Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Lasers Med Sci ; 39(1): 86, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438583

RESUMEN

In this preclinical investigation, we examined the effects of combining preconditioned diabetic adipose-derived mesenchymal stem cells (AD-MSCs) and photobiomodulation (PBM) on a model of infected ischemic delayed healing wound (injury), (IIDHWM) in rats with type I diabetes (TIDM). During the stages of wound healing, we examined multiple elements such as stereology, macrophage polarization, and the mRNA expression levels of stromal cell-derived factor (SDF)-1α, vascular endothelial growth factor (VEGF), hypoxia-induced factor 1α (HIF-1α), and basic fibroblast growth factor (bFGF) to evaluate proliferation and inflammation. The rats were grouped into: (1) control group; (2) diabetic-stem cells were transversed into the injury site; (3) diabetic-stem cells were transversed into the injury site then the injury site exposed to PBM; (4) diabetic stem cells were preconditioned with PBM and implanted into the wound; (5) diabetic stem cells were preconditioned with PBM and transferred into the injury site, then the injury site exposed additional PBM. While on both days 4, and 8, there were advanced histological consequences in groups 2-5 than in group 1, we found better results in groups 3-5 than in group 2 (p < 0.05). M1 macrophages in groups 2-5 were lower than in group 1, while groups 3-5 were reduced than in group 2 (p < 0.01). M2 macrophages in groups 2-5 were greater than in group 1, and groups 3-5 were greater than in group 2. (p ≤ 0.001). Groups 2-5 revealed greater expression levels of bFGF, VEGF, SDF- 1α, and HIF- 1α genes than in group 1 (p < 0.001). Overall group 5 had the best results for histology (p < 0.05), and macrophage polarization (p < 0.001). AD-MSC, PBM, and AD-MSC + PBM treatments all enhanced the proliferative stage of injury repairing in the IIDHWM in TIDM rats. While AD-MSC + PBM was well than the single use of AD-MSC or PBM, the best results were achieved with PBM preconditioned AD-MSC, plus additional PBM of the injury.


Asunto(s)
Diabetes Mellitus Experimental , Terapia por Luz de Baja Intensidad , Animales , Ratas , Factor A de Crecimiento Endotelial Vascular/genética , Diabetes Mellitus Experimental/genética , Cicatrización de Heridas/genética , Quimiocina CXCL12/genética , Factor 2 de Crecimiento de Fibroblastos , Células Madre
2.
Food Chem ; 410: 135444, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36641908

RESUMEN

Ascorbic acid (AsA) inhibits wound healing in fresh-cut potatoes (FCP); however, the comprehensive regulatory mechanisms of the chemical during wound healing remain unclear. Here, physiobiochemical, transcriptomic, and metabolomic analyses were performed. In total, 685 differentially expressed genes (DEGs) and 1921 differentially accumulated metabolites (DAMs) were identified between control and AsA-treated samples. The level of the majority of DEGs expression and DAMs abundance in AsA-treated samples were similar to data of newly cut samples. The collective data indicated that the AsA treatment inhibited wound healing in FCPs by regulating glutathione metabolism, enhancing starch metabolism, and inhibiting phenylalanine metabolism, sucrose degradation, and fatty acid synthesis. Major genes and metabolites affected by AsA treatment included StGST, StPAL, StPHO1 and StLOX5, and starch, sucrose, and linoleic acid. AsA treatment increased starch content and amylase and lipoxygenase activity and decreased free fatty acid level. Our research provides fundamental insights into wound healing mechanisms in FCP.


Asunto(s)
Solanum tuberosum , Transcriptoma , Ácido Ascórbico/análisis , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Perfilación de la Expresión Génica , Cicatrización de Heridas/genética , Almidón/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant Physiol Biochem ; 185: 279-289, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35724622

RESUMEN

Calcium-dependent protein kinase (CDPK) is a Ca2+ sensor that can phosphorylate and regulate respiratory burst oxidase homolog (Rboh), inducing the production of O2-. However, little is known about how StCDPK23 affects ROS production in the deposition of suberin at potato tuber wounds by regulating StRbohs. In this study, we found that StCDPK23 was induced significantly by the wound in potato tubers, which contains a typical CDPK structure, and was highly homologous to AtCDPK13 in Arabidopsis. Subcellular localization of results showed that StCDPK23 was located in the nucleus and plasma membrane of N. benthamiana epidermis cells. StCDPK23-overexpressing plants and tubers were obtained via Agrobacterium transformation. The expression of StCDPK23 was significantly upregulated in the overexpressing tubers during healing and increased 2.3-fold at 5 d. The expression levels of StRbohs (A-E) were also upregulated in the overexpressing tubers. Among them, StrbohA showed significant expression in the early stage of healing, which was 16.3-fold higher than that of the wild-type tubers at 8 h of healing. Moreover, the overexpressing tubers produced more O2- and H2O2, which are 1.1-fold and 3.5-fold higher than that of the wild-type at 8 h, respectively. More SPP deposition was observed at the wounds of the overexpressing tubers. The thickness of SPP cell layers was 53.2% higher than that of the wild-type after 3 d of the wound. It is suggested that StCDPK23 may participate in the wound healing of potato tubers by regulating Strbohs, which mainly contributes to H2O2 production during healing.


Asunto(s)
Solanum tuberosum , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Cicatrización de Heridas/genética
4.
BMC Genomics ; 23(1): 263, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35382736

RESUMEN

BACKGROUND: Wound healing is a representative phenomenon of potato tubers subjected to mechanical injuries. Our previous results found that benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) promoted the wound healing of potato tubers. However, the molecular mechanism related to inducible wound healing remains unknown. RESULTS: Transcriptomic evaluation of healing tissues from potato tubers at three stages, namely, 0 d (nonhealing), 5 d (wounded tubers healed for 5 d) and 5 d (BTH-treated tubers healed for 5 d) using RNA-Seq and differentially expressed genes (DEGs) analysis showed that more than 515 million high-quality reads were generated and a total of 7665 DEGs were enriched, and 16 of these DEGs were selected by qRT-PCR analysis to further confirm the RNA sequencing data. Gene ontology (GO) enrichment analysis indicated that the most highly DEGs were involved in metabolic and cellular processes, and KEGG enrichment analysis indicated that a large number of DEGs were associated with plant hormones, starch and sugar metabolism, fatty acid metabolism, phenylpropanoid biosynthesis and terpenoid skeleton biosynthesis. Furthermore, a few candidate transcription factors, including MYB, NAC and WRKY, and genes related to Ca2+-mediated signal transduction were also found to be differentially expressed during wound healing. Most of these enriched DEGs were upregulated after BTH treatment. CONCLUSION: This comparative expression profile provided useful resources for studies of the molecular mechanism via these promising candidates involved in natural or elicitor-induced wound healing in potato tubers.


Asunto(s)
Solanum tuberosum , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Transcriptoma , Cicatrización de Heridas/genética
5.
J Pharmacol Sci ; 147(3): 271-283, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34507636

RESUMEN

PURPOSE: Diabetic foot ulcers (DFUs) are common complications of high severity for diabetes. Ginsenoside Rg1 (Rg1) has the potential for diabetes and cardiovascular diseases therapy. This research aimed at exploring the regulation of Rg1 on DFUs treatment and the underlying mechanism. METHODS: Human umbilical vein endothelial cells (HUVECs) incubated with high-glucose culture medium were established for induction of diabetes model. The MTT assay, Annexin V/PI assay and oxidative stress detection were carried out on high-glucose-induced HUVECs. Dual-luciferase reporter assay was performed to prove the interaction of miR-489-3p and Sirt1. DFUs model was established to determine the efficiency of Rg1 and miR-489-3p in wound closure of DFUs in vivo. RESULTS: Rg1 promoted cell proliferation, migration and angiogenesis, and reduced cell apoptosis in high-glucose-induced HUVECs. Knockdown of miR-489-3p alleviated the high-glucose-induced damage to HUVECs, while overexpression of miR-489-3p attenuated the protection effects of Rg1. Overexpression Sirt1 promoted wound healing in DFUs and Sirt1 was a direct target of miR-489-3p. In addition, animal experiments demonstrated that Rg1 promoted wound closure by regulating miR-489-3p/Sirt1 axis. CONCLUSIONS: Rg1 alleviated the DFUs by increasing Sirt1 expression via miR-489-3p downregulation and promoting activation of PI3K/AKT/eNOS signaling.


Asunto(s)
Pie Diabético/tratamiento farmacológico , Pie Diabético/fisiopatología , Expresión Génica/efectos de los fármacos , Ginsenósidos/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Ginsenósidos/uso terapéutico , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Fitoterapia , Ratas Sprague-Dawley
6.
Int J Nanomedicine ; 16: 3889-3905, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135583

RESUMEN

INTRODUCTION: Delayed wound healing represents a common health hazard. Traditional herbal products have been often utilized to promote wound contraction. The current study aimed at assessing the wound healing activity of Opuntia ficus-indica seed oil (OFI) and its self-nanoemulsifying drug delivery system (OFI-SNEDDS) formula in a rat model of full-thickness skin excision. METHODS: Based on droplet size, an optimized OFI-SNEDDS formula was prepared and used for subsequent evaluation. Wound healing activity of OFI and OFI-SNEDDS was studied in vivo. RESULTS: The optimized OFI-SNEDDS formula droplet size was 50.02 nm. The formula exhibited superior healing activities as compared to regular OFI seed oil-treated rats at day 14 of wounding. This effect was further confirmed by histopathological examinations of H&E and Masson's Trichrome-stained skin sections. Moreover, OFI-SNEDDS showed the highest antioxidant and anti-inflammatory activities as compared to OFI seed oil-treated animals. Both OFI and OFI-SNEDDS significantly enhanced hydroxyproline skin content and upregulated Col1A1 mRNA expression, accompanied by enhanced expression of transforming factor-beta (TGF-ß). Further, OFI-SNEDDS improved angiogenesis as evidenced by increased expression of vascular endothelial growth factor (VEGF). CONCLUSION: OFI possesses wound healing properties that are enhanced by self-emulsification of the oil into nano-droplets. The observed activity can be attributed, at least partly, to its anti-inflammatory, pro-collagen and angiogenic properties.


Asunto(s)
Emulsiones/química , Opuntia/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/química , Antioxidantes/farmacología , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Sistemas de Liberación de Medicamentos , Emulsiones/farmacología , Hidroxiprolina/metabolismo , Masculino , Aceites de Plantas/administración & dosificación , Ratas Wistar , Semillas/química , Piel/efectos de los fármacos , Piel/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Cicatrización de Heridas/genética
7.
Exp Eye Res ; 209: 108668, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34144035

RESUMEN

Vitamin D (VD) deficiency delays corneal wound healing in those with diabetes, which cannot be rescued with supplemental diet. Here, we employed topical calcitriol application to evaluate its efficiency in corneal wound healing and reinnervation in diabetic mice. Type 1 diabetic mice were topically administrated calcitriol, or subconjunctivally injected with NLRP3 antagonist MCC950 or IL-1ß blocking antibody after epithelial debridement. Serum VD levels, corneal epithelial defect, corneal sensation and nerve density, NLRP3 inflammasome activation, neutrophil infiltration, macrophage phenotypes, and gene expressions were examined. Compared with those of normal mice, diabetic mice showed reduced serum VD levels. Topical calcitriol application promoted corneal wound healing and nerve regeneration, as well as sensation recovery in diabetic mice. Moreover, calcitriol ameliorated neutrophil infiltration and promoted the M1-to-M2 macrophage transition, accompanied by suppressed overactivation of the NLRP3 inflammasome. Treatment with NLRP3 antagonist or IL-1ß blockage demonstrated similar improvements as those of topical calcitriol application. Additionally, calcitriol administration upregulated desmosomal and hemidesmosomal gene expression in the diabetic cornea. In conclusion, topical calcitriol application promotes corneal wound healing and reinnervation during diabetes, which may be related to the suppression of the overactivation of NLRP3 inflammasome.


Asunto(s)
Calcitriol/administración & dosificación , Córnea/inervación , Enfermedades de la Córnea/genética , Diabetes Mellitus Experimental/complicaciones , Regulación de la Expresión Génica , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Regeneración Nerviosa/genética , Animales , Córnea/patología , Enfermedades de la Córnea/etiología , Enfermedades de la Córnea/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Inflamasomas , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/biosíntesis , ARN/genética , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética
8.
Food Funct ; 12(11): 5144-5156, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33977960

RESUMEN

Due to the prevalence of individuals suffering from chronic wounds, developing safe and effective wound care agents are one of the more prominent fields of research in biology. However, wound healing is a complex, multi-stage biological process, involving multiple sequences of biological responses from different types of cells, secreted mediators, and extracellular matrix elements. Plants have a long history of use in the treatment of wounds. Plant-derived extracellular vesicles, which are secreted nano vesicle messengers responsible for intercellular communications, show promise as a new, biotechnological wound-care agent. In this study, we assessed the wound healing potential of extracellular vesicles isolated from grapefruits - a plant with well-known anti-inflammatory and wound healing properties. Grapefruit extracellular vesicles (GEVs) increased cell viability and cell migration while reducing intracellular ROS production in a dose-dependent manner in HaCaT cells. Expression of proliferation and migration-related genes were raised by GEV treatment in a dose dependent manner. Additionally, GEV treatment increased the tube formation capabilities of treated HUVEC cells. These findings suggest that GEVs can be used as plant-derived wound healing agents, and have shown potential as a biotechnological agent for wound healing. Further development and study of plant-derived extracellular vesicles may lead to the realization of their full potential.


Asunto(s)
Antiinflamatorios/farmacología , Citrus paradisi/química , Vesículas Extracelulares/metabolismo , Extractos Vegetales/farmacología , Cicatrización de Heridas/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Matriz Extracelular , Células HaCaT , Células Endoteliales de la Vena Umbilical Humana , Humanos , Nanopartículas , Cicatrización de Heridas/genética
9.
Cells Dev ; 166: 203658, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33994349

RESUMEN

BACKGROUND: The inflammatory skin wound response is regulated by argonaute 2-bound microRNAs (Ago2-miRNAs) such as miR-139-5p, which inhibit transcription of their target mRNAs. Jiang Tang Xiao Ke (JTXK) is a traditional Chinese medicine that reduces miR-139-5p expression, suggesting that topical application of JTXK may have effects on wound healing. METHODS: miR-139-/- mice and wild-type (WT) mice were employed to characterize the in vivo effects of miR-139-5p on sterile wound healing. Neutrophil migration and activation into the wound site were examined by live imaging analysis in lys-EGFP mice and myeloperoxidase/aminophenyl fluorescein assays, respectively. In silico and in vitro studies in differentiated HL60 cells were performed to identify miR-139-5p's downstream mediator(s). miR-139-/- neutrophil transplantation (with or without Eif4g2-knockdown rescue) or a topical JTXK gel preparation (with or without miR-139-5p mimic rescue) were employed to characterize the in vivo effects of miR-139-5p and JTXK, respectively, on Staphylococcus aureus (S. aureus)-infected wound healing. RESULTS: miR-139-/- mice display impaired sterile wound healing but improved S. aureus-infected wound healing. Eif4g2, a protein that supports neutrophil proliferation and differentiation, was identified as a key downstream mediator of miR-139-5p. miR-139-/- mice show elevated neutrophilic activation and Eif4g2 upregulation. miR-139-/- neutrophils enhanced S. aureus-infected wound healing in an Eif4g2-dependent manner. Moreover, topical JTXK gel therapy also enhanced S. aureus-infected wound healing in a miR-139-5p-dependent manner. CONCLUSIONS: miR-139-5p negatively regulates the neutrophilic response during S. aureus-infected wound healing, suggesting that JTXK or other miR-139-5p suppressants may be effective for treating infected skin wounds.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Geles/farmacología , MicroARNs/antagonistas & inhibidores , Piel/patología , Infecciones Estafilocócicas/genética , Staphylococcus aureus/fisiología , Cicatrización de Heridas/genética , Infección de Heridas/microbiología , Administración Tópica , Animales , Factor 4G Eucariótico de Iniciación/metabolismo , Geles/administración & dosificación , Técnicas de Silenciamiento del Gen , Humanos , Inflamación/patología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Piel/microbiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/genética
10.
Mol Biol Rep ; 48(2): 1233-1241, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33475929

RESUMEN

The literature has shown the beneficial effects of microcurrent (MC) therapy on tissue repair. We investigated if the application of MC at 10 µA/90 s could modulate the expression of remodeling genes transforming growth factor beta (Tgfb), connective tissue growth factor (Ctgf), insulin-like growth factor 1 (Igf1), tenascin C (Tnc), Fibronectin (Fn1), Scleraxis (Scx), Fibromodulin (Fmod) and tenomodulin in NIH/3T3 fibroblasts in a wound healing assay. The cell migration was analyzed between days 0 and 4 in both fibroblasts (F) and fibroblasts + MC (F+MC) groups. On the 4th day, cell viability and gene expression were also analyzed after daily MC application. Higher expression of Ctgf and lower expression of Tnc and Fmod, respectively, were observed in the F+MC group in relation to F group (p < 0.05), and no difference was observed between the groups for the genes Tgfb, Fn1 and Scx. In cell migration, a higher number of cells in the scratch region was observed in group F+MC (p < 0.05) compared to group F on the 4th day, and the cell viability assay showed no difference between the groups. In conclusion, MC therapy at an intensity/time of 10 µA/90 s with 4 daily applications did not affect cell viability, stimulated fibroblasts migration with the involvement of Ctgf, and reduced the Tnc and Fmod expression.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/genética , Terapia por Estimulación Eléctrica , Fibromodulina/genética , Tenascina/genética , Cicatrización de Heridas/efectos de la radiación , Animales , Movimiento Celular/efectos de la radiación , Fibronectinas/genética , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Ratones , Células 3T3 NIH , Factor de Crecimiento Transformador beta1/genética , Cicatrización de Heridas/genética
11.
J Ethnopharmacol ; 268: 113643, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33271241

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sheng-ji Hua-yu (SJHY) formula is a traditional Chinese herbal which is effective in treating diabetic ulcers. It has been indicated to accelerate re-epithelialization and healing time of cutaneous wounds in a Streptozotocin (STZ)-induced diabetic mouse model. However, its mechanisms remain undetermined. AIM OF THE STUDY: To reveal the molecular mechanisms of SJHY formula in treating diabetic wounds through transcriptional profiling and circRNA-miRNA-mRNA network analysis clues. MATERIALS AND METHODS: Protein expressions of tumor necrosis factor (TNF-α), interleukin (IL)-6, IL-1ß in skin tissues of wounds from SJHY formula-treated and untreated mice were analyzed by Bio-Plex assay. Differentially expressed (DE) genes were detected by whole transcriptome sequencing (RNA-seq). Using predicted miRNA targets, circRNA-miRNA-mRNA networks were constructed. Furthermore, quantitative real-time PCR (qRT-PCR) was utilized to validate the circRNA-miRNA-mRNA networks. RESULTS: Bio-Plex assay illustrated that the protein expressions of TNF-α, IL-1ß, IL-6 were downregulated in SJHY formula-treated diabetic wounds compared with untreated wounds. RNA-seq identified 11 DE circRNAs and 476 DE mRNAs between SJHY formula-treated and diabetic mice, including 4 upregulated and 7 downregulated circRNAs, 311 upregulated and 165 downregulated mRNAs. CircRNA-Krt13/miR-665-3p/Itga3 and circRNA-Krt14/miR-706/Mylk4 pathways were built, which may contribute to the healing of SJHY formula-treated diabetic wounds. CONCLUSIONS: Overall, this study suggests that these 2 circRNA-miRNA-mRNA networks are potential biomarkers for evaluation of SJHY formula efficacy in diabetic wound healing, which provides evidence to support its clinical applications.


Asunto(s)
Diabetes Mellitus Experimental/genética , Medicamentos Herbarios Chinos/uso terapéutico , Redes Reguladoras de Genes/genética , MicroARNs/genética , ARN Circular/genética , ARN Mensajero/genética , Cicatrización de Heridas/genética , Animales , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Medicamentos Herbarios Chinos/farmacología , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Resultado del Tratamiento , Cicatrización de Heridas/efectos de los fármacos
12.
Fish Shellfish Immunol ; 107(Pt A): 414-425, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33038507

RESUMEN

Purified bioactive components of marine algae have shown great pharmaceutical and biomedical potential, including wound healing activity. However, the activity of Spirulina maxima is the least documented with regard to wound healing potential. In the present study, we investigated the regenerative and wound healing activities of a Spirulina (Arthrospira) maxima based pectin (SmP) using in vitro human dermal fibroblasts (HDFs) and in vivo zebrafish model. SmP treated (12.5-50 µg/mL) HDFs showed increased cell proliferation by 20-40% compared to the untreated HDFs. Moreover, in vitro wound healing results in HDFs demonstrated that SmP decreased the open wound area % in concentration-dependent manner at 12.5 (32%) and 25 µg/mL (12%) compared to the control (44%). Further, zebrafish larvae displayed a greater fin regenerated area in the SmP exposed group at 25 (0.48 mm2) and 50 µg/mL (0.51 mm2), whereas the untreated group had the lowest regenerated area (0.40 mm2) at 3 days post amputation. However, fin regeneration was significantly (P < 0.001) higher only in the SmP treated group at 50 µg/mL. Furthermore, the open skin wound healing % in adult zebrafish was significantly higher (P < 0.05) after topical application (600 µg/fish) of SmP (46%) compared to the control (38%). Upregulation of genes such as tgfß1, timp2b, mmp9, tnf-α, and il-1ß, and chemokines such as cxcl18b, ccl34a.4, and ccl34b.4, in the muscle and kidney tissues of SmP treated fish compared to the respective control group was demonstrated using qRT-PCR. Histological analysis results further supported the rapid epidermal growth and tissue remodeling in SmP treated fish, suggesting that SmP exerts positive effects associated with wound healing. Therefore, SmP can be considered a potential regenerative and wound healing agent.


Asunto(s)
Pectinas/administración & dosificación , Regeneración/efectos de los fármacos , Spirulina/química , Activación Transcripcional/inmunología , Cicatrización de Heridas/efectos de los fármacos , Pez Cebra/fisiología , Aletas de Animales/fisiología , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Piel/efectos de los fármacos , Piel/lesiones , Cola (estructura animal) , Activación Transcripcional/efectos de los fármacos , Cicatrización de Heridas/genética , Cicatrización de Heridas/inmunología , Pez Cebra/genética
13.
Oxid Med Cell Longev ; 2020: 2483187, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32908626

RESUMEN

Crassocephalum crepidioides (Benth.) S. Moore. has been used to treat small wounds by minority people in Lam Dong, Vietnam. However, there has been no scientific evidences about its wound healing activity. This study is aimed at evaluating the wound healing activity of Crassocephalum crepidioides hydroethanolic extract via its antioxidant and anti-inflammation activities and healing capability on a mouse excision wound model. Crassocephalum crepidioides hydroethanolic extract (CCLE) at a dose of 50 mg/kg/day reduced the wound closure time about 3.5 days, compared to vehicle treatment. The granulation tissue on day 7 after surgery from the treated group showed a 2.8-fold decrease in the density of inflammatory cells, 1.9-fold increase in the fibroblast density, and a higher number of blood vessels. Real-time PCR analysis indicated that the mRNA expression level of NF-κB1 and TNF-α mRNA in CCLE-treated wounds decreased by 4.6 and 3.3 times, respectively, while TGF-ß1 and VEGF were found to increase by 3.3 and 2.4 times, respectively. Our experimental data provided proofs of Crassocephalum crepidioides leaf wound healing activity due to its antioxidant, anti-inflammation, fibroblast proliferation, wound contraction, and angiogenesis effects.


Asunto(s)
Asteraceae/química , Etanol/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Agua/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Compuestos de Bifenilo/química , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Flavonoides/análisis , Depuradores de Radicales Libres/química , Regulación de la Expresión Génica/efectos de los fármacos , Tejido de Granulación/efectos de los fármacos , Tejido de Granulación/patología , Masculino , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Fenoles/análisis , Picratos/química , Células RAW 264.7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Repitelización/efectos de los fármacos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas/genética
14.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751697

RESUMEN

Inflammation is part of the natural healing response, but it has been simultaneously associated with tendon disorders, as persistent inflammatory events contribute to physiological changes that compromise tendon functions. The cellular interactions within a niche are extremely important for healing. While human tendon cells (hTDCs) are responsible for the maintenance of tendon matrix and turnover, macrophages regulate healing switching their functional phenotype to environmental stimuli. Thus, insights on the hTDCs and macrophages interactions can provide fundamental contributions on tendon repair mechanisms and on the inflammatory inputs in tendon disorders. We explored the crosstalk between macrophages and hTDCs using co-culture approaches in which hTDCs were previously stimulated with IL-1ß. The potential modulatory effect of the pulsed electromagnetic field (PEMF) in macrophage-hTDCs communication was also investigated using the magnetic parameters identified in a previous work. The PEMF influences a macrophage pro-regenerative phenotype and favors the synthesis of anti-inflammatory mediators. These outcomes observed in cell contact co-cultures may be mediated by FAK signaling. The impact of the PEMF overcomes the effect of IL-1ß-treated-hTDCs, supporting PEMF immunomodulatory actions on macrophages. This work highlights the relevance of intercellular communication in tendon healing and the beneficial role of the PEMF in guiding inflammatory responses toward regenerative strategies.


Asunto(s)
Comunicación Celular/genética , Inflamación/genética , Interleucina-1beta/genética , Activación de Macrófagos/genética , Comunicación Celular/efectos de la radiación , Polaridad Celular/genética , Polaridad Celular/efectos de la radiación , Técnicas de Cocultivo , Campos Electromagnéticos , Humanos , Inflamación/inmunología , Inflamación/terapia , Macrófagos/inmunología , Macrófagos/metabolismo , Magnetoterapia , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de la radiación , Transducción de Señal , Traumatismos de los Tendones/genética , Traumatismos de los Tendones/patología , Traumatismos de los Tendones/terapia , Tendones/metabolismo , Tendones/patología , Tendones/efectos de la radiación , Factor de Necrosis Tumoral alfa/genética , Cicatrización de Heridas/genética , Cicatrización de Heridas/efectos de la radiación
15.
Acta Histochem ; 122(6): 151576, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32778238

RESUMEN

BACKGROUND: In recent years, microRNAs (miRNAs) are reported to act as molecular biomarkers for cancer diagnosis, treatment, and prognosis (including liver cancer) and to be involved in the development and progression of cancer and other physiological and pathological changes. However, the role of miR-34a-5p in liver cancer is still largely unknown. METHODS: In our study, the expression of miR-34a-5p in liver cancer tissues and HCC cell lines was detected by qRT-PCR. The CCK-8, scratch wound-healing motility and Transwell assays were used to evaluate the effect on cell proliferation, migration and invasion. The expression of YY1, E-cadherin, N-cadherin and vimentin was analysed by western blotting. The dual luciferase assay was performed to confirm whether YY1 is a target of miR-34a-5p. The combination of YY1 and MYCT1 was detected by chromatin immunoprecipitation (ChIP) assay. RESULTS: The results showed that miR-34a-5p was downregulated in liver cancer tissues and HCC cell lines. Overexpression of miR-34a-5p inhibited the proliferation, migration and invasion of liver cancer cells. YY1 was a direct target of miR-34a-5p, and the expression of YY1 could reverse the influence of miR-34a-5p on the proliferation, migration and invasion of liver cancer cells. YY1 inhibited MYCT1 expression by directly binding to its promoter region, and knockdown of MYCT1 reversed the influence of miR-34a-5p on the proliferation, migration and invasion of liver cancer cells. CONCLUSION: Our results suggest that miR-34a-5p could inhibit the invasion and metastasis of hepatoma cells by targeting YY1-mediated MYCT1 transcriptional repression.


Asunto(s)
Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Factor de Transcripción YY1/metabolismo , Western Blotting , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Neoplasias Hepáticas/genética , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pronóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sincalida/metabolismo , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología , Factor de Transcripción YY1/genética
16.
Ann Palliat Med ; 9(4): 1462-1475, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32692201

RESUMEN

BACKGROUND: Many studies have confirmed that electroacupuncture can regulate the body's environment to treat a variety of diseases. However, there are few reports on the mechanism of electroacupuncture therapy for diseases involving skin injury. Transcriptome sequencing can reveal changes in gene expression within cells and the signaling pathways involved. In this study, we used transcriptome sequencing to study the molecular mechanisms by which electroacupuncture promotes the healing of skin lesions. METHODS: A total of 10 SD rats were divided into two groups of 5: a control group and an electroacupuncture treatment group. The wound-healing area was compared between the two groups after 3 and 14 days. Then, mRNA sequencing and bioinformatics were used to analyze the changes in gene expression profiles in skin tissue after electroacupuncture stimulation. RESULTS: (I) The wound area was significantly reduced after 3 and 14 days of electroacupuncture compared with the control group (P<0.05). (II) There was a total of 694 gene expression changes, 496 of which were upregulated and 198 of which were downregulated. Analysis of variable gene-related signaling pathways by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), identified immuneinflammatory response, cell proliferation, tissue remodeling, cell metabolism, graft-versus-host disease, antigen processing and presentation, Th17 cell differentiation, cytokine-cytokine receptor interaction, PPAR signaling pathway, Wnt signaling pathway and other signaling pathways were changed. CONCLUSIONS: Electroacupuncture can promote wound repair, as shown by the changes in gene expression profiles during the healing of skin wounds under electroacupuncture. This study provides a scientific basis that deepens the understanding of the mechanism underlying electroacupuncture.


Asunto(s)
Electroacupuntura , Cicatrización de Heridas/genética , Animales , Ontología de Genes , Modelos Animales , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Transcriptoma
17.
Oxid Med Cell Longev ; 2020: 4951820, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32566084

RESUMEN

As a serious complication of diabetes, nonhealing skin ulcer leads to high mortality and disability in diabetic patients. However, limited therapy is available in managing diabetic wounds. In this study, RNA-seq technology was used to systematically investigate the effect of Huangbai (HB) liniment, a traditional Chinese medicine, on the streptozotocin- (STZ-) induced diabetic wound. HB liniment significantly accelerated the wound closure and enhanced the generation of extracellular matrix in diabetic rats, and oxidative stress was identified to play a vital role in HB-mediated wound healing. Importantly, HB liniment activated nuclear factor erythroid-derived 2-like 2 (Nrf2) and its downstream antioxidant genes (e.g., genes involved in glutathione system, thioredoxin system, and GAPDH generation as well as other antioxidant genes), which inhibited oxidative damage and apoptosis. By associating drug targets of HB liniment with Nrf2 and its downstream genes, 54 components in HB liniment were screened out, and the majority was from Cortex Phellodendri and Forsythia suspensa. Additionally, HB liniment enhanced TGF-ß1 and reduced MMP9 level, accelerating wound healing in diabetes. The in vitro experiment showed HB facilitated cell proliferation and inhibited oxidative damage in high glucose-induced HaCaT cells. Our findings provided the experimental evidence for the treatment of diabetic wound with HB, clarified the potential mechanism of HB, and improved our understanding of diabetic wound healing.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Medicamentos Herbarios Chinos/farmacología , Linimentos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Cicatrización de Heridas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colágeno/metabolismo , Diabetes Mellitus Experimental/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Glucosa/toxicidad , Células HaCaT , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Estrés Oxidativo/efectos de los fármacos , Quercetina/farmacología , Ratas Sprague-Dawley , Estreptozocina , Factor de Crecimiento Transformador beta1/metabolismo , Cicatrización de Heridas/genética
18.
J Cell Physiol ; 235(12): 9974-9991, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32458472

RESUMEN

Chronic venous ulcer (CVU) is a major cause of chronic wounds of lower extremities and presents a significant financial and resource burden to health care systems worldwide. Defects in the vasculature, matrix deposition, and re-epithelialization are the main histopathological changes believed to impede healing. Supplementation of the amino acid arginine that plays a crucial role in the interactions that occur during inflammation and wound healing was proven clinically to improve acute wound healing probably through enhancing activity of inducible arginase (AI) locally in the wounds. However, the possible mechanism of arginine action and the potential beneficial effects of AI/arginine in human chronic wounds remain unclear. In the present study, using biopsies, taken under local anesthesia, from adult patients (n = 12, mean age 55 years old) with CVUs in lower extremities, we investigated the correlation between AI distribution in CVUs and the histopathological changes, mainly proliferative and vascular changes. Our results show a distinct spatial distribution of AI along the ulcer in the epidermis and in the dermis with the highest level of expression being at the ulcer edge and the least expression towards the ulcer base. The AI cellular immunoreactivity, enzymatic activity, and protein levels were significantly increased towards the ulcer edge. Interestingly, a similar pattern of expression was encountered in the proliferative and the vascular changes with strong correlations between AI and the proliferative activity and vascular changes. Furthermore, AI cellular distribution was associated with increased proliferative activity, inflammation, and vascular changes. Our findings of differential expression of AI along the CVU base, edge, and nearby surrounding skin and its associations with increased proliferative activity and vascular changes provide further support to the AI implication in CVU pathogenesis. The presence of high levels of AI in the epidermis of chronic wounds may serve as a molecular marker of impaired healing and may provide future targets for therapeutic intervention.


Asunto(s)
Arginasa/genética , Úlcera de la Pierna/genética , Isoformas de Proteínas/genética , Úlcera Varicosa/genética , Arginina/metabolismo , Enfermedad Crónica/prevención & control , Femenino , Humanos , Úlcera de la Pierna/fisiopatología , Masculino , Persona de Mediana Edad , Óxido Nítrico Sintasa/genética , Piel/metabolismo , Piel/patología , Úlcera Varicosa/fisiopatología , Venas/metabolismo , Venas/patología , Cicatrización de Heridas/genética
19.
Undersea Hyperb Med ; 47(1): 31-37, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32176944

RESUMEN

Background: Hyperbaric oxygen (HBO2) therapy can have a positive effect on wound healing, angiogenesis and blood flow. No prior study has described the effects of HBO2 therapy and gene expression of this process. The goal of our research was to show the effects of HBO2 and its impact at the molecular level on angiogenesis, proliferation, differentiation, oxidative stress, inflammation, and extracellular matrix formation. Live animal subjects were used for simulating the process of wound healing under standard conditions and under the influence of HBO2. Methods: Two experimental groups were created using injured rabbits (N=24), one group (N=12) treated with hyperbaric therapy twice a day and one (N=12) with standard wound care management. Wounds were surgical, uninfected, and in healthy animal test subjects. We compared the whole genomic analysis of the transcriptome with the use of microarray technology at three intervals during treatment. Results: The induction of the wounds in rabbit skin increased expression of hundreds of genes in both treatment groups. The numbers of elevated and decreased genes gradually reduced as the wound healed. Gene expression analysis showed elevated expression of several genes associated with inflammation in both groups of injured animals. Genes connected to the process of angiogenesis, proliferation, differentiation, oxidative stress and extracellular matrix formation were without statistically significant changes. Conclusion: The evidence did not support that HBO2 had any significant effect on gene expression during wound healing. Additionally, there was no evidence to support that there were changes in gene expression in either treatment group.


Asunto(s)
Expresión Génica , Oxigenoterapia Hiperbárica , Herida Quirúrgica/genética , Cicatrización de Heridas/genética , Animales , Femenino , ARN Mensajero/análisis , Conejos , Piel/lesiones , Herida Quirúrgica/terapia , Análisis de Matrices Tisulares/métodos
20.
Molecules ; 25(3)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31972968

RESUMEN

BACKGROUND: It has been shown that many plant- or microbial-derived oligos and polysaccharides may prompt tissue repair. Among the different extracts that have been studied, the aqueous one of Triticum vulgare (TVE) that was obtained from a whole germinated plant has been proven to have different biological properties that are useful in the process of wound healing. Nevertheless, with the long tradition of its use in pharmaceutical cream and ointments, especially in Italy, a new protocol was recently proposed (and patented) to improve the extraction process. METHODS: In a simplified in vitro model, human keratinocyte monolayers were scratched and used to run time lapse experiments by using time lapse video microscopy (TLVM) to quantify reparation rate while considering a dose-response effect. Contemporarily, the molecular mechanisms that are involved in tissue repair were studied. In fact, key biomarkers that are involved in remodeling, such as MMP-2 and MMP-9, and in matrix structure assembly, such as collagen I, elastin, integrin αV and aquaporin 3, were evaluated with gene expression analyses (RT-PCR) and protein quantification in western blotting. RESULTS: All TVE doses tested on the HaCat-supported cell proliferation. TVE also prompted cell migration in respect to the control, correctly modulating the timing of metalloproteases expression toward a consistent and well-assessed matrix remodeling. Furthermore, TVE treatments upregulated and positively modulated the expression of the analyzed biomarkers, thus resulting in a better remodeling of dermal tissue during healing. CONCLUSIONS: The in vitro results on the beneficial effects of TVE on tissue elasticity and regeneration may support a better understanding of the action mechanism of TVE as active principles in pharmaceutical preparation in wound treatment.


Asunto(s)
Queratinocitos/patología , Extractos Vegetales/farmacología , Triticum/química , Cicatrización de Heridas/efectos de los fármacos , Acuaporina 3/metabolismo , Biomarcadores/metabolismo , Supervivencia Celular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Elastina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Integrina alfaV/metabolismo , Queratinocitos/efectos de los fármacos , Peso Molecular , Imagen de Lapso de Tiempo , Transcripción Genética/efectos de los fármacos , Viscosidad , Cicatrización de Heridas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA