant resin and has been used as traditional medicine since ancient times in different civilizations. However, the chromosome numbers and karyotypes present in this genus remain poorly understood. In this study, fluorescence in situ hybridization (FISH) using oligonucleotide probes for ribosomal DNAs (5S and 45S rDNA) and telomeric repeats (TTTAGGG)3 was applied to analyze 4 related species: Dracaena terniflora Roxb., Dracaena cambodiana Pierre ex Gagnep., Aizong (Dracaena sp.), and Dracaena cochinchinensis (Lour.) S.C. Chen. In all 4 species, both 5S and 45S rDNA showed hybridization signals in the paracentromeric region of a pair of chromosomes; the sizes of the 45S rDNA signals were larger than those of the 5S rDNA. Importantly, the telomeric repeat signals were located in the telomeric regions of almost all chromosomes. The results indicated that the chromosome number of all 4 Dracaena species is 2n = 40, and the lengths of the mitotic metaphase chromosomes range from 0.99 to 2.98 µm. Our results provide useful cytogenetic information, which will be beneficial to future studies in genome structure of the genus Dracaena.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/química , Dracaena/genética , Cariotipo , Centrómero , China , Dracaena/clasificación , Hibridación Fluorescente in Situ/métodos , Cariotipificación/métodos , Filogeografía , ARN Ribosómico/genética , ARN Ribosómico 5S/genética , Telómero
4.
Molecules ; 26(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916717

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing system has recently been used for haploid production in plants. Haploid induction using the CRISPR/Cas system represents an attractive approach in cannabis, an economically important industrial, recreational, and medicinal plant. However, the CRISPR system requires the design of precise (on-target) single-guide RNA (sgRNA). Therefore, it is essential to predict off-target activity of the designed sgRNAs to avoid unexpected outcomes. The current study is aimed to assess the predictive ability of three machine learning (ML) algorithms (radial basis function (RBF), support vector machine (SVM), and random forest (RF)) alongside the ensemble-bagging (E-B) strategy by synergizing MIT and cutting frequency determination (CFD) scores to predict sgRNA off-target activity through in silico targeting a histone H3-like centromeric protein, HTR12, in cannabis. The RF algorithm exhibited the highest precision, recall, and F-measure compared to all the tested individual algorithms with values of 0.61, 0.64, and 0.62, respectively. We then used the RF algorithm as a meta-classifier for the E-B method, which led to an increased precision with an F-measure of 0.62 and 0.66, respectively. The E-B algorithm had the highest area under the precision recall curves (AUC-PRC; 0.74) and area under the receiver operating characteristic (ROC) curves (AUC-ROC; 0.71), displaying the success of using E-B as one of the common ensemble strategies. This study constitutes a foundational resource of utilizing ML models to predict gRNA off-target activities in cannabis.


Asunto(s)
Sistemas CRISPR-Cas/genética , Cannabis/genética , Centrómero/metabolismo , Simulación por Computador , Técnicas de Inactivación de Genes , Histonas/genética , Área Bajo la Curva , Curva ROC , Máquina de Vectores de Soporte
5.
Ann Bot ; 128(3): 281-299, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-33729490

RESUMEN

BACKGROUND AND AIMS: Endogenous pararetroviruses (EPRVs) are widespread components of plant genomes that originated from episomal DNA viruses of the Caulimoviridae family. Due to fragmentation and rearrangements, most EPRVs have lost their ability to replicate through reverse transcription and to initiate viral infection. Similar to the closely related retrotransposons, extant EPRVs were retained and often amplified in plant genomes for several million years. Here, we characterize the complete genomic EPRV fraction of the crop sugar beet (Beta vulgaris, Amaranthaceae) to understand how they shaped the beet genome and to suggest explanations for their absent virulence. METHODS: Using next- and third-generation sequencing data and genome assembly, we reconstructed full-length in silico representatives for the three host-specific EPRVs (beetEPRVs) in the B. vulgaris genome. Focusing on the endogenous caulimovirid beetEPRV3, we investigated its chromosomal localization, abundance and distribution by fluorescent in situ and Southern hybridization. KEY RESULTS: Full-length beetEPRVs range between 7.5 and 10.7 kb in size, are heterogeneous in structure and sequence, and occupy about 0.3 % of the beet genome. Although all three beetEPRVs were assigned to the florendoviruses, they showed variably arranged protein-coding domains, different fragmentation, and preferences for diverse sequence contexts. We observed small RNAs that specifically target the individual beetEPRVs, indicating stringent epigenetic suppression. BeetEPRV3 sequences occur along all sugar beet chromosomes, preferentially in the vicinity of each other and are associated with heterochromatic, centromeric and intercalary satellite DNAs. BeetEPRV3 members also exist in genomes of related wild species, indicating an initial beetEPRV3 integration 13.4-7.2 million years ago. CONCLUSIONS: Our study in beet illustrates the variability of EPRV structure and sequence in a single host genome. Evidence of sequence fragmentation and epigenetic silencing implies possible plant strategies to cope with long-term persistence of EPRVs, including amplification, fixation in the heterochromatin, and containment of EPRV virulence.


Asunto(s)
Beta vulgaris , Beta vulgaris/genética , Centrómero , Genoma de Planta/genética , Retroelementos , Azúcares
6.
J Exp Bot ; 71(17): 5237-5246, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32369582

RESUMEN

The loading and maintenance of centromeric histone 3 (CENH3) at the centromere are critical processes ensuring appropriate kinetochore establishment and equivalent segregation of the homologous chromosomes during cell division. CENH3 loss of function is lethal, whereas mutations in the histone fold domain are tolerated and lead to chromosome instability and chromosome elimination in embryos derived from crosses with wild-type pollen. A wide range of proteins in yeast and animals have been reported to interact with CENH3. The histone fold domain-interacting proteins are potentially alternative targets for the engineering of haploid inducer lines, which may be important when CENH3 mutations are not well supported by a given crop. Here, we provide an overview of the corresponding plant orthologs or functional homologs of CENH3-interacting proteins. We also list putative CENH3 post-translational modifications that are also candidate targets for modulating chromosome stability and inheritance.


Asunto(s)
Centrómero , Histonas , Animales , Haploidia , Histonas/genética , Plantas/genética , Polen
7.
New Phytol ; 223(3): 1340-1352, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31038752

RESUMEN

B chromosomes (Bs) are supernumerary chromosomes, which are often preferentially inherited. When transmission rates of chromosomes are higher than 0.5, not obeying the Mendelian law of equal segregation, the resulting transmission advantage is collectively referred to as 'chromosome drive'. Here we analysed the drive mechanism of Aegilops speltoides Bs. The repeat AesTR-183 of A. speltoides Bs, which also can be detected on the Bs of Aegilops mutica and rye, was used to track Bs during pollen development. Nondisjunction of CENH3-positive, tubulin interacting B sister chromatids and an asymmetric spindle during first pollen grain mitosis are key for the accumulation process. A quantitative flow cytometric approach revealed that, independent of the number of Bs present in the mother plant, Bs accumulate in the generative nuclei to > 93%. Nine out of 11 tested (peri)centromeric repeats were shared by A and B chromosomes. Our findings provide new insights into the process of chromosome drive. Quantitative flow cytometry is a useful and reliable method to study the drive frequency of Bs. Nondisjunction and unequal spindle organization accompany during first pollen mitosis the drive of A. speltoides Bs. The prerequisites for the drive process seems to be common in Poaceae.


Asunto(s)
Aegilops/genética , Cromosomas de las Plantas/genética , No Disyunción Genética , Secuencia de Bases , Núcleo Celular/genética , Centrómero/metabolismo , Secuencia Conservada/genética , Mitosis/genética , Polen/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Secale/genética , Huso Acromático/metabolismo
8.
Plant Physiol ; 178(1): 317-328, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30061120

RESUMEN

The correct separation of homologous chromosomes during meiosis I, and sister chromatids during meiosis II, relies on the tight control of the cohesion complex. The phosphorylation and subsequent cleavage of the meiotic recombination protein REC8 (REC8-like family protein [SYN1] in Arabidopsis [Arabidopsis thaliana]), the α-kleisin subunit of the cohesion ring, along the chromosome arms at meiosis I allows crossovers and separation of homologous chromosomes without chromatid dissociation. REC8 continues to localize and function at the centromeres up to metaphase II and, in yeast and vertebrates, is protected from cleavage by means of protein phosphatase 2A (PP2A)-mediated dephosphorylation. Here, we show that, in plants, centromeric sister chromatid cohesion until meiosis II also requires the activity of a PP2A-type phosphatase complex. The combined absence of the regulatory subunits PP2AB'α and PP2AB'ß leads to the premature loss of chromosome cohesion in meiosis I. Male meiocytes of the pp2ab'αß double mutant display premature depletion of SYN1. The PP2AA1 structural and B'α regulatory subunit localize specifically to centromeres until metaphase II, supporting a role for the PP2A complex in the SYN1-mediated maintenance of centromeric cohesion in plant meiosis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Centrómero/genética , Cromátides/genética , Meiosis/genética , Proteína Fosfatasa 2/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Metafase/genética , Mutación , Plantas Modificadas Genéticamente , Polen/genética , Polen/metabolismo , Proteína Fosfatasa 2/metabolismo , Intercambio de Cromátides Hermanas/genética
9.
Nanotechnology ; 29(28): 285602, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-29671751

RESUMEN

Single molecule localization microscopy (SMLM) is a powerful tool for imaging biological targets at the nanoscale. In this report, we present SMLM imaging of telomeres and centromeres using fluorescence in situ hybridization (FISH). The FISH probes were fabricated by decorating CdSSe/ZnS quantum dots (QDs) with telomere or centromere complementary DNA strands. SMLM imaging experiments using commercially available peptide nucleic acid (PNA) probes labeled with organic fluorophores were also conducted to demonstrate the advantages of using QDs FISH probes. Compared with the PNA probes, the QDs probes have the following merits. First, the fluorescence blinking of QDs can be realized in aqueous solution or PBS buffer without thiol, which is a key buffer component for organic fluorophores' blinking. Second, fluorescence blinking of the QDs probe needs only one excitation light (i.e. 405 nm). While fluorescence blinking of the organic fluorophores usually requires two illumination lights, that is, the activation light (i.e. 405 nm) and the imaging light. Third, the high quantum yield, multiple switching times and a good optical stability make the QDs more suitable for long-term imaging. The localization precision achieved in telomeres and centromeres imaging experiments is about 30 nm, which is far beyond the diffraction limit. SMLM has enabled new insights into telomeres or centromeres on the molecular level, and it is even possible to determine the length of telomere and become a potential technique for telomere-related investigation.


Asunto(s)
Centrómero/metabolismo , Hibridación Fluorescente in Situ , Puntos Cuánticos/química , Semiconductores , Imagen Individual de Molécula/métodos , Telómero/metabolismo , Compuestos de Cadmio/química , Células HeLa , Humanos , Rayos Láser , Sondas Moleculares/química , Puntos Cuánticos/ultraestructura , Sulfuros/química , Compuestos de Zinc/química
10.
Am J Chin Med ; 46(3): 689-705, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29595070

RESUMEN

Although garlic induces apoptosis in cancer cells, it is unclear whether the effects are similar to those of cisplatin against bladder cancer (BC). Therefore, this study investigated whether garlic extracts and cisplatin show similar activity when used to treat BC. The effect of garlic on T24 BC cell line was examined in a BALB/C-nude mouse xenograft model and compared with that of cisplatin. Tissue microarray analysis and gene network analysis were performed to identify differences in gene expression by control tumors and tumors exposed to garlic extract or cisplatin. Investigation of gene expression based on tissues from 165 BC patients and normal controls was then performed to identify common targets of garlic and cisplatin. Tumor volume and tumor weight in cisplatin (0.05[Formula: see text]mg/kg)- and garlic-treated mice were significantly smaller than those in negative control mice. However, cisplatin-treated mice also showed a significant reduction in body weight. Microarray analysis of tumor tissue identified 515 common anticancer genes in the garlic and cisplatin groups ([Formula: see text]). Gene network analysis of 252 of these genes using the Cytoscape and ClueGo software packages mapped 17 genes and 9 gene ontologies to gene networks. BC (NMIBC and MIBC) patients with low expression of centromere protein M (CENPM) showed significantly better progression-free survival than those with high expression. Garlic extract shows anticancer activity in vivo similar to that of cisplatin, with no evident of side effects. Both appear to act by targeting protein-DNA complex assembly; in particular, expression of CENPM.


Asunto(s)
Antineoplásicos/administración & dosificación , Centrómero/metabolismo , Cisplatino/administración & dosificación , Ajo/química , Proteínas Nucleares/metabolismo , Fitoterapia , Extractos Vegetales/administración & dosificación , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular , ADN/metabolismo , Modelos Animales de Enfermedad , Supervivencia sin Enfermedad , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Terapia Molecular Dirigida , Proteínas de Neoplasias/metabolismo , Unión Proteica/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
11.
G3 (Bethesda) ; 8(1): 123-130, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29122849

RESUMEN

Autosomal drivers violate Mendel's law of segregation in that they are overrepresented in gametes of heterozygous parents. For drivers to be polymorphic within populations rather than fixing, their transmission advantage must be offset by deleterious effects on other fitness components. In this paper, we develop an analytical model for the evolution of autosomal drivers that is motivated by the neocentromere drive system found in maize. In particular, we model both the transmission advantage and deleterious fitness effects on seed viability, pollen viability, seed to adult survival mediated by maternal genotype, and seed to adult survival mediated by offspring genotype. We derive general, biologically intuitive conditions for the four most likely evolutionary outcomes and discuss the expected evolution of autosomal drivers given these conditions. Finally, we determine the expected equilibrium allele frequencies predicted by the model given recent estimates of fitness components for all relevant genotypes and show that the predicted equilibrium is within the range observed in maize land races for levels of drive at the low end of what has been observed.


Asunto(s)
Centrómero/química , Cromosomas de las Plantas/química , Evolución Molecular , Modelos Genéticos , Zea mays/genética , Alelos , Quimera/genética , Segregación Cromosómica , Frecuencia de los Genes , Heterocigoto , Meiosis , Polen/genética , Semillas/genética
12.
Sci Rep ; 7: 42535, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28211906

RESUMEN

Meiotic homologous recombination plays a central role in creating genetic variability, making it an essential biological process relevant to evolution and crop breeding. In this study, we used pollen-specific fluorescent tagged lines (FTLs) to measure male meiotic recombination frequency during the development of Arabidopsis thaliana. Interestingly, a subset of pollen grains consistently shows loss of fluorescence expression in tested lines. Using nine independent FTL intervals, the spatio-temporal dynamics of male recombination frequency was assessed during plant development, considering both shoot type and plant age as independent parameters. In most genomic intervals assayed, male meiotic recombination frequency is highly consistent during plant development, showing no significant change between different shoot types and during plant aging. However, in some genomic regions, such as I1a and I5a, a small but significant effect of either developmental position or plant age were observed, indicating that the meiotic CO frequency in those intervals varies during plant development. Furthermore, from an overall view of all nine genomic intervals assayed, both primary and tertiary shoots show a similar dynamics of increasing recombination frequency during development, while secondary and lateral shoots remain highly stable. Our results provide new insights in the dynamics of male meiotic recombination frequency during plant development.


Asunto(s)
Arabidopsis/genética , Meiosis/genética , Desarrollo de la Planta/genética , Recombinación Genética , Arabidopsis/crecimiento & desarrollo , Centrómero/genética , Cromosomas de las Plantas , Expresión Génica , Genes Reporteros , Genoma de Planta , Genotipo , Fenotipo , Plantas Modificadas Genéticamente , Polen/genética
13.
J Cell Sci ; 129(19): 3553-3561, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27521428

RESUMEN

The roles of epigenetic mechanisms, including small-RNA-mediated silencing, in plant meiosis largely remain unclear, despite their importance in plant reproduction. This study unveiled that rice chromosomes are reprogrammed during the premeiosis-to-meiosis transition in pollen mother cells (PMCs). This large-scale meiotic chromosome reprogramming (LMR) continued throughout meiosis I, during which time H3K9 dimethylation (H3K9me2) was increased, and H3K9 acetylation and H3S10 phosphorylation were broadly decreased, with an accompanying immunostaining pattern shift of RNA polymerase II. LMR was dependent on the rice Argonaute protein, MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), which is specifically expressed in germ cells prior to meiosis, because LMR was severely diminished in mel1 mutant anthers. Pivotal meiotic events, such as pre-synaptic centromere association, DNA double-strand break initiation and synapsis of homologous chromosomes, were also disrupted in this mutant. Interestingly, and as opposed to the LMR loss in most chromosomal regions, aberrant meiotic protein loading and hypermethylation of H3K9 emerged on the nucleolar organizing region in the mel1 PMCs. These results suggest that MEL1 plays important roles in epigenetic LMR to promote faithful homologous recombination and synapsis during rice meiosis.


Asunto(s)
Proteínas Argonautas/metabolismo , Histonas/metabolismo , Meiosis , Oryza/citología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Centrómero/metabolismo , Cromatina/metabolismo , Emparejamiento Cromosómico/genética , Roturas del ADN de Doble Cadena , ADN Ribosómico/genética , Recombinación Homóloga/genética , Lisina/metabolismo , Mutación/genética , Fosforilación , Polen/genética , ARN Polimerasa II/metabolismo , Coloración y Etiquetado
14.
Genetics ; 204(2): 543-553, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27466226

RESUMEN

The RNA-directed DNA methylation (RdDM) pathway is important for the transcriptional repression of transposable elements and for heterochromatin formation. Small RNAs are key players in this process by regulating both DNA and histone methylation. Taking into account that methylation underlies gene silencing and that there are genes with meiosis-specific expression profiles, we have wondered whether genes involved in RdDM could play a role during this specialized cell division. To address this issue, we have characterized meiosis progression in pollen mother cells from Arabidopsis thaliana mutant plants defective for several proteins related to RdDM. The most relevant results were obtained for ago4-1 In this mutant, meiocytes display a slight reduction in chiasma frequency, alterations in chromatin conformation around centromeric regions, lagging chromosomes at anaphase I, and defects in spindle organization. These abnormalities lead to the formation of polyads instead of tetrads at the end of meiosis, and might be responsible for the fertility defects observed in this mutant. Findings reported here highlight an involvement of AGO4 during meiosis by ensuring accurate chromosome segregation at anaphase I.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Argonautas/genética , Metilación de ADN/genética , Meiosis/genética , Anafase/genética , Centrómero/genética , Ensamble y Desensamble de Cromatina/genética , Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Polen/genética , Polen/crecimiento & desarrollo , ARN de Planta/genética
15.
BMC Plant Biol ; 16(1): 120, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27230558

RESUMEN

BACKGROUND: Sugar beet (Beta vulgaris) is an important crop of temperate climate zones, which provides nearly 30 % of the world's annual sugar needs. From the total genome size of 758 Mb, only 567 Mb were incorporated in the recently published genome sequence, due to the fact that regions with high repetitive DNA contents (e.g. satellite DNAs) are only partially included. Therefore, to fill these gaps and to gain information about the repeat composition of centromeres and heterochromatic regions, we performed chromatin immunoprecipitation followed by sequencing (ChIP-Seq) using antibodies against the centromere-specific histone H3 variant of sugar beet (CenH3) and the heterochromatic mark of dimethylated lysine 9 of histone H3 (H3K9me2). RESULTS: ChIP-Seq analysis revealed that active centromeres containing CenH3 consist of the satellite pBV and the Ty3-gypsy retrotransposon Beetle7, while heterochromatin marked by H3K9me2 exhibits heterogeneity in repeat composition. H3K9me2 was mainly associated with the satellite family pEV, the Ty1-copia retrotransposon family Cotzilla and the DNA transposon superfamily of the En/Spm type. In members of the section Beta within the genus Beta, immunostaining using the CenH3 antibody was successful, indicating that orthologous CenH3 proteins are present in closely related species within this section. CONCLUSIONS: The identification of repetitive genome portions by ChIP-Seq experiments complemented the sugar beet reference sequence by providing insights into the repeat composition of poorly characterized CenH3-chromatin and H3K9me2-heterochromatin. Therefore, our work provides the basis for future research and application concerning the sugar beet centromere and repeat-rich heterochromatic regions characterized by the presence of H3K9me2.


Asunto(s)
Beta vulgaris/genética , Cromatina/genética , Heterocromatina/genética , Proteínas de Plantas/genética , Beta vulgaris/metabolismo , Centrómero/metabolismo , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN
16.
Theor Appl Genet ; 129(3): 535-45, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26704420

RESUMEN

KEY MESSAGE: Tyramide FISH was used to locate relatively small genomic amplicons from molecular markers linked to Ms locus onto onion chromosome 2 near the centromere, a region of relatively low recombination. Fluorescence in situ hybridization (FISH) has not been readily exploited for physical mapping of molecular markers in plants due to the technical challenge of visualizing small single-copy probes. Signal amplification using tyramide (tyr) FISH can increase sensitivity up to 100-fold. We used tyr-FISH to physically locate molecular markers tightly linked to the nuclear male-fertility (Ms) restoration locus of onion onto mitotic metaphase, pachytene, and super-stretched pachytene chromosomes. Relatively short genomic amplicons (846-2251 bp) and a cDNA clone (666 bp) were visualized in 9-42 % of observed cells. The markers were assigned to proximal locations close to the centromere on the long arm of chromosome 2, a region of lower recombination, revealing that tightly linked markers may be physically distant from Ms. This result explains why several labs have identified molecular markers tightly linked to the Ms locus after screening relatively few DNA clones or primers and segregating progenies. Although these markers are still useful for marker-aided selection, our results indicate that map-based cloning of Ms will likely be difficult due to reduced recombination near this gene.


Asunto(s)
Hibridación Fluorescente in Situ , Cebollas/genética , Mapeo Físico de Cromosoma/métodos , Infertilidad Vegetal/genética , Centrómero/genética , Cromosomas de las Plantas/genética , ADN Complementario/genética , ADN de Plantas/genética , Marcadores Genéticos , Polimorfismo de Longitud del Fragmento de Restricción , Polimorfismo de Nucleótido Simple
17.
Cytogenet Genome Res ; 147(1): 17-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26606131

RESUMEN

The frequency of cells containing micronuclei (MN) and the presence of centromeres in these MN were analyzed in lymphocytes of 98 men from Southern Bohemia. Forty-six of them had worked at the uranium processing plant 'MAPE Mydlovary' which was closed in 1991, and 52 men were controls from the same area. FISH using human pan-centromeric chromosome paint was employed to detect centromere-positive (CEN+) and -negative (CEN-) MN. A total of 1,000 binucleated cells (BNC) per participant were analyzed after cytochalasin B treatment. All BNC with MN (CEN+ or CEN-) were recorded. No differences were found between formerly exposed workers and the control group, neither in the total frequency of cells with MN per 1,000 BNC (mean levels ± SD, 9.1 ± 3.1 and 9.8 ± 2.5, respectively) nor in the percentage of CEN- MN, which were equal (50 ± 18 and 49 ± 17, respectively). Also, there was no difference between individuals living in the 3 villages closest to the uranium processing plant and those living further away. Considering the fact that effective doses of the workers at MAPE Mydlovary were overall similar to those of former uranium miners in whom higher frequencies of CEN- MN have been found more than 10 years after they had finished working underground, these results are somewhat surprising. A more detailed analysis of the exposures indicates that uranium miners received a greater percentage of their effective dose from the inhalation of radon and its daughters, whereas uranium processing workers received it from the incorporation of long-lived radioactive nuclides such as uranium. If, as has been suggested before, the higher level of DNA damage in miners is due to induced genomic instability, then this phenomenon may be related to radon exposure rather than exposure to uranium.


Asunto(s)
Centrómero/ultraestructura , Linfocitos/ultraestructura , Micronúcleos con Defecto Cromosómico/estadística & datos numéricos , Minería , Exposición Profesional , Anciano , Anciano de 80 o más Años , Centrómero/efectos de los fármacos , Citocalasina B/farmacología , República Checa , Humanos , Hibridación Fluorescente in Situ , Linfocitos/efectos de los fármacos , Masculino , Pruebas de Micronúcleos , Persona de Mediana Edad , Radiometría , Radón/toxicidad , Uranio/toxicidad
18.
Genetics ; 201(3): 853-63, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26377683

RESUMEN

The creation of genetic linkage maps in polyploid species has been a long-standing problem for which various approaches have been proposed. In the case of autopolyploids, a commonly used simplification is that random bivalents form during meiosis. This leads to relatively straightforward estimation of recombination frequencies using maximum likelihood, from which a genetic map can be derived. However, autopolyploids such as tetraploid potato (Solanum tuberosum L.) may exhibit additional features, such as double reduction, not normally encountered in diploid or allopolyploid species. In this study, we produced a high-density linkage map of tetraploid potato and used it to identify regions of double reduction in a biparental mapping population. The frequency of multivalents required to produce this degree of double reduction was determined through simulation. We also determined the effect that multivalents or preferential pairing between homologous chromosomes has on linkage mapping. Low levels of multivalents or preferential pairing do not adversely affect map construction when highly informative marker types and phases are used. We reveal the double-reduction landscape in tetraploid potato, clearly showing that this phenomenon increases with distance from the centromeres.


Asunto(s)
Solanum tuberosum/genética , Centrómero , Mapeo Cromosómico , Emparejamiento Cromosómico , Simulación por Computador , Marcadores Genéticos , Recombinación Genética , Solanum tuberosum/citología , Tetraploidía
19.
PLoS Genet ; 11(9): e1005494, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26352591

RESUMEN

The centromeric histone 3 variant (CENH3, aka CENP-A) is essential for the segregation of sister chromatids during mitosis and meiosis. To better define CENH3 functional constraints, we complemented a null allele in Arabidopsis with a variety of mutant alleles, each inducing a single amino acid change in conserved residues of the histone fold domain. Many of these transgenic missense lines displayed wild-type growth and fertility on self-pollination, but exhibited frequent post-zygotic death and uniparental inheritance when crossed with wild-type plants. The failure of centromeres marked by these missense mutation in the histone fold domain of CENH3 reproduces the genome elimination syndromes described with chimeric CENH3 and CENH3 from diverged species. Additionally, evidence that a single point mutation is sufficient to generate a haploid inducer provide a simple one-step method for the identification of non-transgenic haploid inducers in existing mutagenized collections of crop species. As proof of the extreme simplicity of this approach to create haploid-inducing lines, we performed an in silico search for previously identified point mutations in CENH3 and identified an Arabidopsis line carrying the A86V substitution within the histone fold domain. This A87V non-transgenic line, while fully fertile on self-pollination, produced postzygotic death and uniparental haploids when crossed to wild type.


Asunto(s)
Arabidopsis/genética , Centrómero , Histonas/genética , Mutación Puntual , Sustitución de Aminoácidos , Codón , Genes de Plantas , Haploidia , Óvulo Vegetal , Polen
20.
J Clin Oncol ; 33(15): 1680-7, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25897160

RESUMEN

PURPOSE: Evidence supporting the clinical utility of predictive biomarkers of anthracycline activity is weak, with a recent meta-analysis failing to provide strong evidence for either HER2 or TOP2A. Having previously shown that duplication of chromosome 17 pericentromeric alpha satellite as measured with a centromere enumeration probe (CEP17) predicted sensitivity to anthracyclines, we report here an individual patient-level pooled analysis of data from five trials comparing anthracycline-based chemotherapy with CMF (cyclophosphamide, methotrexate, and fluorouracil) as adjuvant chemotherapy for early breast cancer. PATIENTS AND METHODS: Fluorescent in situ hybridization for CEP17, HER2, and TOP2A was performed in three laboratories on samples from 3,846 of 4,864 eligible patients from five trials evaluating anthracycline-containing chemotherapy versus CMF. Methodologic differences did not affect HER2-to-CEP17 ratios but necessitated different definitions for CEP17 duplication: > 1.86 observed copies per cell for BR9601, NEAT, Belgian, and DBCG89D trials and > 2.25 for the MA.5 trial. RESULTS: Fluorescent in situ hybridization data were available in 89.3% (HER2), 83.9% (CEP17), and 80.6% (TOP2A) of 3,846 patient cases with available tissue. Both CEP17and TOP2A treatment-by-marker interactions remained significant in adjusted analyses for recurrence-free and overall survival, whereas HER2 did not. A combined CEP17 and TOP2A-adjusted model predicted anthracycline benefit across all five trials for both recurrence-free (hazard ratio, 0.64; 95% CI, 0.51 to 0.82; P = .001) and overall survival (hazard ratio, 0.66; 95% CI, 0.51 to 0.85; P = .005). CONCLUSION: This prospectively planned individual-patient pooled analysis of patient cases from five adjuvant trials confirms that patients whose tumors harbor either CEP17 duplication or TOP2A aberrations, but not HER2 amplification, benefit from adjuvant anthracycline chemotherapy.


Asunto(s)
Antraciclinas/uso terapéutico , Antígenos de Neoplasias/genética , Centrómero/química , Cromosomas Humanos Par 17/genética , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , Colorantes Fluorescentes/química , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Ensayos Clínicos Fase III como Asunto , Ciclofosfamida/uso terapéutico , Supervivencia sin Enfermedad , Fluorouracilo/uso terapéutico , Marcadores Genéticos , Humanos , Hibridación Fluorescente in Situ , Metotrexato/uso terapéutico , Recurrencia Local de Neoplasia , Proteínas de Unión a Poli-ADP-Ribosa , Pronóstico , Modelos de Riesgos Proporcionales , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA