Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 960
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Chromatogr A ; 1720: 464773, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38432106

RESUMEN

Although the co-occurrences of isomeric chalcones and dihydroflavones widely appear in medicinal plants, the differentiation of such isomerism seldom succeeds using MS/MS, attributing to totally identical MS/MS spectra. Here, efforts were paid to pursue an eligible tool allowing to address the technical challenge. Being inspired by that one more proton signal is observed in 1H NMR spectrum of isoliquiritigenin than liquiritigenin when employing DMSO­d6 as solvent, hydrogen-deuterium exchange (HDX)-MS/MS was evaluated towards differentiating isomeric chalcones and dihydroflavones through replacing H2O with D2O to prepare the mobile phase. As a result, differences were observed for either MS1 or MS2 spectrum when comparing two pairs of isomers, such as liquiritigenin vs. isoliquiritigenin and liquiritin vs. isoliquiritin, because the isomeric precursor and fragment ion species owned different amounts of hydroxyl protons and those reactive protons could be partially or completely substituted by deuterium protons at the exposure in D2O to result in n × 1.006 mass increments. Moreover, utmost four hydrogen/deuterium exchanges occurred for a single glucosyl moiety. Thereafter, HDX-MS/MS was applied to characterize the flavonoids of Snow chrysanthemum, a precious edible herbal medicine that is rich in isomeric chalcones and dihydroflavones. Through paying special attention to the deuterium labeling styles of (de)protonated molecules as well as those featured fragment ions, five pairs of isomeric chalcones and dihydroflavones were confirmatively differentiated, in addition to that 28 flavonoids were structurally annotated by applying those well-defined mass fragmentation rules. Hence, this study offered an in-depth insight towards the flavonoids-focused characterization of Snow chrysanthemum, and more importantly, HDX-MS/MS is a superior tool to differentiate, but not limited to, isomeric chalcones and dihydroflavones.


Asunto(s)
Chalconas , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Hidrógeno/química , Deuterio , Flavonoides , Isomerismo , Protones , Medición de Intercambio de Deuterio/métodos , Cromatografía Liquida , Iones
2.
J Ethnopharmacol ; 325: 117861, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38316223

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese Medicine (TCM) has made enormous strides recently in the discovery of anti-herpes simplex virus (HSV) drugs under the guidance of TCM theory. Longdan Xiegan Decoction (LXD), a formulation recorded in the Pharmacopoeia of the People's Republic of China, has proved to be effective against HSV infection. However, its effective components and action mechanism remain unclear. AIM OF THE STUDY: To investigate the effective components and mechanisms of LXD in treating HSV infection based on network pharmacology and experimental validation. MATERIALS AND METHODS: The anti-HSV activities of key compounds predicted by network analysis were detected by antiviral tests. High-performance liquid chromatography (HPLC) was applied to identify the main components of the LXD aqueous extract. Time-of-addition assay and infectivity inhibition reversibility assay were conducted to identify the potential antiviral mechanisms of licochalcone B (LCB). Additionally, we assessed the antiviral effect of LCB in vivo by use of body weight, viral load, histological analysis, and scoring of genital lesions in an HSV2-infected mouse model. RESULTS: Our data demonstrated that some components exhibited significant anti-HSV1/2 activity in vitro, including quercetin, kaempferol, wogonin, formononetin, naringenin, baicalein, isorhamnetin, glabridin, licochalcone A, echinatin, oroxylin A, isoliquiritigenin, pinocembrin, LCB and acacetin. HPLC analysis showed that LCB was the main component of LXD aqueous extract. In vitro experiments revealed that LCB not only inactivated HSV2 particles, but also inhibited HSV2 multiplication through the inhibition of the phosphorylation of Akt and its downstream targets. In vivo experiments confirmed that LCB could significantly reduce viral titer, delay weight loss, and alleviate pathological changes in vaginal tissue in vaginal infection mouse models. CONCLUSION: LCB acted as the main component of LXD, with significant anti-HSV2 infection effects both in vivo and in vitro. This study provides additional evidence of the healing efficacy of LXD against HSV infection and presents an efficient analytical method for further investigation of the mechanisms of TCM in prevention and treatment of various diseases.


Asunto(s)
Chalconas , Medicamentos Herbarios Chinos , Herpes Simple , Femenino , Animales , Ratones , Humanos , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Herpes Simple/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Simulación del Acoplamiento Molecular
3.
Biol Pharm Bull ; 47(2): 373-382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38325854

RESUMEN

Patients with diarrhea-predominant irritable bowel syndrome (IBS-D) show excessive peristalsis, and antispasmodic agents may be useful therapeutic agents. There are few reports on the use of Kampo medicines for the treatment of IBS-D. Shakuyakukanzoto (SKT) is a Kampo medicine that is effective against abdominal pain. We examined the relationship between SKT and intestinal peristalsis in an animal model and a prospective study. In the animal model, SKT and its components were administered from the serosal side of the colon and colonic peristalsis was evaluated using intraluminal pressure and spatiotemporal mapping before and after the administration of SKT and its components. In this clinical trial, we used abdominal ultrasonography (US) to obtain long-axis images of the sigmoid colon of 11 patients. The frequency of intestinal peristalsis was measured using US in five patients with SKT and six patients without medication after the ingestion of a test meal. The primary outcome was the frequency of peristalsis. The Clinical Trial Registry Website (Trial No. UMIN-CTR; UMIN000051547). In the animal model, peony did not suppress peristalsis frequency, but SKT (p = 0.005) and glycyrrhiza (p = 0.001) significantly suppressed peristalsis frequency compared with saline and peony. Among the glycyrrhiza components, glycycoumarin and isoliquiritigenin suppressed the peristalsis frequency compared to dimethyl sulfoxide (control) (p = 0.001, 0.01, respectively). In a clinical trial, peristalsis was significantly suppressed after oral administration in patients taking SKT (p = 0.03). Administration of SKT was found to inhibit colonic peristalsis, with glycicumarin and isoliquiritigenin being particularly relevant among its components.


Asunto(s)
Chalconas , Síndrome del Colon Irritable , Humanos , Animales , Peristaltismo , Estudios Prospectivos , Modelos Animales , Diarrea
4.
J Ethnopharmacol ; 326: 117827, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38310989

RESUMEN

BACKGROUND: In many different plants, including Dorstenia and Psoralea corylifolia L., Isobavachalcone (IBC) is a naturally occurring flavonoid chemical having a range of biological actions, including anti-inflammatory, immunomodulatory, and anti-bacterial. The "Theory of Medicinal Properties" of the Tang Dynasty states that Psoralea corylifolia L. has the ability to alleviate discomfort in the knees and waist. One of the most widespread chronic illnesses, osteoarthritis (OA), is characterized by stiffness and discomfort in the joints. However, there hasn't been much research done on the effectiveness and underlying processes of IBC in the treatment of osteoarthritis. AIM OF THE STUDY: To investigate the potential efficacy and mechanism of IBC in treating osteoarthritis, we adopted an integrated strategy of network pharmacology, molecular docking and experiment assessment. MATERIALS AND METHODS: The purpose of this research was to determine the impact of IBC on OA and the underlying mechanisms. IBC and OA possible targets and processes were predicted using network pharmacology, including the relationship between IBC and OA intersection targets, Cytoscape protein-protein interaction (PPI) to obtain key potential targets, and GO and KEGG pathway enrichment analysis to reveal the probable mechanism of IBC on OA. Following that, in vitro tests were carried out to confirm the expected underlying processes. Finally, in vivo tests clarified IBC's therapeutic efficacy on OA. RESULTS: We anticipated and validated that the impact of IBC on osteoarthritis is mostly controlled by the PI3K-AKT-NF-κB signaling pathway by combining the findings of network pharmacology analysis, molecular docking and Experiment Validation. CONCLUSIONS: This study reveals the IBC has potential to delay OA development.


Asunto(s)
Chalconas , Medicamentos Herbarios Chinos , Fabaceae , Osteoartritis , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Osteoartritis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
5.
Phytother Res ; 38(4): 1815-1829, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38349045

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive and lethal clinical subtype and lacks effective targeted therapies at present. Isobavachalcone (IBC), the main active component of Psoralea corylifolia L., has potential anticancer effects. Herein, we identified IBC as a natural sirtuin 2 (SIRT2) inhibitor and characterized the potential mechanisms underlying the inhibition of TNBC. Molecular dynamics analysis, enzyme activity assay, and cellular thermal shift assay were performed to evaluate the combination of IBC and SIRT2. The therapeutic effects, mechanism, and safety of IBC were analyzed in vitro and in vivo using cellular and xenograft models. IBC effectively inhibited SIRT2 enzyme activity with an IC50 value of 0.84 ± 0.22 µM by forming hydrogen bonds with VAL233 and ALA135 within its catalytic domain. In the cellular environment, IBC bound to and stabilized SIRT2, consequently inhibiting cellular proliferation and migration, and inducing apoptosis and cell cycle arrest by disrupting the SIRT2/α-tubulin interaction and inhibiting the downstream Snail/MMP and STAT3/c-Myc pathways. In the in vivo model, 30 mg/kg IBC markedly inhibited tumor growth by targeting the SIRT2/α-tubulin interaction. Furthermore, IBC exerted its effects by inducing apoptosis in tumor tissues and was well-tolerated. IBC alleviated TNBC by targeting SIRT2 and triggering the reactive oxygen species ROS/ß-catenin/CDK2 axis. It is a promising natural lead compound for future development of SIRT2-targeting drugs.


Asunto(s)
Chalconas , Sirtuina 2 , Neoplasias de la Mama Triple Negativas , Humanos , Sirtuina 2/farmacología , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Tubulina (Proteína)/farmacología , Tubulina (Proteína)/uso terapéutico , Proliferación Celular , Apoptosis
6.
Biol Pharm Bull ; 47(2): 486-498, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38199251

RESUMEN

Resina Draconis is a traditional Chinese medicine, with the in-depth research, its medicinal value in anti-tumor has been revealed. Loureirin A is extracted from Resina Draconis, however, research on the anti-tumor efficacy of Loureirin A is rare. Herein, we investigated the function of Loureirin A in melanoma. Our research demonstrated that Loureirin A inhibited the proliferation of and caused G0/G1 cell cycle arrest in melanoma cells in a concentration-dependent manner. Further study showed that the melanin content and tyrosinase activity was enhanced after Loureirin A treatment, demonstrated that Loureirin A promoted melanoma cell differentiation, which was accompanied with the reduce of WNT signaling pathway. Meanwhile, we found that Loureirin A suppressed the migration and invasion of melanoma cells through the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Taken together, this study demonstrated for the first time the anti-tumor effects of Loureirin A in melanoma cells, which provided a novel therapeutic strategy against melanoma.


Asunto(s)
Chalconas , Melanoma , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Melanoma/metabolismo , Diferenciación Celular , Vía de Señalización Wnt , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular , Movimiento Celular , Línea Celular Tumoral
7.
Phytomedicine ; 125: 155350, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237512

RESUMEN

BACKGROUND: Myostatin (MSTN) inhibition has demonstrated promise for the treatment of diseases associated with muscle loss. In a previous study, we discovered that Glycyrrhiza uralensis (G. uralensis) crude water extract (CWE) inhibits MSTN expression while promoting myogenesis. Furthermore, three specific compounds of G. uralensis, namely liquiritigenin, tetrahydroxymethoxychalcone, and Licochalcone B (Lic B), were found to promote myoblast proliferation and differentiation, as well as accelerate the regeneration of injured muscle tissue. PURPOSE: The purpose of this study was to build on our previous findings on G. uralensis and demonstrate the potential of its two components, Licochalcone A (Lic A) and Lic B, in muscle mass regulation (by inhibiting MSTN), aging and muscle formation. METHODS: G. uralensis, Lic A, and Lic B were evaluated thoroughly using in silico, in vitro and in vivo approaches. In silico analyses included molecular docking, and dynamics simulations of these compounds with MSTN. Protein-protein docking was carried out for MSTN, as well as for the docked complex of MSTN-Lic with its receptor, activin type IIB receptor (ACVRIIB). Subsequent in vitro studies used C2C12 cell lines and primary mouse muscle stem cells to acess the cell proliferation and differentiation of normal and aged cells, levels of MSTN, Atrogin 1, and MuRF1, and plasma MSTN concentrations, employing techniques such as western blotting, immunohistochemistry, immunocytochemistry, cell proliferation and differentiation assays, and real-time RT-PCR. Furthermore, in vivo experiments using mouse models focused on measuring muscle fiber diameters. RESULTS: CWE of G. uralensis and two of its components, namely Lic A and B, promote myoblast proliferation and differentiation by inhibiting MSTN and reducing Atrogin1 and MuRF1 expressions and MSTN protein concentration in serum. In silico interaction analysis revealed that Lic A (binding energy -6.9 Kcal/mol) and B (binding energy -5.9 Kcal/mol) bind to MSTN and reduce binding between it and ACVRIIB, thereby inhibiting downstream signaling. The experimental analysis, which involved both in vitro and in vivo studies, demonstrated that the levels of MSTN, Atrogin 1, and MuRF1 were decreased when G. uralensis CWE, Lic A, or Lic B were administered into mice or treated in the mouse primary muscle satellite cells (MSCs) and C2C12 myoblasts. The diameters of muscle fibers increased in orally treated mice, and the differentiation and proliferation of C2C12 cells were enhanced. G. uralensis CWE, Lic A, and Lic B also promoted cell proliferation in aged cells, suggesting that they may have anti-muslce aging properties. They also reduced the expression and phosphorylation of SMAD2 and SMAD3 (MSTN downstream effectors), adding to the evidence that MSTN is inhibited. CONCLUSION: These findings suggest that CWE and its active constituents Lic A and Lic B have anti-mauscle aging potential. They also have the potential to be used as natural inhibitors of MSTN and as therapeutic options for disorders associated with muscle atrophy.


Asunto(s)
Chalconas , Fibras Musculares Esqueléticas , Miostatina , Ratones , Animales , Miostatina/metabolismo , Simulación del Acoplamiento Molecular , Diferenciación Celular , Fibras Musculares Esqueléticas/metabolismo , Proliferación Celular , Músculo Esquelético/metabolismo
8.
Chem Biodivers ; 21(1): e202300724, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37997548

RESUMEN

The phenolic composition of Cnicus benedictus roots from four Algerian regions was investigated. Extractions were performed in both hydro-methanolic (30 : 70, v/v) and hydro-ethanolic (30 : 70, v/v) solvents. Their efficiency was determined in terms of the qualitative and quantitative composition in phenolic compounds by HPLC-LC/MS of the different extracts isolated from C. Benedictus roots. Cnicus benedictus roots extract have been characterized by high content of phenolic compounds, where the trans chalcone, 2,3-dihydro flavone, 3-hydroxy flavone and cinnamic acid constitute the major components, in addition to fourteen minor acidic compounds and flavonoids as rutin. The hydro-methanolic extract was the richest in phenolic compounds yield from C benedictus. On the other hand, hydro methanolic (30 : 70, v/v) and hydro ethanolic (30 : 70, v/v) extracts exhibited a high anti-inflammatory activity by in vitro 5-lipoxygenase inhibitory activity (IC50 : 6.05±94.16 µg/mL) as well as by in silico docking according two methods. Likewise, anti-Alzheimer activity of extracts was confirmed by this last technique taking into account the major compounds identified. Antibacterial tests revealed interesting results compared to amoxicillin for the different regions studied with a high content in trans chalcone and 3-hydroxy Flavone.


Asunto(s)
Chalconas , Flavonas , Antioxidantes/farmacología , Centaurea benedicta , Cromatografía Líquida de Alta Presión , Fenoles/farmacología , Fenoles/análisis , Flavonoides , Antibacterianos/farmacología , Metanol , Antiinflamatorios/farmacología , Extractos Vegetales/farmacología
9.
Fitoterapia ; 172: 105739, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952763

RESUMEN

In this study, 30 chalcone derivatives containing [1,2,4]-triazole-[4,3-a]-pyridine were designed and synthesized. The results of antibacterial activity showed that EC50 values of N26 against Xoo, Pcb was 36.41, 38.53 µg/mL, respectively, which were better than those of thiodiazole copper, whose EC50 values were 60.62, 106.75 µg/mL, respectively. The bacterial inhibitory activity of N26 against Xoo was verified by SEM. Antibacterial mechanism between N26 and Xoo was preliminarily explored, the experimental results showed that when the drug concentration was 100 mg/L, N26 had a good cell membrane permeability of Xoo, and it can inhibit the production of EPS content and extracellular enzyme content to disrupt the integrity of the Xoo biofilms achieving the effect of inhibiting Xoo. At 200 mg/L, N26 can protect and inhibit the lesions of post-harvested potatoes in vivo. The activities of N1-N30 against TMV were determined with half leaf dry spot method. The EC50 values of the curative and protective activity of N22 was 77.64 and 81.55 µg/mL, respectively, which were superior to those of NNM (294.27, 175.88 µg/mL, respectively). MST experiments demonstrated that N22 (Kd = 0.0076 ± 0.0007 µmol/L) had a stronger binding ability with TMV-CP, which was much higher than that of NNM (Kd = 0.7372 ± 0.2138 µmol/L). Molecular docking results showed that N22 had a significantly higher affinity with TMV-CP than NNM.


Asunto(s)
Chalcona , Chalconas , Oryza , Xanthomonas , Chalcona/farmacología , Chalconas/farmacología , Estructura Molecular , Simulación del Acoplamiento Molecular , Triazoles/farmacología , Pruebas de Sensibilidad Microbiana , Piridinas/farmacología , Antibacterianos/farmacología , Enfermedades de las Plantas , Oryza/microbiología , Relación Estructura-Actividad , Diseño de Fármacos
10.
Biomed Chromatogr ; 38(3): e5797, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38084786

RESUMEN

Coreopsis tinctoria Nutt. (C. tinctoria) is a traditional medicinal plant, primarily found in plateau areas with altitudes exceeding 3000 m. The efficacy of C. tinctoria appears to be intricately tied to its quality. However, there is a scarcity of studies focused on evaluating the quality of C. tinctoria from diverse geographical locations. In this study, we used ultra-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry to analyze and identify the prevalent chemical components in 12 batches of C. tinctoria sourced from Xinjiang, Qinghai, Tibet, and Yunnan provinces in China. By using cluster analysis and discriminant analysis of partial least squares, we assessed the similarity and identified varying components in the 12 batches of C. tinctoria. Subsequently, their quality was further evaluated. Utilizing network pharmacology, we identified potential active components for the treatment of diabetes mellitus. The findings revealed the presence of 16 flavonoids, 3 phenylpropanes, 2 sugars, 2 amino acids, and 7 hydrocarbons in the analyzed samples. Through variable importance screening, 17 constituents were identified as quality difference markers. Marein and flavanomarein emerged as pivotal markers, crucial for distinguishing variations in C. tinctoria. In addition, network pharmacology predicted 187 targets for 9 common active components, including marein and flavanomarein. Simultaneously, 1747 targets related to diabetes mellitus were identified. The drug-component-disease target network comprised 91 nodes and 179 edges, encompassing 1 drug node, 9 component nodes, and 81 target nodes. In summary, marein and flavanomarein stand out as key biomarkers for assessing the quality of C. tinctoria, offering a scientific foundation for the quality evaluation of C. tinctoria Nutt.


Asunto(s)
Chalconas , Coreopsis , Diabetes Mellitus , Coreopsis/química , Espectrometría de Masas en Tándem , Quimiometría , Cromatografía Líquida de Alta Presión , Farmacología en Red , China
11.
Phytother Res ; 38(1): 196-213, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37850242

RESUMEN

Licochalcone A (LCA) is a bioactive chalcone compound identified in licorice. This study aimed to investigate the effects of LCA on glucolipid metabolism and energy homeostasis, as well as the underlying mechanisms. Blood glucose levels, oral glucose tolerance, serum parameters, and histopathology were examined in high-fat-high-glucose diet (HFD)-induced diabetic mice, with metformin as a positive control. Additionally, changes in key markers related to glucolipid metabolism and mitochondrial function were analyzed to comprehensively assess LCA's effects on metabolism. The results showed that LCA alleviated metabolic abnormalities in HFD-induced diabetic mice, which were manifested by suppression of lipogenesis, promotion of lipolysis, reduction of hepatic steatosis, increase in hepatic glycogenesis, and decrease in gluconeogenesis. In addition, LCA restored energy homeostasis by promoting mitochondrial biogenesis, enhancing mitophagy, and reducing adenosine triphosphate production. Mechanistically, the metabolic benefits of LCA were associated with the downregulation of mammalian target of rapamycin complex 1 and activation of adenosine monophosphate-activated protein kinase, the two central regulators of metabolism. This study demonstrates that LCA can alleviate abnormal glucolipid metabolism and restore energy balance in diet-induced diabetic mice, highlighting its therapeutical potential for the treatment of diabetes.


Asunto(s)
Chalconas , Diabetes Mellitus Experimental , Resistencia a la Insulina , Ratones , Animales , Chalconas/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa/efectos adversos , Homeostasis , Hígado , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Mamíferos/metabolismo
12.
Antiviral Res ; 221: 105755, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984566

RESUMEN

Enterovirus D68 (EV-D68), belonging to the genus Enterovirus of the Picornavirus family, is an emerging pathogen that can cause neurological and respiratory diseases in children. However, there is little understanding of the pathogenesis of EV-D68, and no effective vaccine or drug for the prevention or treatment of the diseases caused by this virus is available. Autophagy is a cellular process that targets cytoplasmic proteins or organelles to the lysosomes for degradation. Enteroviruses strategically harness the host autophagy pathway to facilitate the completion of their life cycle. Therefore, we selected an autophagy compound library to screen for autophagy-related compounds that may affect viral growth. By using the neutralization screening assay, we identified a compound, 'licochalcone A' that significantly inhibited EV-D68 replication. To investigate the mechanism by which licochalcone A inhibits EV-D68 replication and to identify the viral life cycle stage it inhibits, the time-of-addition, viral attachment, viral entry, and dual-luciferase reporter assays were performed. The results of the time-of-addition assay showed that licochalcone A, a characteristic chalcone found in liquorice roots and widely used in traditional Chinese medicine, inhibits EV-D68 replication during the early stages of the viral life cycle, while those of the dual-luciferase reporter assay showed that licochalcone A does not regulate viral attachment and entry, but inhibits EV-D68 IRES-dependent translation. Licochalcone A also inhibited enterovirus A71 and coxsackievirus B3 but did not significantly inhibit dengue virus 2 or human coronavirus 229E replication. Licochalcone A regulates IRES translation to inhibit EV-D68 viral replication.


Asunto(s)
Chalconas , Enterovirus Humano D , Infecciones por Enterovirus , Enterovirus , Niño , Humanos , Chalconas/farmacología , Infecciones por Enterovirus/tratamiento farmacológico , Antígenos Virales , Enterovirus Humano D/fisiología , Luciferasas
13.
J Ethnopharmacol ; 319(Pt 3): 117276, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37866464

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Natural products, particularly medicinal plants, have been utilized in traditional medicine for millennia to treat various diseases. The genus Balanophora (Balanophoraceae) consists of 23 accepted species. These species are the most controversial flowering plants, with highly reduced morphologies and are found parasitizing on the roots of their host. They have been used in traditional medicine as a remedy for stomach pain, detumescence, uterine prolapse, wounds, syphilis, gonorrhea, treating injuries from falls, and other conditions. However, there is no review of this genus on its traditional uses, phytochemistry, and pharmacology. AIM: The present narrative review discusses the scientific data supporting the traditional uses of Balanophora species. The available information on its botanical properties, traditional uses, chemical contents, pharmacological activities, and toxicity was summarized to help comprehend current research and offer a foundation for future research. MATERIALS AND METHODS: The materials used in combining data on the genus Balanophora comprises online sources such as Web of Science, Google Scholar, Science Direct, and Chinese National Knowledge Infrastructure (CNKI) for Chinese-related materials. World Flora online was used in validating the scientific names of this genus while ChemBio Draw Ultra Version 22.2 software was employed in drawing the phytochemical compounds. RESULTS: Nine Balanophora species including B. harlandii, B. japonica, B. polyandra, B. fungosa, B. fungosa subsp. indica, B. laxiflora, B. abbreviata, B. tobiracola, and B. involucrata have been documented as vital sources of traditional medicines in different parts of Asia. A total of 159 secondary metabolites have been isolated and identified from the ten species of this genus comprising tannins, flavonoids, sterols, lignans, chalcones, terpenes, and phenylpropanoids. Among these compounds, tannins, lignans, terpenoids, chalcones and phenolic acids contribute to the pharmacological activities of the species in this genus with several biological activities both in vitro and in vivo such as anti-inflammatory, anti-oxidant, hypoglycemic activity, cytotoxicity, anti-microbial, melanin synthesis etc. CONCLUSION: This review summarizes the available literature on the traditional uses, pharmacological properties, and phytoconstituents of Balanophora species indicating that they contain fascinating chemical compounds with diverse biological activities. The traditional uses of the species in this genus have been confirmed by scientific data such as antimicrobial, hemostatic effect, gastroprotective activity and others. However, many species in this genus are yet unknown in terms of their botanical uses, chemical composition and biological activities. Thus, more research into the scientific connections between traditional medicinal uses and pharmacological activities, mode of action of the isolated bioactive constituents, and toxicity of other Balanophora species is needed to determine their efficacy and therapeutic potential for safe clinical application.


Asunto(s)
Balanophoraceae , Chalconas , Lignanos , Medicina Tradicional , Taninos
14.
Am J Chin Med ; 51(8): 2221-2241, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37930332

RESUMEN

The oncoprotein survivin plays a pivotal role in controlling cell division and preventing apoptosis by inhibiting caspase activation. Its significant contribution to tumorigenesis and therapeutic resistance has been well established. Isoliquiritigenin (ISL), a natural compound, has been recognized for its powerful inhibitory effects against various tumors. However, whether ISL exerts regulatory effects on survivin and its underlying mechanism in oral squamous cell carcinoma (OSCC) remains unclear. Here, we found that ISL inhibited the viability and colony formation of OSCC, and promoted their apoptosis. The immunoblotting data showed that ISL treatment significantly decreased survivin expression. Mechanistically, ISL suppressed survivin phosphorylation on Thr34 by deregulating Akt-Wee1-CDK1 signaling, which facilitated survivin for ubiquitination degradation. ISL inhibited CAL27 tumor growth and decreased p-Akt and survivin expression in vivo. Meanwhile, survivin overexpression caused cisplatin resistance of OSCC cells. ISL alone or combined with cisplatin overcame chemoresistance in OSCC cells. Overall, our results revealed that ISL exerted potent inhibitory effects via inducing Akt-dependent survivin ubiquitination in OSCC cells.


Asunto(s)
Carcinoma de Células Escamosas , Chalconas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Survivin/farmacología , Survivin/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos , Apoptosis , Chalconas/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular
15.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37762479

RESUMEN

Licochalcone A (Lico-A) is a flavonoid compound derived from the root of the Glycyrrhiza species, a plant commonly used in traditional Chinese medicine. While the Glycyrrhiza species has shown promise in treating various diseases such as cancer, obesity, and skin diseases due to its active compounds, the investigation of Licochalcone A's effects on the central nervous system and its potential application in Alzheimer's disease (AD) treatment have garnered significant interest. Studies have reported the neuroprotective effects of Lico-A, suggesting its potential as a multitarget compound. Lico-A acts as a PTP1B inhibitor, enhancing cognitive activity through the BDNF-TrkB pathway and exhibiting inhibitory effects on microglia activation, which enables mitigation of neuroinflammation. Moreover, Lico-A inhibits c-Jun N-terminal kinase 1, a key enzyme involved in tau phosphorylation, and modulates the brain insulin receptor, which plays a role in cognitive processes. Lico-A also acts as an acetylcholinesterase inhibitor, leading to increased levels of the neurotransmitter acetylcholine (Ach) in the brain. This mechanism enhances cognitive capacity in individuals with AD. Finally, Lico-A has shown the ability to reduce amyloid plaques, a hallmark of AD, and exhibits antioxidant properties by activating the nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant defense mechanisms. In the present review, we discuss the available findings analyzing the potential of Lico-A as a neuroprotective agent. Continued research on Lico-A holds promise for the development of novel treatments for cognitive disorders and neurodegenerative diseases, including AD. Further investigations into its multitarget action and elucidation of underlying mechanisms will contribute to our understanding of its therapeutic potential.


Asunto(s)
Enfermedad de Alzheimer , Chalconas , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Acetilcolinesterasa , Chalconas/farmacología , Chalconas/uso terapéutico
16.
Phytomedicine ; 120: 155074, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716033

RESUMEN

BACKGROUND: B-cell lymphoma, which originates from B cells at diverse differentiation stages, is the most common non-Hodgkin lymphoma with tremendous treatment challenges and unsatisfactory clinical outcomes. Flavokawain B (FKB), a naturally occurring chalcone extracted from kava, possesses promising anticancer properties. However, evidence on the effects of FKB on hematological malignancies, particularly lymphomas, remains scarce. PURPOSE: This study aimed to investigate the antilymphoma effect of FKB and its underlying mechanisms. STUDY DESIGN/METHODS: Proliferation assays, flow cytometry, and western blotting were employed to determine whether and how FKB affected B-cell lymphoma cell lines in vitro. Xenograft mouse models were established to evaluate the antilymphoma efficacy of FKB in vivo. RESULTS: FKB reduced the viability of a panel of B-cell lymphoma cell lines in a dose- and time-dependent manner. Mitochondrial apoptosis was markedly induced by FKB, as evidenced by an increased percentage of annexin V-positive cells, a loss of mitochondrial membrane potential, and cleavage of caspase-3 and PARP. Moreover, FKB inhibited BCL-XL expression and synergized with the BCL-2 inhibitor ABT-199. Mechanistically, FKB treatment decreased the phosphorylation of Akt, mammalian target of rapamycin (mTOR), glycogen synthase kinase-3ß (GSK3ß), and ribosomal protein S6 (RPS6). Pharmacological blockage of phosphoinositide 3-kinase (PI3K), Akt, or GSK3ß potentiated the activity of FKB, indicating the involvement of the PI3K/Akt cascade in FKB-mediated inhibitory effects. In mouse xenograft models, the intraperitoneal administration of FKB significantly decreased lymphoma growth, accompanied by diminished mitosis and Ki-67 staining of tumor tissues. CONCLUSION: Our data demonstrate the robust therapeutic potential of FKB in the treatment of B-cell lymphoma.


Asunto(s)
Chalconas , Kava , Linfoma de Células B , Humanos , Animales , Ratones , Chalconas/farmacología , Glucógeno Sintasa Quinasa 3 beta , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Linfoma de Células B/tratamiento farmacológico , Mamíferos
17.
Chem Commun (Camb) ; 59(58): 8981-8984, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37394927

RESUMEN

Sofalcone (Sof), a synthetic analog of sophoradin, is a type of natural phenol derived from the traditional medicinal herb Sophora subprostrata, with potent anti-inflammatory activity. However, the mechanisms of action of Sof for treating intestinal-associated inflammation are not well known. In this work, we identified high mobility group box 1 (HMGB1) as the key covalent target of Sof for the anti-inflammatory activity in the human colonic epithelial cells through quantitative chemoproteomics profiling.


Asunto(s)
Chalconas , Proteína HMGB1 , Humanos , Células CACO-2 , Chalconas/farmacología , Colon
18.
J Sep Sci ; 46(19): e2300326, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37485627

RESUMEN

A simple and rapid instantaneous nebulization dispersive liquid-phase microextraction method was developed, and combined with high-performance liquid chromatography for determination of the contents of seven analytes in traditional Chinese medicines. In this study, using the sprinkler device to achieve instantaneous synchronous dispersion and extraction, only one spray can rapidly achieve the concentration and enrichment of seven kinds of chalcone and isoflavones. The key factors affecting the extraction efficiency were optimized including the type and volume of extractant, the pH and salt concentration of the sample phase, and the number of dispersion. Under the optimal conditions, the enrichment factor of the target analytes ranged from 103.1 to 180.9, with good linearity and correlation coefficients above 0.9970. The limits of detection ranged from 0.02 to 0.15 ng/mL, with good accuracy (recoveries 91.1 to 108.9%) and precision (relative standard deviations 1.5-7.1%). This method has short extraction time (2 s), low organic solvent consumption and high enrichment effect, so it has a wide application prospects.


Asunto(s)
Chalcona , Chalconas , Isoflavonas , Microextracción en Fase Líquida , Cromatografía Líquida de Alta Presión , Medicina Tradicional China , Microextracción en Fase Líquida/métodos
19.
Int J Pharm ; 642: 123206, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37419432

RESUMEN

Improved therapies for inflammatory bowel diseases are sorely needed. Novel therapeutic agents and the development of controlled release systems for targeted tissue delivery are interesting approaches to overcome these barriers. We investigated the activity of trans-chalcone (T) in acetic acid-induced colitis in mice and developed, characterized, and determined the therapeutic effect of pectin/casein polymer microcapsules containing T (MT) in a colitis mouse model. In vitro, compound release was achieved in simulated intestinal fluid but not in the simulated gastric fluid. In vivo, since T at the dose of 3 mg/kg but not 0.3 mg/kg ameliorated colitis, we next tested the effects of MT at 0.3 mg/kg (non-effective dose). MT, but not free T at 0.3 mg/kg, significantly improved colitis outcomes such as neutrophil recruitment, antioxidant capacity, cytokine production, and NF-kB activation. This translated into reduced macro and microscopic damage in the colon. T release from the microcapsules is mediated by a pH-dependent and pectinase-regulated mechanism that provide controlled and prolonged release of T. Moreover, MT lowered the required dose for T therapeutic effect, indicating that could be a suitable pharmaceutical approach to colitis treatment. This is the first demonstration that T or MT is effective at reducing the signs of colitis.


Asunto(s)
Chalcona , Chalconas , Colitis , Ratones , Animales , Caseínas , Chalcona/farmacología , Cápsulas/farmacología , Pectinas , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colon , FN-kappa B , Modelos Animales de Enfermedad
20.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1885-1891, 2023 Apr.
Artículo en Chino | MEDLINE | ID: mdl-37282964

RESUMEN

To study the chemical constituents from the stems and leaves of Humulus scandens, this study isolated thirteen compounds by different chromatographic methods including silica gel column, ODS, Sephadex LH-20 and preparative HPLC. Based on comprehensive analysis, the chemical structures were elucidated and identified as citrunohin A(1), chrysosplenetin(2), casticin(3), neoechinulin A(4), ethyl 1H-indole-3-carboxylate(5), 3-hydroxyacetyl-indole(6),(1H-indol-3-yl) oxoacetamide(7), inonotusic acid(8), arteannuin B(9), xanthotoxol(10), α-tocopherol quinone(11), eicosanyl-trans-p-coumarate(12), and 9-oxo-(10E,12E)-octadecadienoic acid(13). Among them, compound 1 was a new dihydrochalcone, and the other compounds were obtained from H. scandens for the first time.


Asunto(s)
Chalconas , Medicamentos Herbarios Chinos , Humulus , Indoles , Medicamentos Herbarios Chinos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA