Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 60, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165474

RESUMEN

The complete chloroplast genome (plastome) of the annual flowering halophyte herb Suaeda monoica Forssk. ex J. F. Gmel. family (Amaranthaceae) that grows in Jeddah, Saudi Arabia, was identified for the first time in this study. Suaeda monoica is a medicinal plant species whose taxonomic classification remains controversial. Further, studying the species is useful for current conservation and management efforts. In the current study, the full chloroplast genome S. monoica was reassembled using whole-genome next-generation sequencing and compared with the previously published chloroplast genomes of Suaeda species. The chloroplast genome size of Suaeda monoica was 151,789 bp, with a single large copy of 83,404 bp, a small single copy of 18,007 bp and two inverted repeats regions of 25,189 bp. GC content in the whole genome was 36.4%. The cp genome included 87 genes that coded for proteins, 37 genes coding for tRNA, 8 genes coding for rRNA and one non-coding pseudogene. Five chloroplast genome features were compared between S. monoica and S. japonica, S. glauca, S. salsa, S. malacosperma and S. physophora. Among Suaeda genus and equal to most angiosperms chloroplast genomes, the RSCU values were conservative. Two pseudogenes (accD and ycf1), rpl16 intron and ndhF-rpl32 intergenic spacer, were highlighted as suitable DNA barcodes for different Suaeda species. Phylogenetic analyses show Suaeda cluster into three main groups; one in which S. monoica was closer to S. salsa. The obtained result provided valuable information on the characteristics of the S. monoica chloroplast genome and the phylogenetic relationships.


Asunto(s)
Chenopodiaceae , Genoma del Cloroplasto , Magnoliopsida , Genoma del Cloroplasto/genética , Plantas Tolerantes a la Sal/genética , Arabia Saudita , Filogenia , Chenopodiaceae/genética
2.
Environ Pollut ; 344: 123298, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185357

RESUMEN

With the increasing industrialization and urbanization, the ecological environment is suffering from severe deterioration in Liaohe coastal wetland, and petroleum spill is one of the pollution sources. Suaeda salsa (L.) Pall (S. salsa), one of the predominant plants in Liaohe coastal wetland, is facing the increasing degradation. Terpenes are a class of inherent compounds in plants, and play key role in maintain the growth of plants. However, the environmental stress on the terpene metabolism remained unclear in the plants. In the present study, the influence of petroleum spill on terpene metabolism in S. salsa was systematically investigated by analysis of concentrations, compositions and stable carbon isotope. Under the stress of petroleum spill, terpene concentrations showed the decreasing trend, indicating the inhibition effect of petroleum spill on terpene synthesis in S. salsa. The proportions of Sabinene and A-humulene showed the obviously increased with the influence of petroleum spill, implying that these congeners were more sensitive to petroleum spills. The significant changes in stable carbon isotope compositions were observed for Borneol, Dl-menthol, A-humulene and (-) -@-bisabolol, with the enrichment in heavier isotopes in residual fractions. This result indicated that the heavier 13C was preferentially fixed on terpene by S. salsa under the petroleum stress. The similar change trends along the incubation time was observed for A-humulene and (-) - trans caryophyllene, which might imply that A-humulene was one of the products of (-) - trans caryophyllene in S. salsa. Overall, the findings of present study verified the influence of petroleum spill on terpene metabolism in S. salsa, and were meaningful for protecting the plants in the petroleum-pollution wetlands.


Asunto(s)
Chenopodiaceae , Petróleo , Sesquiterpenos Policíclicos , Humedales , Petróleo/toxicidad , Sesquiterpenos Monocíclicos , Isótopos de Carbono , Carbono
3.
Molecules ; 29(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38257211

RESUMEN

Suaeda glauca, a halophyte in the Amaranthaceae family, exhibits remarkable resilience to high salt and alkali stresses despite the absence of salt glands or vesicles in its leaves. While there is growing pharmacological interest in S. glauca, research on its secondary metabolites remains limited. In this study, chemical constituents of the aerial parts of S. glauca were identified using 1D- and 2D-NMR experiments, and its biological activity concerning hair loss was newly reported. Eight compounds, including alkaloids (1~3), flavonoids (4~6), and phenolics (7 and 8), were isolated. The compounds, except the flavonoids, were isolated for the first time from S. glauca. In the HPLC chromatogram, quercetin-3-O-ß-d-glucoside, kaempferol-3-O-ß-d-glucoside, and kaempferol were identified as major constituents in the extract of S. glauca. Additionally, the therapeutic potential of the extract of S. glauca and the isolated compounds 1~8 on the expressions of VEGF and IGF-1, as well as the regulation of Wnt/ß-catenin signaling, were evaluated in human follicle dermal papilla cells (HFDPCs) and human umbilical vein endothelial cells (HUVECs). Among the eight compounds, compound 4 was the most potent in terms of increasing the expression of VEGF and IGF-1 and the regulation of Wnt/ß-catenin. These findings suggest that S. glauca extract and its compounds are potential new candidates for preventing or treating hair loss.


Asunto(s)
Chenopodiaceae , Factor I del Crecimiento Similar a la Insulina , Humanos , Animales , Plantas Tolerantes a la Sal , beta Catenina , Factor A de Crecimiento Endotelial Vascular , Alopecia , Flavonoides/farmacología , Células Endoteliales de la Vena Umbilical Humana , Extractos Vegetales/farmacología
4.
Nutrients ; 15(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37432154

RESUMEN

Plant extracts including secondary metabolites have anti-inflammatory and anti-obesity activities. This study was conducted to investigate the anti-obesity properties of fermented Artemisia annua (AW) and Salicornia herbacea (GW) in vitro and in mice. The metabolite profiling of AW and GW extracts was performed using UHPLC-LTQ-Orbitrap-MS/MS, and gene expression was analyzed using real-time PCR for adipocyte difference factors. The anti-obesity effects in mice were measured using serum AST, ALT, glucose, TG, and cholesterol levels. Metabolites of the plant extracts after fermentation showed distinct differences with increasing anti-obesity active substances. The efficacy of inhibitory differentiation adipogenesis of 3T3-L1 adipocytes was better for GW than AW in a concentration-dependent manner. RT-PCR showed that the GW extract significantly reduced the expression of genes involved in adipocyte differentiation and fat accumulation (C/EBPα, PPARγ, and Fas). In C57BL/6 mice fed the HFD, the group supplemented with AW and GW showed reduced liver weight, NAS value, and fatty liver by suppressing liver fat accumulation. The GW group significantly reduced ALT, blood glucose, TG, total cholesterol, and LDL-cholesterol. This study displayed significant metabolite changes through biotransformation in vitro and the increasing anti-obesity effects of GW and AW in mice. GW may be applicable as functional additives for the prevention and treatment of obesity.


Asunto(s)
Artemisia annua , Chenopodiaceae , Animales , Ratones , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , LDL-Colesterol
5.
Molecules ; 28(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298930

RESUMEN

The genus Anabasis is a member of the family Amaranthaceae (former name: Chenopodiaceae) and includes approximately 102 genera and 1400 species. The genus Anabasis is one of the most significant families in salt marshes, semi-deserts, and other harsh environments. They are also renowned for their abundance in bioactive compounds, including sesquiterpenes, diterpenes, triterpenes, saponins, phenolic acids, flavonoids, and betalain pigments. Since ancient times, these plants have been used to treat various diseases of the gastrointestinal tract, diabetes, hypertension, and cardiovascular diseases and are used as an antirheumatic and diuretic. At the same time, the genus Anabasis is very rich in biologically active secondary metabolites that exhibit great pharmacological properties such as antioxidant, antibacterial, antiangiogenic, antiulcer, hypoglycemic, hepatoprotective, antidiabetic, etc. All of the listed pharmacological activities have been studied in practice by scientists from different countries and are presented in this review article to familiarize the entire scientific community with the results of these studies, as well as to explore the possibilities of using four plant species of the genus Anabasis as medicinal raw materials and developing medicines based on them.


Asunto(s)
Amaranthaceae , Chenopodiaceae , Humanos , Chenopodiaceae/microbiología , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fitoquímicos/farmacología , Etnofarmacología
6.
Molecules ; 28(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37110814

RESUMEN

This study reports the biochemical profile and in vitro biological activities of the aerial part of two shrubs: Halocnemum strobilaceum and Suaeda fruticosa, a halophytes species native to saline habitats. The biomass was evaluated by determining its physiological properties and approximate composition. Hydro-methanolic extracts from Halocnemum strobilaceum and Suaeda fruticosa have been investigated for the inhibition of bacterial growth, the protection of proteins (albumin) from denaturation, and cytotoxicity to hepatocellular carcinomas (Huh-7 and HepG2). Their antioxidant activity was evaluated by five tests, including one that examined their ability to inhibit hydrogen peroxide (H2O2)-induced hemolysis. The profile of their phenolic compounds was also determined. These two euhalophytes had a high moisture content, high levels of photosynthetic pigments, elevated levels of ash and protein, low oxidative damage indices, MDA (Malondialdehyde) and proline, and low lipids levels. Their content was also characterized by a moderate acidity with good electrical conductivity. They contained abundant levels of phytochemicals and varied phenolic contents. Reverse phase high performance liquid chromatography (RP-HPLC) analysis revealed the presence of caffeic acid, p-coumaric acid, rutin, and quercetin in both plant extracts. On the pharmaceutical level, the two euhalophytes had anti-inflammatory, antibacterial, antioxidant, and cytotoxic properties, and therefore it was recommended to isolate and identify biologically active compounds from these plants and evaluate them in vivo.


Asunto(s)
Chenopodiaceae , Peróxido de Hidrógeno , Peróxido de Hidrógeno/metabolismo , Ecosistema , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/metabolismo , África del Norte
7.
Huan Jing Ke Xue ; 44(4): 2325-2337, 2023 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-37040981

RESUMEN

The improvement of saline soil is an important issue that cannot be ignored in the farmland soil environment. The change in soil salinity will inevitably affect the soil bacterial community. This experiment was based on moderately saline soil in the Hetao Irrigation Area, conducted by applying phosphogypsum (LSG), interplanting Suaeda salsa with Lycium barbarum (JP) and applying phosphogypsum and interplanting S. salsa with L. barbarum (LSG+JP),and the local unimproved soil of a L. barbarum orchard was used as the control (CK), to explore the effects of different improvement methods on soil moisture, salinity, nutrients, and bacterial community structure diversity during the growth period of L. barbarum. The results showed that compared with that under CK, the LSG+JP treatment significantly decreased the soil EC value and pH value from the flowering stage to the deciduous stage (P<0.05), with an average decrease of 39.96% and 7.25%, respectively; the LSG+JP treatment significantly increased soil organic matter (OM) and available phosphorus (AP) content during the whole growth period (P<0.05), with an average annual increase of 81.85% and 203.50%, respectively. The total nitrogen (TN) content was significantly increased in the flowering and deciduous stages (P<0.05), with an annual average increase of 48.91%. The Shannon index of LSG+JP in the early stage of improvement was increased by 3.31% and 6.54% compared with that of CK, and the Chao1 index was increased by 24.95% and 43.26% compared with that of CK, respectively. The dominant bacteria in the soil were Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria, and the dominant genus was Sphingomonas. Compared with that in CK, the relative abundance of Proteobacteria in the improved treatment increased by 0.50%-16.27% from the flowering stage to the deciduous stage, and the relative abundance of Actinobacteria in the improved treatment increased by 1.91%-4.98% compared with that in CK in the flowering and full-fruit stages. Redundancy analysis (RDA) results showed that pH, water content (WT), and AP were important factors affecting bacterial community composition, and the correlation heatmap showed that Proteobacteria, Bacteroidetes, and EC values were significantly negatively correlated (P<0.001); Actinobacteria and Nitrospirillum were significantly negatively correlated with EC values (P<0.01). In conclusion, the application of phosphogypsum and interplanting S. salsa with L. barbarum (LSG+JP) could significantly reduce soil salinity, increase nutrients, and improve the diversity of soil bacterial community structure, which is beneficial to the long-term improvement of saline soil in the Hetao Irrigation Area and the maintenance of soil ecological health.


Asunto(s)
Chenopodiaceae , Suelo , Suelo/química , Fósforo , Sulfato de Calcio , Cloruro de Sodio , Bacterias , Proteobacteria , Bacteroidetes
8.
BMC Plant Biol ; 23(1): 166, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36977975

RESUMEN

BACKGROUND: Glasswort (Salicornia persica) is identified as a halophyte plant, which is one of the most tolerant plants to salt conditions. The seed oil of the plant contains about 33% oil. In the present study, the effects of sodium nitroprusside (SNP; 0, 0.1, 0.2, and 0.4 mM) and potassium nitrate (KNO3; 0, 0.5, and 1%) were evaluated on several characteristics of glasswort under salinity stress (0, 10, 20, and 40 dS/m). RESULTS: morphological features, phenological traits, and yield parameters such as plant height, number of days to flowering, seed oil, biological yield, and seed yield significantly decreased in response to severe salt stress. However, the plants needed an optimal salinity concentration (20 dS/m NaCl) to obtain high amounts of seed oil and seed yield. The results also showed that a high level of salinity (40 dS/m NaCl) caused a decrease in plant oil and yield. In addition, by increasing the exogenous application of SNP and KNO3, the seed oil and seed yield increased. CONCLUSIONS: The application of SNP and KNO3 were effective in protecting S. persica plants from the deleterious effects of severe salt stress (40 dS/m NaCl), thereby restoring the activity of antioxidant enzymes, increasing the proline content, and maintaining cell membrane stability. It seems that both factors, i.e. SNP and KNO3, can be applied as mitigators of salt stress in plants.


Asunto(s)
Chenopodiaceae , Cloruro de Sodio , Nitroprusiato/farmacología , Cloruro de Sodio/farmacología , Estrés Salino , Aceites de Plantas , Salinidad
9.
Int J Phytoremediation ; 25(3): 322-328, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36444773

RESUMEN

A 150-day experiment was performed to investigate the stimulatory effect of a promising phytoremediation strategy consisting of Suaeda heteroptera (S. heteroptera), Nereis succinea (N. succinea), and oil-degrading bacteria for cleaning up total petroleum hydrocarbons (TPHs) in spiked sediment. Inoculation with oil-degrading bacteria and/or N. succinea increased plant yield and TPH accumulation in S. heteroptera plants. The highest TPH dissipation (40.5%) was obtained in the combination treatment, i.e., S. heteroptera + oil-degrading bacteria + N. succinea, in which the sediment TPH concentration decreased from an initial value of 3955 to 2355 mg/kg in 150 days. BAF, BCF, and TF confirmed the role of N. succinea and oil-degrading bacteria in the amelioration and translocation of TPHs. In addition, TPH toxicity of S. heteroptera was alleviated by N. succinea and oil-degrading bacteria addition through the reduction of oxidative stress. Therefore, S. heteroptera could be used for cleaning up oil-contaminated sediment, particularly in the presence of oil-degrading bacteria + N. succinea. Field studies on oil-degrading bacteria + N. succinea may provide new insights on the rehabilitation and restoration of sediments contaminated by TPHs.


Our study attempted to investigate the stimulatory effect of a promising phytoremediation strategy consisting of Suaeda heteroptera (S. heteroptera), Nereis succinea (N. succinea), and oil-degrading bacteria for cleaning up TPH in spiked sediment. Planting S. heteroptera can greatly increase sediment TPH removal, and its removal was enhanced greater after inoculation with oil-degrading bacteria and/or N. succinea. Moreover, the promising phytoremediation strategy developed in the current work can serve as an efficient, novel approach to removal TPH in sediment/soil. In our opinions, these findings provide insights into the assessment of their ecological risks in the environments that are of interest to broad readership of International Journal of Phytoremediation.


Asunto(s)
Chenopodiaceae , Heterópteros , Petróleo , Poliquetos , Contaminantes del Suelo , Animales , Bacterias , Biodegradación Ambiental , Hidrocarburos , Plantas , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
10.
Artículo en Inglés | MEDLINE | ID: mdl-36498118

RESUMEN

Mining activities have led to serious environmental (soil erosion, degradation of vegetation, and groundwater contamination) and human health (musculoskeletal problems, diarrheal conditions, and chronic diseases) issues at desert mining areas in northwest China. Native plant species grown naturally in desert regions show a unique tolerance to arid and semiarid conditions and are potential candidates for soil phytoremediation. Here, an ex situ experiment involving pot planting of seedlings of three native plant species (Suaeda glauca, Artemisia desertorum, and Atriplex canescens) was designed to explore their phytoremediation potential and the underlying physiological mechanism. For Zn and Cu, the three plants were all with a biological accumulation coefficient (BAC) greater than 1. For Cd, Ni, and Pb, Atriplex canescens had the highest bioaccumulation concentrations (521.52, 862.23, and 1734.59 mg/kg), with BAC values (1.06, 1.30, 1.25) greater than 1, which indicates that Atriplex canescens could be a broad-spectrum metal extraction plant. Physiological analysis (antioxidation, extracellular secretions, photosynthesis, and hydraulics) showed that the three desert plants exploited their unique strategy to protect against the stress of complex metals in soils. Moreover, the second growing period was the main heavy metal accumulation and extraction stage concomitant with highest water use efficiency (iWUE). Taken together, the three desert plants exhibited the potent heavy metal extraction ability and physiological and ecological adaptability to a harsh polluted environment in arid desert areas, providing potential resources for the bioremediation of metal-contaminated soils in an arid and semiarid desert environment.


Asunto(s)
Artemisia , Atriplex , Chenopodiaceae , Metales Pesados , Contaminantes del Suelo , Humanos , Atriplex/metabolismo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Metales Pesados/análisis , Suelo , Plantas/metabolismo
11.
Molecules ; 27(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36432054

RESUMEN

Nowadays, there has been considerable attention paid toward the recovery of waste plant matrices as possible sources of functional compounds with healthy properties. In this regard, we focus our attention on Salicornia, a halophyte plant that grows abundantly on the coasts of the Mediterranean area. Salicornia is used not only as a seasoned vegetable but also in traditional medicine for its beneficial effects in protecting against diseases such as obesity, diabetes, and cancer. In numerous research studies, Salicornia consumption has been highly suggested due to its high level of bioactive molecules, among which, polyphenols are prevalent. The antioxidant and antiradical activity of polyphenols makes Salicornia a functional food candidate with potential beneficial activities for human health. Therefore, this review provides specific and compiled information for optimizing and developing new extraction processes for the recovery of bioactive compounds from Salicornia; focusing particular attention on polyphenols and their health benefits.


Asunto(s)
Chenopodiaceae , Polifenoles , Humanos , Antioxidantes/farmacología , Obesidad , Verduras
12.
Molecules ; 27(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35889240

RESUMEN

Suaeda fruticosa Forssk. Ex J.F.Gmel is traditionally used for inflammatory and digestive disorders, as a carminative, and for diarrhea. This plant is widely distributed in Asia, Africa, and the Mediterranean region. Aqueous methanolic extract of S. fruticosa (Sf.Cr) was prepared and screened for phytoconstituents through qualitative and GC-MS analysis. Quantification of total phenolic and flavonoid contents was performed, while antioxidant capacity was determined by DPPH, CUPRAC, FRAP, and ABTS assays. The gastroprotective activity was assessed in an ethanol-induced ulcer model. Gastric secretory parameters and macroscopic ulcerated lesions were analyzed and scored for ulcer severity. After scoring, histopathology was performed, and gastric mucus contents were determined. Oral pre-treatment of Sf.Cr demonstrated significant gastroprotection. The gastric ulcer severity score and ulcer index were reduced while the %-inhibition of ulcer was increased dose-dependently. The Sf.Cr significantly elevated the pH of gastric juice, while a decrease in total acidity and gastric juice volume was observed. Histopathology demonstrated less oedema and neutrophil infiltration in gastric mucosa of rats pre-treated with the Sf.Cr in comparison to ethanol-intoxicated animals. Furthermore, the gastric mucus contents were increased as determined by alcian blue binding. Sf.Cr showed marked gastroprotective activity, which can be attributed to antioxidant, antisecretory, and cytoprotective effects.


Asunto(s)
Antiulcerosos , Chenopodiaceae , Úlcera Gástrica , Animales , Antiulcerosos/farmacología , Antiulcerosos/uso terapéutico , Antioxidantes/metabolismo , Etanol/metabolismo , Mucosa Gástrica , Extractos Vegetales/química , Hojas de la Planta/química , Ratas , Ratas Wistar , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/patología , Úlcera/tratamiento farmacológico
13.
Phytochemistry ; 202: 113320, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35843358

RESUMEN

The phytochemical study of Agathophora alopecuroides (Chenopodiaceae) led to the isolation of previously undescribed glucosylceramide, flavonol triglycoside, and triterpene oleanane saponin, together with eight known compounds. Their structures were elucidated using NMR analysis and HR-MS as (2'R, 12E) N-[(2S, 3S, 4R)-1-(ß-D-glucopyranosyloxy)-3,4-dihydroxy-octadec-2-yl]-2-hydroxytetracos-12-enamide, namely Agathophamide A; isorhamnetin-3-O-[ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→6)]-ß-D-galactopyranoside, namely Agathophoroside A; and 3-O-[4'-(ß-D-xylopyranosyl)-ß-D-glucuronopyranosyl]-28-O-ß-D-glucopyranosyl-olean-12-en-3ß-ol-28-oic acid, namely Solysaponin A. We evaluated the effect of extract and isolates on ceramide levels via the up-regulated expression of the enzyme for ceramide synthesis in HaCaT keratinocytes. Interestingly, the study results revealed that the methanol extract of A. alopecuroides, together with some isolated compounds significantly up-regulated the mRNA expression of ceramide synthase-3 by 1.2- to 4.3-fold compared with the control in HaCaT cells. These findings indicate that the halophyte A. alopecuroides is a promising source of candidate compounds that can contribute to ceramide synthesis via the up-regulated expression levels of ceramide synthase-3 in the ceramide synthesis pathway.


Asunto(s)
Chenopodiaceae , Saponinas , Triterpenos , Flavonoles/farmacología , Glucosilceramidas , Ácido Oleanólico/análogos & derivados , Extractos Vegetales/química , Plantas Tolerantes a la Sal , Saponinas/química , Saponinas/farmacología , Triterpenos/química
14.
Molecules ; 27(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35684352

RESUMEN

The aim of this study was to determine the compositions of carbohydrates, phenolic compounds, fatty acids (FAs), and amino acids (AAs) of four Rea Sea halophytes: Anabasis ehrenbergii, Suaeda aegyptiaca, Suaeda monoica, and Zygophyllum album. The results showed that S. aegyptiaca and S. monoica were rich in gallic acid with 41.72 and 47.48 mg/g, respectively, while A. ehrenbergii was rich in naringenin with 11.88 mg/g. The polysaccharides of the four species were mainly composed of galactose (54.74%) in A. ehrenbergii, mannose (44.15%) in S. aegyptiaca, glucose and ribose (33 and 26%, respectively) in S. monoica, and arabinose and glucose (36.67 and 31.52%, respectively) in Z. album. Glutamic acid and aspartic acid were the major AAs in all halophyte species with 50-63% and 10-22% of the total AAs, respectively. The proportion of unsaturated fatty acids (UFA) of the four species was 42.18-55.33%, comprised mainly of linolenic acid (15.54-28.63%) and oleic acid (5.68-22.05%), while palmitic acid (23.94-49.49%) was the most abundant saturated fatty acid (SFA). Phytol and 9,19-cyclolanost-24-en-3ß-ol represented the major unsaponifiable matter (USM) constituents of S. monoica and A. ehrenbergii with proportions 42.44 and 44.11%, respectively. The phenolic fraction of S. aegyptiaca and S. monoica demonstrated noteworthy antioxidant activity with IC50 values of 9.0 and 8.0 µg/mL, respectively, while the FAs fraction of Z. album exhibited potent cytotoxic activity against Huh-7, A-549, and Caco-2 cancer cell lines with IC50 values of 7.4, 10.8, and 11.8 µg/mL, respectively. Our results indicate that these plants may be considered a source of naturally occurring compounds with antioxidant and anticancer effects that could be suitable for future applications.


Asunto(s)
Antioxidantes , Chenopodiaceae , Antioxidantes/análisis , Antioxidantes/farmacología , Células CACO-2 , Ácidos Grasos , Glucosa , Humanos , Océano Índico , Fenoles/análisis , Fenoles/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Tolerantes a la Sal
15.
Molecules ; 27(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684464

RESUMEN

Anabasis articulata is medicinally used to treat various diseases. In this study, A. articulata was initially subjected to extraction, and the resultant extracts were then evaluated for their antimicrobial, antioxidant, and antidiabetic potentials. After obtaining the methanolic extract, it was subjected to a silica gel column for separation, and fractions were collected at equal intervals. Out of the obtained fractions (most rich in bioactive compounds confirmed through HPLC), designated as A, B, C, and D as well hexane fraction, were subjected to GC-MS analysis, and a number of valuable bioactive compounds were identified from the chromatograms. The preliminary phytochemical tests were positive for the extracts where fraction A exhibited the highest total phenolic and flavonoid contents. The hexane fraction as antimicrobial agent was the most potent, followed by the crude extract, fraction A, and fraction D. DPPH and ABTS assays were used to estimate the free radical scavenging potential of the extracts. Fraction C was found to contain potent inhibitors of both the tested radicals, followed by fraction D. The potential antidiabetic extracts were determined using α-glucosidase and amylase as probe enzymes. The former was inhibited by crude extract, hexane, and A, B, C and D fractions to the extent of 85.32 ± 0.20, 61.14 ± 0.49, 62.15 ± 0.84, 78.51 ± 0.45, 72.57 ± 0.92 and 70.61 ± 0.91%, respectively, at the highest tested concentration of 1000 µg/mL with their IC50 values 32, 180, 200, 60, 120 and 140 µg/mL correspondingly, whereas α-amylase was inhibited to the extent of 83.98 ± 0.21, 58.14 ± 0.75, 59.34 ± 0.89, 81.32 ± 0.09, 74.52 ± 0.13 and 72.51 ± 0.02% (IC50 values; 34, 220, 240, 58, 180, and 200 µg/mL, respectively). The observed biological potentials might be due to high phenolic and flavonoid content as detected in the extracts. The A. articulata might thus be considered an efficient therapeutic candidate and could further be investigated for other biological potentials along with the isolation of pure responsible ingredients.


Asunto(s)
Antioxidantes , Chenopodiaceae , Antibacterianos/farmacología , Antioxidantes/química , Flavonoides/química , Hexanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Fenoles/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química
16.
J Med Food ; 25(5): 503-512, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35561274

RESUMEN

Salicornia herbacea L. (Chenopodiaceae), an edible salt marsh plant with anti-inflammatory effects, was examined in macrophages and trophoblasts whether it modulates NLRP3 inflammasome activity. Pretreatment and delayed treatment of S. herbacea extract (SHE) in bone marrow-derived macrophages (BMDMs) reduced the activity of NLRP3 inflammasome induced by lipopolysaccharide (LPS) and adenosine triphosphate stimulation and downregulated interleukin (IL)-1ß production. SHE also inhibited pyroptotic cell death, the adaptor molecule apoptosis-associated speck-like protein containing a CARD (ASC), oligomerization, and speck by NLRP3 inflammasome activity in BMDM. Similarly, SHE decreased the mRNA expression of NLRP3, ASC, IL-1ß, and IL-6 in the LPS-stimulated human trophoblast cell line, Swan 71 cells. In addition, SHE inhibited the production of IL-6 and IL-1ß and decreased the expression of cyclooxygenase-2 and prostaglandin E2 in stimulated Swan 71 cells. Finally, 3,5-dicaffeoylquinic acid (3,5-DCQA), one of the components of S. herbacea, inhibited IL-1ß produced by NLRP3 inflammasome activity. In conclusion, SHE downregulated the activity of the NLRP3 inflammasome in macrophages and trophoblasts.


Asunto(s)
Chenopodiaceae , Inflamasomas , Caspasa 1/metabolismo , Caspasa 1/farmacología , Humanos , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Trofoblastos/metabolismo
17.
Pharmacol Res ; 179: 106203, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35381342

RESUMEN

More than 100 species of annual herb genus Suaeda widely distribute (Asia, North America, northern Africa and Europe), are rich in resources (about hundreds of millions of tons/Y) and have a long historical application. Most of them are mainly used for traditional food, feed and medicine. Recently, they have been employed to repair saline-alkali land and beautify the environment. So far, only 27 species have been reported on the bioactivity diversity, broad spectrum and effectiveness in clinical practice. Therefore, the in-depth and extensive research of Suaeda has become a research hotspot around the world. However, only one review summarized the nutritional, chemical and biological values of Suaeda. By searching the international authoritative databases (ACS Publications, ScienceDirect, PubMed, Springer, web of Science and Bing International etc.) and collecting 103 literatures closely related to Suaeda (1895-2021), herewith a comprehensive and systematic review was conducted on the phytology, chemistry, pharmacology and clinical application, enveloping the classification evolution between Amaranthaceae and Chenopodiaceae, distribution and common botanical characteristics; involving 9 chemical categories of 163 derivatives covering 14 new and 6 first-isolated ones, and appraising the content determination of 6 categories of components; mainly including the pharmacology of 13 species in vivo and vitro; estimating the clinical application of 16 species cured the related diseases of eight human physiological system except for the motor system. It is expected that this paper will provide forward-looking scientific ideas and literature support for the further modern research, development and utilization of the genus.


Asunto(s)
Chenopodiaceae , Fitoterapia , Etnofarmacología , Europa (Continente) , Humanos , Fitoquímicos/farmacología , Extractos Vegetales/farmacología
18.
Sci Rep ; 12(1): 2968, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194050

RESUMEN

Salicornia europaea is among the most salt-tolerant of plants, and is widely distributed in non-tropical regions. Here, we investigated whether maternal habitats can influence different responses in physiology and anatomy depending on environmental conditions. We studied the influence of maternal habitat on S. europaea cell anatomy, pectin content, biochemical and enzymatic modifications under six different salinity treatments of a natural-high-saline habitat (~ 1000 mM) (Ciechocinek [Cie]) and an anthropogenic-lower-saline habitat (~ 550 mM) (Inowroclaw [Inw]). The Inw population showed the highest cell area and roundness of stem water storing cells at high salinity and had the maximum proline, carotenoid, protein, catalase activity within salt treatments, and a maximum high and low methyl esterified homogalacturonan content. The Cie population had the highest hydrogen peroxide and peroxidase activity along with the salinity gradient. Gene expression analysis of SeSOS1 and SeNHX1 evidenced the differences between the studied populations and suggested the important role of Na+ sequestration into the vacuoles. Our results suggest that the higher salt tolerance of Inw may be derived from a less stressed maternal salinity that provides a better adaptive plasticity of S. europaea. Thus, the influence of the maternal environment may provide physiological and anatomical modifications of local populations.


Asunto(s)
Chenopodiaceae , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Tolerancia a la Sal , Chenopodiaceae/anatomía & histología , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Pectinas/genética , Pectinas/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Salinidad
19.
Environ Sci Pollut Res Int ; 29(30): 46127-46144, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35156168

RESUMEN

Nitrate is a common form of nitrogen fertilizer, and its excess application combined with easy leaching from agricultural fields causes water and soil contamination, hazards on human health, and eutrophication of aquatic ecosystems. Compared to other pollutants, the application of phytoremediation technology for nitrate-contaminated sites has received less attention. Nitrophilous halophyte species are suitable candidates for this purpose particularly by application of additional treatments for assisting nitrate accumulation. In this work, two annual halophyte species, Portulaca oleracea and Salicornia europaea were studied for their phytoremediation capacity of nitrate-contaminated water and soils. Plants were treated with three nitrate levels (2, 14, and 50 mM) combined with either selenium (10 µM as Na2SeO4) or salt (100 mM NaCl) in the hydroponics and sand culture medium, respectively. A fast growth and production of higher biomass enables P. oleracea for higher nitrate removal compared with S. europaea in both experiments. In S. europaea, both selenium and salt treatments enhanced nitrate removal competence through increasing the biomass and nitrate uptake or assimilation capacity. Salt treatment, however, reduced these parameters in P. oleracea. Based on data, selenium-assisted phytoremediation of nitrate contamination is a feasible strategy for both species and S. europaea is better suited to nitrate-contaminated saline water and soils. Nitrate accumulation in both species, however, exceeds that of the permitted nitrate level in the forage crops suggesting that the phytoremediation byproducts could not be consumed and other management strategies should be applied to the residual biomass.


Asunto(s)
Chenopodiaceae , Portulaca , Selenio , Contaminantes del Suelo , Biodegradación Ambiental , Ecosistema , Humanos , Nitratos , Plantas Tolerantes a la Sal , Cloruro de Sodio , Suelo
20.
Chin J Integr Med ; 28(4): 339-348, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35023063

RESUMEN

OBJECTIVE: To investigate the pharmacodynamic material basis, mechanism of actions and targeted diseases of Salicornia europaea L. (SE) based on the network pharmacology method, and to verify the antidepressant-like effect of the SE extract by pharmacological experiments. METHODS: Retrieval tools including Chinese medicine (CM), PubMed, PharmMapper, MAS 3.0 and Cytoscape were used to search the components of SE, predict its targets and related therapeutic diseases, and construct the "Component-Target-Pathway" network of SE for central nervous system (CNS) diseases. Further, protein-protein interaction (PPI) network, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) function annotation of depression-related targets were analyzed to predict the antidepressant mechanism of SE. Chronic unpredictable mild stress (CUMS) model was used to construct a mouse model with depression-like symptoms. And the animals were randomly divided into 6 groups (n=10) including the normal group (nonstressed mice administered with distilled water), the CUMS group (CUMS mice administered with distilled water), the venlafaxine group (CUMS mice administered with venlafaxine 9.38 mg/kg), SE high-, medium-, and low-dose groups (CUMS mice administered with SE 1.8, 1.35 and 0.9 g/kg, respectively). Then some relevant indicators were determined for experimental verification by the forced swim test (FST), the tail suspension test (TST) and open-field test (OFT). Dopamine (DA) concentration in hippocampus and cerebral cortex, IL-2 and corticosterone (CORT) levels in blood, and nuclear factor E2 related factor 2 (Nrf2), kelch-like epichlorohydrin related protein 1 (Keap1), NAD(P) H dehydrogenase [quinone] 1 (NQO1) and heme oxygenase-1 (HO-1) levels in mice were measured by enzyme linked immunosorbent assay (ELISA) and Western blot respectively to explore the possible mechanisms. RESULTS: The "target-disease" network diagram predicted by network pharmacology, showed that the potential target of SE involves a variety of CNS diseases, among which depression accounts for the majority. The experimental results showed that SE (1.8, 1.35 g/kg) significantly decreased the immobility period, compared with the CUMS group in FST and TST in mice after 3-week treatment, while SE exhibited no significant effect on exploratory behavior in OFT in mice. Compared with CUMS group, the SE group (0.9 g/kg) showed significant differences (P<0.05) in DA levels in the hippocampus and cerebral cortex. In addition, compared with CUMS control group, SE (1.8 g/kg) group showed a significant effect on decreasing the activities of CORT (P<0.05), and serum IL-2 level with no statistical significance. Finally, Western blot results showed that compared with the model group, Nrf2, Keap1, NQO1 and HO-1 protein expressions in SE group (1.8 g/kg) were up-regulated (all P<0.01). CONCLUSION: The SE extract may have an antidepressant effect, which appeared to regulate Nrf2-ARE pathway and increased levels of DA and CORT in the hippocampus and cortex.


Asunto(s)
Chenopodiaceae , Depresión , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal , Chenopodiaceae/metabolismo , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Hipocampo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Farmacología en Red , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Estrés Psicológico/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA