Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 107: 154469, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36202056

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a serious health issue which causes significant morbidity and mortality. Inflammation is an important factor in the pathogenesis of ALI. Even though ALI has been successfully managed using a traditiomal Chinese medicine (TCM), Huanglian Jiedu Decoction (HLD), its mechanism of action remains unknown. PURPOSE: This study explored the therapeutic potential of HLD in lipopolysaccharide (LPS)-induced ALI rats by utilizing integrative pharmacology. METHODS: Here, the therapeutic efficacy of HLD was evaluated using lung wet/dry weight ratio (W/D), myeloperoxide (MPO) activity, and levels of tumor necrosis factor (TNF-α), interleukin (IL)-1ß and IL-6. Network pharmacology predictd the active components of HLD in ALI. Lung tissues were subjected to perform Hematoxylin-eosin (H&E) staining, metabolomics, and transcriptomics. The acid ceramidase (ASAH1) inhibitor, carmofur, was employedto suppress the sphingolipid signaling pathway. RESULTS: HLD reduced pulmonary edema and vascular permeability, and suppressed the levels of TNF-α, IL-6, and IL-1ß in lung tissue, Bronchoalveolar lavage fluid (BALF), and serum. Network pharmacology combined with transcriptomics and metabolomics showed that sphingolipid signaling was the main regulatory pathway for HLD to ameliorate ALI, as confirmed by immunohistochemical analysis. Then, we reverse verified that the sphingolipid signaling pathway was the main pathway involed in ALI. Finally, berberine, baicalein, obacunone, and geniposide were docked with acid ceramidase to further explore the mechanisms of interaction between the compound and protein. CONCLUSION: HLD does have a better therapeutic effect on ALI, and its molecular mechanism is better elucidated from the whole, which is to balance lipid metabolism, energy metabolism and amino acid metabolism, and inhibit NLRP3 inflammasome activation by regulating the sphingolipid pathway. Therefore, HLD and its active components can be used to develop new therapies for ALI and provide a new model for exploring complex TCM systems for treating ALI.


Asunto(s)
Lesión Pulmonar Aguda , Berberina , Ceramidasa Ácida/farmacología , Ceramidasa Ácida/uso terapéutico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Aminoácidos , Animales , Berberina/farmacología , Medicamentos Herbarios Chinos , Eosina Amarillenta-(YS)/efectos adversos , Hematoxilina/farmacología , Hematoxilina/uso terapéutico , Inflamasomas , Interleucina-6/farmacología , Lipopolisacáridos/farmacología , Pulmón , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Esfingolípidos/efectos adversos , Factor de Necrosis Tumoral alfa/farmacología
2.
Osteoarthritis Cartilage ; 24(4): 752-62, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26524412

RESUMEN

OBJECTIVE: The overall aim of this study was to evaluate how supplementation of chondrocyte media with recombinant acid ceramidase (rhAC) influenced cartilage repair in a rat osteochondral defect model. METHODS: Primary chondrocytes were grown as monolayers in polystyrene culture dishes with and without rhAC (added once at the time of cell plating) for 7 days, and then seeded onto Bio-Gide® collagen scaffolds and grown for an additional 3 days. The scaffolds were then introduced into osteochondral defects created in Sprague-Dawley rat trochlea by a microdrilling procedure. Analysis was performed 6 weeks post-surgery macroscopically, by micro-CT, histologically, and by immunohistochemistry. RESULTS: Treatment with rhAC led to increased cell numbers and glycosaminoglycan (GAG) production (∼2 and 3-fold, respectively) following 7 days of expansion in vitro. Gene expression of collagen 2, aggrecan and Sox-9 also was significantly elevated. After seeding onto Bio-Gide®, more rhAC treated cells were evident within 4 h. At 6 weeks post-surgery, defects containing rhAC-treated cells exhibited more soft tissue formation at the articular surface, as evidenced by microCT, as well as histological evidence of enhanced cartilage repair. Notably, collagen 2 immunostaining revealed greater surface expression in animals receiving rhAC treated cells as well. Collagen 10 staining was not enhanced. CONCLUSION: The results further demonstrate the positive effects of rhAC treatment on chondrocyte growth and phenotype in vitro, and reveal for the first time the in vivo effects of the treated cells on cartilage repair.


Asunto(s)
Ceramidasa Ácida/farmacología , Cartílago Articular/lesiones , Condrocitos/efectos de los fármacos , Condrocitos/trasplante , Animales , Cartílago Articular/patología , Cartílago Articular/fisiología , Recuento de Células , Células Cultivadas , Condrocitos/metabolismo , Medios de Cultivo Condicionados , Evaluación Preclínica de Medicamentos/métodos , Femenino , Glicosaminoglicanos/biosíntesis , Ratas Sprague-Dawley , Proteínas Recombinantes/farmacología , Regeneración/efectos de los fármacos , Andamios del Tejido , Cicatrización de Heridas/efectos de los fármacos , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA